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Abstract. A purpose of the article is discussing the method of technical systems
reliability modelling. The most important methods used for constructing realist
models of the physical world, i.e. the method of the experimental modelling and the
method of the probabilistic modelling, were presented. The particular attention was
focussed on the method of the probabilistic modelling allowing for taking into
account uncertainty in functioning of systems. An example of using the proposed
method to the modelling of the reliability of the air-traffic-control-system was quoted.
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1 Introduction

We are calling the distinguished fragment of real world, of which properties

and occurrences happening in it are the subject of the research the system [2, 5, 13,
15]. Technical systems, understood as the set of technical devices tied together
functionally cooperating in performing specific activities, are a special kind of
systems.
We are calling creating the mathematical description of the system the identification
[13, 18, 19, 20, 23]. A mathematical modelling is a research method consisting
creating mathematical models and using apparatus of mathematics for their analysis.
A mathematical model i1s arough description of the system expressed using
apparatus of mathematics reflecting the entire available knowledge about the
system.

The theory of reliability [3, 6, 7, 16] is a domain of the research activity being
aimed at a cognition and understanding crucial factors affecting the reliability of
systems, of especially technical systems. The reliability of the technical system is
interpreted as its ability for the performance of tasks in named terms and in
determined time intervals.

With reliability identification we are naming creating the mathematical
description of all factors having a significant influence on the reliability of systems.
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Out of many paradigms of the identification of systems [13, 18, 19, 20, 23], in
the modelling of the reliability of systems of the special significance paradigms are
picking up the experimental modelling and the probabilistic modelling.

2 Experimental modelling of systems

The paradigm of the experimental modelling [13, 18] is coming from the
concept of empiricism - of philosophical direction in the theory of cognition, leading
the human cognition out of sensory, outside or internal experience. This paradigm
allows for constructing models of systems on the basis of observations of their input
signals and suiting them of output signals.

Let R,Z,N denote, appropriately, a set of real numbers, a set of integral
numbers and a set of natural numbers. Let’s enter markings: R = (0,0) € R,
Riowy = [0,0) € R, Ny = N U {0}. Let’s assume that considered system has a m of
inputs and a m of outputs. Making this assumption isn't reducing the generality of
deliberations, because if m = max{mu, my}, where m,, is a number of inputs, m,, is
a number of outputs, it is possible to absorb it, that signals on non-existent inputs or
outputs always accept nulls.

Let A = QL |Jul]), 2 = R™, |ju| = VuTu denotes a space of the value of the
vector input signal of the considered system. Let 9 = (9, llyl), 9 =R™,

llyll = m denotes a space of the value of the vector output signal of this system.
Let T denotes a set of parameters in the time. In issues of the identification, the set
T is interpreted in the different way. The following cases are distinguished: ¥ = R,
T=Riox), T=Row), T=2Z, T=N and T = N;. The mapping p: T > U we
are calling the input signal of the system. The mapping q : T = 9 we are calling the
output signal of the system. If T = R, T = R[p,) or T = R(g,) then p and q we are
calling continuous mappings. If T =17, T =N or T = N, then p and q we are
calling discrete mappings.

The experimental research consists in registering the value (u,,y,) of couple
of input and output signals (p(t), q(t)) € U X 9Y, where u,, = p(t,), v, = q(t,),
of the considered system with discreet moments t,, = nAt € I, forn=0,..N — 1,
where t, is a moment of beginning observation of the system, however At > 0 is
a time interval between next observations. The set {(u,,y,) € W X Y I} we are
calling the set of observations (or briefly: observations).
Observations {(u,,y,) € Wx Y IN-} it is possible to interpret as values of
deterministic or random signals. If observations {u,} =3 and {y,}NZ3 are being
interpreted as values of deterministic signals, then p and q mappings are
deterministic functions. If observations {u,}¥-3 and {y,}N=¢ are being interpreted
as values of random signals, then p and q mappings are Borel functions.

Methods of the experimental modelling at present are most often used for the
identification of structurally and functionally complex systems.
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3 Probabilistic modelling of systems

The paradigm of the probabilistic modelling is coming from the concept of
uncertainty, according to which no general entitlements or universal regularities
determining the development of physical phenomena don't exist. This paradigm
allows for constructing realist mathematical models describing in the way moved
closer phenomena of the physical world. Probabilistic models are usually expressed
using methods of the theory of probability [21], the mathematical statistics and the
theory of stochastic processes [1, 3, 16, 22].

Notions of event, elementary event, random events, probabilistic space,
random variable and stochastic process are basic universals of the probabilistic
modelling.

We are calling the any physical phenomenon associated with the examined system
the event. Every possible outcome of this phenomenon is an elementary event.

Let Q denotes a set of elementary events. Let F = o(2%) denotes
a distinguished o — body of subsets of the set Q. Let P:F — Rjy, denotes
a probabilistic measure. We are calling the family of events F, to which the
probabilistic measure was assigned, the family of random events. Any subset of the
set F we are calling the random event.

Definition 1. The triple (Q, F, P) we are calling the probabilistic space.
O

Definition 2. Let (Q, F, P) be a probabilistic space. We are saying that the function
x : Q - R, determined on the set of elementary events Q and with values in R, is
a random variable, if {w € Q : x(w) € B} € F, i.e. if the set {w € Q : x(w) € B} is
a random event for every Borel set B.

m

Definition 3. Let (Q, F, P) be a probabilistic space. Let T = R be a set of parameters in
the time. Let RY be a set of all functions of real values determined on the set T, whereas
let BY be a Borel family subsets of the set RT. We are saying that the function
x : Q > RY, assigning every elementary event from the Q set to element of the set RY,
is a stochastic process with continuous time (or briefly: stochastic process), if {w € Q :
x(w) EBI}EF, ie. if the set {w € Q: x(w) € BY} is a random event for every
Borel set BY.

O
4 The reliability model of the system
The reliability model of the system appoints the triple:

S, X, D), (1

where: S denotes a model of the system reliability structure (point 4.1), X denotes
a model of the time evolution of the system reliability states (point 4.2), however D
is a model of the time evolution of passages of the system (point 4.3).
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4.1 The model of the reliability structure of the system

In theory and engineering of the reliability [3, 6, 7, 16] oneself dynamic and
static reliability structure of systems are considering. We are saying that the system
reliability structure is dynamic, if the cooperation of elements is changing in the time
as a result of their damages or changes of the configuration. Otherwise we are
saying that the system reliability structure is static.

The model of the dynamic reliability structure of the system appoints the triple:

S (I,G R), )

where € = {e,, ..., ex} is a set of elements, however R € T X € X € is a ternary
relation.
The model of the static reliability structure of the system appoints the ordered pair:

S & (G R), 3)

where € = {e,, ..., ex} is a set of elements, however R € € X € is a binary relation.
Let & & {1,..., K} be a set of ID badges of all elements of the reliability structure S
(D).

4.2 The model of the time evolution of the system reliability states

With reliability state we are naming the smallest numerically set of linearly
independent quantities permitting the ability of the system the ambiguous evaluation
for the performance of tasks in named terms and in the determined time interval.

The model of the time evolution of the system reliability states appoints the ordered
pair:

X = ({Xy}kex, X), 4
where:
o X is a model of the time evolution of reliability states of the element
ex € C;
e X is a model of the time evolution of reliability states of the system as
a whole.

The model X, (4) appoints the triple:

Xi & (T, Xk, 8), (5)
where:
o X, is aset of reliability states of the element ey
o g.: X, XTI > X, is a function of the reliability state transition of the
element ey,.

The model X (4) appoints the triple:
X & (T, %), (6)
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where:

e X is aset of reliability states of the system as a whole;

e g is a structural function. It is worthwhile underlining, that if S (1) is
a static structure (3), then g : X; X ... X X = X is a set function, which it is
possible to express in the form of sums and products of the random events
consisting in changes of reliability states of elements {e; € C}cg. If S is
a dynamic structure (2), then g: X; X ... X X X T = X it isn't possible to
present in the form of a set function and it is usually determined in the
algorithmic form as the sequence of random events.

4.3 The model of the time evolution of passages of the system

The model of the time evolution of passages of the system appoints the ordered
pair:

D & ({Dy}res D), (7
where:

o I, is a model of the time evolution of passages of the element e, € €,
o DD is amodel of the time evolution of passages of the system as a whole.

The model D, (7) appoints the triple:
Dy & (T, X, fr), (8)

where f, : X, X T = T is a function of the time evolution of passages of the element
ex € €. The form of this function explicitly isn't usually known. It is assumed that,
for the established state x € X;, it is possible to observation of the value
Upe,,, = fi(x,t;) of this function in the moment t;, where t; is a moment of the

reliability state transition of the element e, for i = 0,1, .... . The value u,, €I,
L

where T = R(q ., is being interpreted as a length of the time interval [t;, t;11) € T
of staying the element e, in the state x € X,.
The model D (7) appoints the triple:

D & (Z,%,1), 9)

where f : X X T = T is a function of the time evolution of passages of the system as
a whole. The form of this function explicitly isn't usually known. Let Uy, = f(x, tj)
denotes a value of the function f in the moment t;, where t; is a moment of the
reliability state transition of the system as a whole. The value Uy, € T, where

T = Ry, 18 being interpreted as a length of the time interval [tj,tj+1) c X of

staying the system as a whole in the state x € X. Direct observing values {uxj .

j=0
isn't usually possible. In practice values of the function f are being generated by way
of the stochastic simulation [8, 10].

Studia Informatica 1-2(15)2011



48 Wesotowski Z.

5 Reliability states

In the theory of reliability are being considered bi- and multi-state reliability
models.
Bi-state reliability models. Bi-state reliability models [3, 6, 7, 14, 16] enable the
binary quality assessment of tasks performed by the system. In this model only these
states are being considered, in which system either fully it is performing its tasks or
isn't carrying them out at all. The bi-state model often abides by the assessment of
contemporary critical mission computer systems, because these systems in the very
nature of things are being assessed only in categories able or disable for the
execution of their tasks. In analysis of that kind of systems indirect evaluations aren't
being used, because after all these systems were being designed for so that in the
constant way they perform all their tasks. The disable of critical mission systems can
become a cause of many grave perturbations in functioning of many important
aspects of the social life, e.g. of air communication.
Multi-state reliability models. Multi-state reliability models [6, 12] are most often
applied to the qualitative assessment of the effectiveness of systems functioning.
Tele-transmission systems are an example of multi-state technical systems. These
systems are particularly susceptible to outside disruptions of different kind which
influence the quality of transmission of signals in the significant way. Let us notice
that with reference to that kind of systems stating about their disable isn't tantamount
to stating about damaging them.
In some works from the range of the theory of the system reliability [12] attempts of
analysis of the reliability of multi-state complex systems are being made, but these
results not always are satisfactory. It results mainly from the problems of the
computational nature associated with the soaring number of states one should use
which to the appropriate description of the process of changes over time of
reliability of the system.
Summary. Summing up, it is possible to state that with reference to the outstanding
majority of systems of especially the ones which are assembled from electronic
elements, the bi-state model is sufficient for conducting their reliability analysis.

Statistical reliability analysis of systems it is possible to conduct based on the
statistical material being a result of information reliability examinations.

6 Information reliability examinations

The purpose of information reliability examinations is gathering statistical data
about lengths of time intervals [t;, t;;,) € T of staying elements e, € € in states
x€ X, fori=01,..k €SK

Let's assume that M € N systems was provided with examinations and that
systems are homogeneous with respect to the reliability. Let It & {1, ..., M} be a set
of ID badges of these systems. Let S,, & (€,,,R,,), €,, = {e;(m), ..., ex (M)},
R € €, X €, be a reliability structure of the m. system, in addition S; = -+ =
=S, =S, where S (1).

Reliability examinations of systems are being led according to plans:
Py, = (M,R 1), x € X, k € &,
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which meaning that M systems is subject to examinations; elements {e,(m) €
€ kesmem damaged in the course of the examination are being repaired; the
examination is ending after the registration a length of the time interval

[tlkx—l'tlkx) c T of staying the element e,(m) € €, in the state x € X, for
m € IM.
Let

Dkx et {Dkxo' Dkxl’ ey Dkxlkx—l}’ (10)

Ikx—l

}i=0  Let Sy, = {0, I, — 1} be

a set of ID badges of these attempts. Every attempt D, consists in the registration
l

be an experiment consisted of attempts {Dkx,

l

of lengths of time intervals [t;, t;,;) € T of staying elements {e,(m) € €}, e in
the state x € X,.
The probabilistic space:

(Qkxi' Tkxi’ kai)’ EE Sy (11)
we are calling the probabilistic model of the attempt Dy, what we are filling with
l
writing in the form Dy = (Qkx-'Tkx-' ka_), where:
L l l l
o Qkxi = {wukxi(m) Pl (m) € R(O'w)}mesm is a set of elementary events,
where Oy (m) is an elementary event meaning that the length of the time
i

interval [t;, t;4;) € T of staying the element e,(m) € €, in the state
x € X is taking out uy,_(m) € R(g . It is worthwhile emphasizing that
l

uy, (m) is being interpreted as the value of the function fy (8) for the

established reliability state x € X; in the established moment t; of the
element e, (M) € €,;

o Fy, =0 (ngxi) is a family of random events being distinguished o-body
L
of subsets of the set Q_;
o Py, :Fy, = Ry isaprobabilistic measure.
The probabilistic space:
(i Freyo Pry), (12)

we are calling the probabilistic model of the experiment Dy , Dy =
= (Q.kx,.‘Fkx, ka), where:
° Qkx = Qkxo X Qkxl X ... X Qkxlkx—l;

[ ] TkXZTkXOXTkxlx...XTkxlk _1;
X

° ka : :Fkx - ]R[O:OO)’

Studia Informatica 1-2(15)2011



50 Wesotowski Z.

Let llkxi = {ukxi(l),ukxi(Z), ...,ukxi(M)} be a set of results of the attempt

Dkxi' LetW, = {llkxo, Hkxl, ) u"xzkx—1} be a set of results of the experiment Dy .

In probabilistic modelling of systems we assume that results {ukx_(m) €

ukxi}meﬁm

events, fori € Iy, x € X;, k € K.

of the attempt Dy are realizations of functions dependent on elementary
l

7 Random variables and random vectors

Random variables are measurable functions determined on sets of elementary
events and with values in Euclidean spaces.

The random variable:
Uiy, * e, = Roogm), (13)

we are calling the random model of results from the set Uy, where Q  (11). The
l L
element u;, (m) € U, of the set U, is interpreting as the realization of a random
l l l
variable wu; _, what we are filling with writing in the form 1w, = u, _(m), for
l l i

m € .
The random vector:
def . Tiex
ukx = <ukxO,/Lkal, ...,/bkaIkx_l) : ﬂkx - R(O,oo)’ (14)
we are calling the random model of results from the set W, , where Q. (12). The
element u, € Wy of the set W, is interpreting as the realization of a random
l

vector wy, , i.e. Uy =y, fori € Jy .
l

In the special case, when random variables {/ukx_
L

} . (13) are independent
lESkx

copies of the same random variable w;  inducing the probabilistic space
(Qkx,Tkx,ka), the probabilistic space induced by the random vector u; (14) is

being marked with symbol (Qkx,Tkx,ka)Ik". In the theory of reliability is most
often considered probabilistic spaces (R, Fg, {Py, 9 € O})'*x, where Fy is a o-body
of subsets of the set R, however {Py,9 € ®} is a family of distributions, where © is
a set of parameters of these distributions.

8 Example

Let’s consider the issue of the reliability modelling of the air-traffic-
observation-system (picture 1) [24]. Details about the air situation are being
delivered from radars R; and R,, through coupling devices U; and U,, for display
W. Computers K; and K, are effecting the data handling about the air situation of
observation originating in two channels A; and A,. In case of the breakdown of one
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of computers, second automatically is adopting objectives of the data handling
coming from both channels.

Ki K>
e | |
: R; Ui :
VA | o— W
- ————————=== |
: R U : ¢ ~—
| |
VA2 |

Picture 1. Simplified scheme of the technical structure of the air-traffic-observation-
system

Reliability structure. Considering the possibility of the appearance of the
breakdown of each elements of the technical structure of the considered system and
assuming that the manner of the cooperation of these elements isn't undergoing
changes in the time, the model of the reliability structure of the system is static and
is assuming the following form

S = (G R), (15)
where:
e (E={ey, .., ex} is a set of elements, where: e; = R, e, = R,, e5 = U,
e, =U,, e =K, e =K,,e; =W, in addition K = 7;
e R={r,..,13}cEXE is a binary relation, where: 1, = (e, e3),
= (eye4), 13="(e3e5), 1 =(es,85), 15=_(ese5), 15 = (€4 e),
r; = (es,€7), 15 = (€g,€7).

é1 (o]

e €4

Picture 2. Scheme of the static reliability structure of the air-traffic-observation-
system
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Let & & {1,..,K}, K =7, be a set of ID badges of all elements of the
reliability structure S (15).
Reliability states. Let us accept the bi-state reliability model of the considered
system. Let X, = {0,1} be a set of reliability states of the element e, € €,
in addition {0} € X; means the condition of the disability of this element, however
{1} € X, is indicating the condition of its ability, for k € K. Let X = {0,1} be a set
of reliability states of the system as a whole, in addition {0} € X means the condition
of the disability of the system as a whole, however {1} € X is indicating the
condition of its ability. For the performance of operations on sets {X;} e and X
a Boolean algebra is applicable, which is determined by the algebraic structure
B« (0,1,u,n,~).
Let {t; € T};5, be moments of the reliability state transitions of the element e, € €
(15). How it is possible to notice, in moments {t;};so, the function g, (5) is
assuming the following form

X, = 8k (o ty) = ~x,

where x;, = x;(t;) is a reliability state of the element e in the moment t;, in
addition is being accepted that in the moment ¢, the element e, is able, i.e. x;(0) =
= Xg, = 1.
Structural function. For the considered system, the static structural function
g: X, X ..XXg = X (6)is assuming the following form

x =g(xq, .., xg) = (gx1 Nx3) U (x, N x4)) N (xs Uxg) N xy;

= Upi .

where {p;}}_, are ability paths about forms: p; = x; Nx3 N X5 N X, P = X; N
X3 NXg NX7, P3 =X N X4 NXg N Xy, Dy = Xy N Xy N Xg N Xy, in addition x € X,
Xy € %k' k € K.

Experience. Let’s assume that the set U of results of the attempt D, (10) is
l l
given, fori € 3 , x € Xy, k € K.

Random variables. On the basis of the set U, it is possible to conduct the
i

verification of the hypothesis concerning the agreement (of fitting) of this set with
the chosen theoretical distribution. It is possible to use one of goodness-of-fit-tests
for the verification of this hypothesis [1, 11]. To most popular belong: chi-square
test of goodness-of-fit, Cramér-von Mises test, Kolmogorov test and Shapiro-Wilk
test.

Let's assume that a random variable Uiy, is a random model of observations from

the set Uy~ and let Fy, =~ be a distribution function of this random variable, for
l l
[ €3k, XxEX, kER
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Simulation. Since direct observing values of the function f: X X I - T (9) is
impossible, one should conduct a reliability analysis of the considered system with
method of the stochastic simulation [8, 10]. An aim of simulation experiment is
generating statistical data {uxj = f(x, tj)} about lengths of time intervals of
j20
staying the system as a whole in reliability states {x € X, }. It is possible to conduct
the simulation with method of discrete events [8] based on the given the structural
function g (16) and using pseudorandom number generators [10, 25] about
distributions F_, fori € 3y ,x € Xy, k € K,

9 Summary

In the paper a method of the reliability modelling of technical systems using
paradigms of the experimental modelling and the probabilistic modelling was
presented. It is possible to use suggested methodology for drawing up stochastic
simulation models enabling to statistical inference about the use process of systems.
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