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Abstract: The class of Esscher transforms is an important tool for option pricing Ger-
ber and Shiu (1994) showed that the Esscher transform is an efficient technique for 
valuing derivative securities if the log returns of the underlying securities are gov-
erned by certain stochastic processes with stationary and independent increments. 
Levy processes are the processes of such type. Special cases of the Levy processes 
such as the normal inverse Gaussian process and the variance gamma process are con-
sidered at this paper. Values of these processes parameters for the existence of Esscher 
transform are deduced. A new algorithm of a normal inverse Gaussian process and 
variance gamma process simulation is also presented in this paper. These algorithm is 
universal and simpler one compared with analogous algorithms. 
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1 Option pricing by Esscher transforms 
 

Let   0ttLL   be a Levy process on some filtered probability space 

( ,ℱ,(ℱ 0t ), ) . Consider a stock price model 

                    
)Lexp()rtexp(SS t0t  ,                    (1) 

with a stock price process   0ttSS  , 0S0  , a constant deterministic interest 

rate 0r   and Levy process   0ttLL  . 

We cite the following definition and auxiliary results from S. Raible ([2],  
Chap. 1). 



 Troush N.N., Kuzmina A.V.  

Systems and information technology 

36

Definition 1 [2]. Let   0ttLL   be a Levy process on some filtered probability 

space ( ,ℱ,(ℱ 0t ), ) . We call Esscher transform any change of   to a locally 

equivalent measure ~  with a density process 



d

~
d

Zt ℱ 0t
 

of the form  

                             
 t

t
t

)u(M

)L uexp(
Z  ,                    (2) 

where ]e[E)u(M 1uL  is the moment generating function of 1L , u ℝ. 
Lemma 1 [2]. Let   0ttZZ   be a density process, i.е. a non-negative  

 -martingale with 1]Z[E t   for all t . Let 
~

 be the measure defined by 




d

~
d ℱ t tZ , 0t  . Then  an adapted process   0ttXX 

 
is a ~ -martingale 

iff   0tttZX  is a  -martingale. 

If further we assume that 0Zt   for all 0t  , we have the following. For 

any Tt  and any 
~

-integrable and ℱ T -measurable random variable Y , 
 

              
|Y[E~  ℱ 




 

t

T
t Z

Z
YE]  ℱ 




t

                    

(3) 

Lemma 2 [2]. Equation (2) defines a density process for all u ℝ such that 

)]uX[exp(E 1 .   0ttLL 
 
is again a Levy process under the new measure ~ . 

Lemma 3 [2]. Let the stock price process be given by (1). The random variable 1L  

is non-degenerate and possesses a moment generating function 

]e[Eu:)u(M 1uL  on some open interval )b,a( , b,a ℝ with 1ab   and 

there exists a real number u )1b,a(  such that 

                           )1u(M)u(M  .                    (4) 

Then the basic probability measure   is a locally equivalent to a measure ~  

such that the discounted stock price )Lexp(SS)rtexp( t0t   is a ~ -martingale. 

A density process leading to such a martingale measure ~  is given by the Esscher 
transform density (2) with a suitable real u . The value u  is uniquely determined as 
the solution of (4). 

Raible [2] introduces the certain example which shows that equation (4) 
doesn’t hold for any u )1b,a(   and any Levy process parameters. We find out 

the values u )1b,a(   and the Levy process parameters values in order to equa-

tion (4) holds. 
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Let the Levy process of the model (1) be the normal inverse Gaussian process 

  0t,LL NIG
t

NIG 
 

with a shape parameter 0 , a skewness parameter 

 , a scale parameter 0  and a location parameter  ℝ. 

 
Definition 2. A stochastic process   0t,LL NIG

t
NIG   with the parameters 

 ,,,  on some filtered probability space ( ,ℱ,(ℱ 0t ), )  
having values  

in ℝ, is called the normal inverse Gaussian process if  

1) 0L
.s.a

NIG
0  ; 

2) NIGL  has independent and stationary increments; 

3) NIGL  increment NIG
s

NIG
st LL   

follows
 
a normal inverse Gaussian law with 

the parameters  t,0t,,0  ℝ, i.e. 

NIG
0

NIG
t

D
NIG
s

NIG
st LLLL  ~ )t,t,,(NIG  , 0t,0s  , 

The normal inverse Gaussian process was introduced by Barndorff-Nielsen 
(1998) as a stock price model [3].  

The normal inverse Gaussian distribution characteristic function is given by 

 
 22

22

)iu(exp

exp
)uexp()u(




  

Hence the moment generating function )iu()u(M   of a normal inverse 

Gaussian law is of the form  

          

 
 22

22

)u(exp

exp
)uexp()u(M




 .              (5) 

 

Theorem 1. There is the only point 
2

1
u , u   ,  such that 

(4) holds when the normal inverse Gaussian distribution parameters  ,  ,  , 

0  satisfy the following conditions 
2

1
 ,  , 0 . 

Proof. The moment generating function (5) range of definition is 

  , , so the maximal interval on which the moment generating func-

tion exists is   , . According to assumption 1ab  , where 

 a,b , we deduce that 
2

1
 . 
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Let’s find such u )1b,a(   that (4) holds. We have the following equation 

from (4), (5)  

      

 
 

 
 22

22

22

22

)1u(exp

exp

)u(exp

exp









.         (6) 

Having solved (6) we get 
2

1
u  . 

Confirm theorem 1 by the following example. 
Example 1. Consider normal inverse Gaussian distributions with parameters 

1 , 1,0 , 005,0 , 001,0  in the first case and 1 , 1,0 , 

005,0 , 0  in the second case. The moment generating function (5) range 

of definition in both cases is    1,1,9,0,  , so the maximal open 

interval on which the moment generating function exists is  1,1,9,0 . However in 

the first case there are no two points 1u,u   in the range of definition such that the 

values of the moment generating function at these points are the same. In the second 

case there are two points 4,0
2

1
u  , 6,01u 

 
in the range of defini-

tion such that the values of the moment generating function at these points are the 
same 000645,1)1u(M)u(M  . 

Let the Levy process of the model (1) be the variance gamma process 

  0t,LL VG
t

GV 
 

with a shape parameter 0 , a skewness parameter 

 , a scale parameter 0  and a location parameter  ℝ. The vari-

ance gamma process was introduced by Madan D.B. et al. [4] (1998) as a stock price 
model. 
 
Definition 3. A stochastic process   0t,LL VG

t
VG   with the parameters 

 ,0,0 ℝ on some filtered probability space ( ,ℱ,(ℱ 0t ), )  
having 

values in ℝ, is called the variance gamma process if  

1) 0L
.s.a

VG
0  ; 

2) VGL  has independent and stationary increments; 

3)  VGL  increment VG
s

VG
st LL   

follows
 
a variance gamma law with the pa-

rameters  ,0,0 ℝ, i.e. 

VG
0

VG
t

D
VG
s

VG
st LLLL  ~ )t,t/,t(VG  , 0t,0s  . 

The variance gamma law characteristic function is given by [4] 
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  


/122 u)2/(ui1)u( .            (7) 

The variance gamma law moment generating function )iu()u(M  is of 

the form 

                
  


/122 u)2/(u1)u(M .             (8) 

Theorem 2. There is such point  

2

1
u

2





 , 
































24

2

224

2

2

2
,

2
u , 

that (4) holds, when the variance gamma law parameters  ,  ,   satisfy the fol-

lowing conditions 0 ,  ℝ, ,...2,1k,k2   or 

,...2,1k,k2/1  , and 
2

12
24

2








.  

If ,...2,1k,1k2   or ,...2,1k),1k2/(1  , then  























24

2

2

2
,u

 

 
































24

2

224

2

2

2
,

2
 























 ,
2
24

2

2
 , value 

2

1
u

2





 . 

Proof. If ,...2,1k,k2   ,...)2,1k,k2/1(  , then the moment 

generating function (8) range of definition is 


































24

2

224

2

2

2
,

2
. Because of condition 1ab  , 

where 





















 24

2

224

2

2

2
a,

2
b  we have 

2

12
24

2








. 

Because of (4), (8) we have 

         
  

 /122 u)2/(u1
 

   


/122 )1u)(2/()1u(1   (9) 
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Having solved (10) we get 
2

1
u

2





 . 

Если ,...2,1k,1k2   ,...)2,1k),1k2/(1(  , then the 

moment generating function (8) range of definition is 























24

2

2

2
,

 

 
































24

2

224

2

2

2
,

2
 























 ,
2
24

2

2
 . The value 

2

1
u

2





  is deduced from (10). 

Confirm theorem 2 by the following example. 
Example 2. Consider variance gamma distributions with parameters 1,0 , 

2 , 01,0  in the first case and 10 , 01,0 , 0  in the sec-

ond case. The moment generating function (5) range of definition in the first case is 

 05,11;05,9
2

;
2

24

2

224

2

2

































 . There are two 

points 5,0
2

1
u

2





 , 5,11u 
 
in the range of definition such that the 

values of the moment generating function at these points are the same 
996,0)1u(M)u(M  . In the second case the moment generating function 

(5) range of definition is 

 1,0;1,0
2

;
2

24

2

224

2

2

































 . However the condi-

tion 
2

12
24

2








 fails and 5,01u   doesn’t belong to the moment gener-

ating function (5) range of definition. 
 

2  Normal inverse Gaussian process and the variance gamma 
process simulation 

 
The normal inverse Gaussian process and the variance gamma process are spe-

cial cases of generalized hyperbolic process. The generalized hyperbolic distribution 
is defined in [5] through its characteristic function 
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)(K

))u((K

)u(
)iuexp()u(

22

222/

22

22






















, 

where du)uu(z
2

1
expu

2

1
)z(K

0

11



 






   is the modified Bessel func-

tion, 0z  ,  ℝ 

,,0  если 0   

,,0  если 0 , 

,,0  если 0 . 

The generalized hyperbolic distribution depends in five parameters:   determines 

the shape,   determines the skewness,   is a scaling parameter,   determines the 

location and   characterizes certain sub-classes. For 
2

1
  we obtain the nor-

mal inverse Gaussian distribution ),,,(NIG  . For 0,/2   we 

obtain the variance gamma distribution )t,,(VG 
 

taking
 

242 /,//2  . 

 
The normal inverse Gaussian process and the variance gamma process simulations 
are considered in [6, 7]. We propose another algorithm that is simpler and universal.  
The superposition method [8] using is possible for the generalized hyperbolic proc-
ess and its special cases simulation because of the generalized hyperbolic distribu-
tion density form [7]: 

           

dy)y(f)x(f)x(f GIG

,,
0

N
y,y,,,, 22 



  ,             (10) 

where )x(f N
y,y   is the normal distribution density with mean y , and vari-

ance y , )y(f GIG

,, 22 
 is the generalized inverse Gaussian distribution density with 

the parameters 
22b,a,  [5, 9].  

The algorithm contains the following sequence of steps. 
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)t,t10,2,3,5.0(–GH 

 
)0,t,2,10,5.0–(GH   

  
)0,t2,,40,5.0–(GH   )0,t,3.0,,1(GH   

 

 

 
)0,t20,3.0,5.0,(GH 

 
 

 
Figure 1. The sample paths of generalized hyperbolic processes 

 
 
Algorithm 
1) Generate independent generalized inverse Gaussian random numbers 

 1k,k   with the parameters 22b,ta,   [9]: 

),t,(GIG~ 22
k  , 1k  . 

where 0t  . 
2) Generate independent generalized hyperbolic random numbers  1k,k   as 

normal random numbers with the parameters tE kk  , kkD  : 

),t(N~ kkk  , 1k  . 

 = 20 

 =-20 

 = 2 

 

  = 5 

 =-5 

 =  0 

 = -0.1 

 = 0 

 = 1.5 

 = 40 

 = 0.4 

 = 4 

  = 5 

 = -5 

 =  0 
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3) Generate generalized hyperbolic process   0t
GH
t

GH LL   with the parameters 

 ,,,,  as 

0LGH
0  , k

GH
t)1k(

GH
tk LL   , 1k  . 

 
The normal inverse Gaussian process is simulated using the above algorithm when 

the parameter 
2

1
 . The variance gamma process is simulated using the above 

algorithm when 0,/2  ,
 

242 /,//2  . 

The sample paths of generalized hyperbolic processes are presented at the figure 1. 
The generalized hyperbolic processes simulations are carried out in MATLAB® 
7.6.0 (R2008a). 
 

The values of the Levy processes parameters for the existence of Esscher trans-
form are deduced at the paper. A new algorithm of normal inverse Gaussian process 
and variance gamma process are considered.  
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