
STUDIA INFORMATICA
Nr 1-2(16) Systems and information technology 2012

Comparative analysis of MDA tools

Krzysztof Pietraszek1
1 Institute of Computer Science,
 University of Natural Sciences and Humanities,

3 Maja Str. 54, 08-110 Siedlce, Poland

Abstract: This paper presents the standard assumptions Model-Driven Architecture
(MDA) and describes several tools supporting MDA approach.

Key words: Model-Driven Architecture (MDA), MDA tools.

1 Introduction

For some time we see increasing role of information systems in various areas
of life and business. Software is used for learning, fun, work, and many other activi-
ties. They are used as a management support department or the whole enterprise.
With the software you can control various devices beginning from simple computer
and ending specialized robots.

Along with the development of information systems has increased demands
placed on them. Today's systems must be fully customized functionality to meet the
needs of future users. An integral feature of their quality must be appropriate and ef-
fective action. In addition, the entire production process and later maintenance of
systems should be efficient and carry with them the lowest costs.

Currently the development of information systems is often compared with the
development of computer hardware. In the last few years have seen rapid progress in
hardware technology. Manufactured processors are fast but the external memory are
more and more capacity. Otherwise is the case with software. Its complexity, fre-
quent changes in requirements at different stages of formation and the requirements
of parallel co-operation with other systems, make the manufacturing process is much
more difficult and more expensive. This makes the result of many project activities
is a product with less functionality and significant defects, leading in many cases,
the failure of the project. Another factor aggravating the increased probability of
failure is exceeding the cost and time production systems.

Existing situation has resulted in the search began for other methods of soft-
ware development based on existing traditional methods. The resulting new tech-
nique called modern object-oriented approach to promote the reuse of software
component approach, etc. Methods of Modern attach great importance to the main-
tenance and upgrading of existing systems. Provide better ways and methods of pro-

 Pietraszek K.

Systems and information technology

20

ducing reliable applications. Solve common problems in designing and implement-
ing a validated commonly acceptable patterns of software. Despite such progress,
the activities of manufacturing software based on modern technology still does not
guarantee the success of projects. The cost of production and the amount of work
has remained high. This was largely due to the lack of concrete solutions to support
or even automate the process of software development.

The answer to these problems initiated CASE tools that support building sys-
tems in different phases of software life cycle. By functionality tools include the
specification of requirements, design, code generation frame, preparation and test-
ing, etc. In addition to the activities connected with the production of CASE applica-
tions also support the creation of project documentation and project management.
The presence of a CASE tool brought much benefit and facilities that relieve design-
ers in the software production process. However, despite a big step forward, some
problems remain unresolved. Amount of work associated with the creation of a full
application code was still high. In addition, cost of maintaining systems and the abil-
ity to integrate with other software left much to be desired.

In view of the situation OMG consortium has set up a new standard for Model-
Driven Architecture (MDA), whose task is to solve the above problems by substan-
tially automating the manufacturing process.

2 Model-Driven Architecture

Standard Model-Driven Architecture [1][2][3] was developed by a consortium
of OMG (Object Management Group). The general idea of MDA is to separate the
functional specification of system solutions to specific technology platforms. The
essence of MDA is to build a model of an application-independent platform, an im-
plementation - PIM (Platform Independent Model). Then the PIM model is trans-
formed to an implementation platform-specific model - PSM (Platform Specific
Model called) with the appropriate conversion template for the selected technolo-
gies. The PSM model is automatically generated code for the platform system. By
using PIM model, we can create applications for different platforms, modifications
to the system, system integration, etc. At the level of PIM made any action related to
the maintenance of the system. Model-independent platform allows for rapid change
of technology platforms, allowing the company is not permanently associated with
specific solutions. Additionally, it can also be used CIM model that presents busi-
ness processes in an enterprise important for the modeled system. MDA uses multi-
ple standards such as UML, MOF, CWM, XMI developed by OMG. By the idea of
MDA significantly reduce manufacturing costs and maintenance of systems and
their prospective owners are not dependent on technology platforms.

MDA is closely associated with the presence of tools to support its implemen-
tation. Most MDA tools gives a big easier in the form of ready-built definition of
transformation and code generation templates for selected technologies such as Java
/ EJB, CORBA, Web Services, C # /.NET. Actually, there are many commercial
tools and open source. But these are not a universal tool for every application and
implement more or less level the concepts of MDA..

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

21

Figure. 1. MDA architecture [4]

2.1 Types of models in MDA

Model is a key concept in the standard MDA. The model is a description of the
part or the whole system in a well defined language such as UML. Models are trans-
formed into other models or in the application code. Transformations are made pos-
sible by a well-defined transformations.

CIM [5] provides all or part of a business enterprise. Languages that are used
to model the business include vocabulary allows the designer to specify business
processes and the relationship between processes, etc. Currently, this language is
such UML. The business model is not necessarily talking about software used by the
company. Whenever a part of the business of the company is supported by the soft-
ware defined logical model describing the software is already written. Business and
software models describe quite different categories of systems in the real world. Sys-
tem requirements are delivered exactly the business model. Automated CIM to PIM
transformation is impossible, because the choice of which parts of the CIM will be
supported by software, is function of people.

Typically, all projects in the MDA standard begins with the creation of PIM
model expressed in UML. There are two levels of PIM: basic PIM and PIM marked.
Marked PIM is based on the primary PIM and also includes a platform-independent
aspects of technological behavior. The purpose of PIM is to present the structure and
dynamics of the system in a platform-independent. PIM model is mainly expressed
in the form of UML class and state. PIM models on the second level contain mark-
ings related to technology, although the elements for specific platforms such as J2EE
or. NET are absent. These models are called models marked (called brand models).
Dimensions that are identified at this PIM level, i.e. session, the object is common to

 Pietraszek K.

Systems and information technology

22

all platforms. Additional terms may be: persistence, transactions, security, configura-
tion level, etc. By adding these concepts to the PIM model, additional information is
hidden, permitting a more precise model transformations to PSM. Indications are
transmitted in the form of UML extensions, i.e. stereotypes, marks

After creation, the PIM model is stored in the repository in the MOF standard
and provides an input parameter for the transformation of the PSM model. To ex-
press PSM models are specializations and extensions to the UML. UML Profile is
a standardized group of extensions that make up the stereotypes and marks that de-
fine the UML environment matched to particular use, such as modeling for a specific
platform such as the UML Profile for CORBA, UML for EJB. Before performing
the transformation of PIM → PSM selected target platform or platform on which we
want to transform the model. During the transformation properties and various addi-
tional information that is contained in the PIM model is a valuable source of trans-
formation for the specific requirements of technology platform. Moreover, between
PSM models arising from the same PIM can create special bridges that are used for
communication. A good example is a system that is represented by a model PSM
works with relational database provided by the second model PSM. Transformation
of PIM to PSM is the most difficult step in the whole manufacturing process. The
MDA tools are often produced PSM model requires a large number of fixes that
could be converted to the application code. Now with the evaluation and transforma-
tion of UML profiles is practically possible to generate a complete model of PSM.
There are four ways to transform PIM to PSM:

• manual,
• transformation using a defined profile,
• transformation that uses signs and patterns,
• automatic transformation.
An implementation model is generated code the system. Code generation is

based on the PSM model, which is nearby at a level from the application code. Cur-
rently on the market we are quite diverse in terms of MDA tools with code genera-
tion. Some form a full code, possibly completed by hand to a small extent while oth-
ers generate most of the code in the form of frameworks and methods for the
programmer corrects the deficiencies. Transforming to the Code can apply to both
applications and generation of SQL scripts for the target database system. The code
is generated based on specific technologies included in the model, i.e. PSM JAVA /
EJB, C # /. NET etc. In addition, the PSM model can represent a specific physical
architecture of the system such as system components, code libraries, etc., which is
included and considered in developing the code. Because current MDA tools support
the production of Web-based systems mainly communicate with the database is
in the code used is the division of three-layer:

• presentation layer: simple forms to add, edit, delete, which are created
automatically, a large number of MDA tools generally do not create the
GUI, the designer must himself create the appropriate IDE interface and
connect the business logic,

• business logic layer: contains the code of services, technologies such as
Web Services, etc.

• data access layer: uses Hibernate, DAO, etc.

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

23

2.2 Standard and technologies used by MDA

MDA approach uses multiple standards and technologies [1] that allow for sys-
tem modeling, transformation, code generation, etc.. Just like MDA, the OMG is
a consortium idea. Presented below are the most important standards and technolo-
gies used by the MDA.

MOF is a standard that defines a language for defining modeling languages.
Standard is the basis for the four-levels models in MDA (Figure 2).

Figure 2. Four-levels models [6]

The lowest level contains the application data such as object instances at runtime, or
specific records database tables. Level M1 is used for modeling systems that contain
the system model: classes, model logical databases etc. The level of M2 shows
metamodels that describe models. Elements of the level of M2 is defined as a DSL
(Domain Specific Language) - modeling languages for a specific area. M2-level
models are models such as UML, which includes more than one level and thus de-
scribes the data and metadata applications adequately for class diagrams and their
components. At the level of M3 is the meta-metamodel, something like EBNF nota-
tion, which allows you to define the syntax of language and its. It is at the level of
M3 is the MOF and can formulate their own metamodels. Examples are the products
of MOF, UML and CWM. MOF definition contains interface specifications for the
MOF repository. The interface allows to get information about the M1-level model
of MOF-based repository. The interface is defined using the CORBA-IDL and is
useful in many environments. Using MOF to define modeling languages we can de-
fine transformations between modeling languages. Because the transformations are
defined in terms of modeling language requiring metamodels it can be applied to
any model written in one of these languages.

QVT (Query, Views, Transformations) [2][7] is a standard for model transfor-
mation defined by the OMG consortium. Model transformation is the process of

 Pietraszek K.

Systems and information technology

24

transforming the model "Ma" consistent with the metamodel "MMa" in model "Mb"
consistent with the metamodel 'MMb'. QVT defines a standard method of transfor-
mation of the source and target models integrates standard OCL.

OCL (Object Constraint Language) is a formal language used to describe con-
straints in UML models and MOF. The use of OCL invariants, we can define classes,
initial conditions and final operation, the input and output attributes of classes.
It does not force any action in the event of irregularities. Standard also allows for de-
termining conditions and invariants in activity diagrams, state, sequence and col-
laboration. Using OCL expand the power of UML / MOF and allow the creation of
a more accurate and detailed models. Each OCL expression always evaluates the
value and describes what is the value, but never dictates how the expression should
be calculated. OCL expressions are often mapped into programming languages, such
as Java, C #. The use of OCL makes UML system model becomes more complete.
In the context of MDA is to generate more precise and complete model of PSM from
PIM model and a more complete code. With the MDA approach, OCL value in-
creased significantly.

UML [8][9] is a standard modeling language at the level of M2 four-levels
models. Almost all the models that are the essence of design models for UML. UML
is integral to the MDA standard and is defined in MOF. UML is a formal language
used by analysts, designers and developers. It is used to describe parts of the existing
reality under which the system will be created. UML is often regarded as modeling
language with four one perspective. The four perspectives provide a structure of the
system at different levels of abstraction and detail and represents a perspective out-
side the system structure. We have the following perspective:

• perspective of a use case - explains the features of the system from the user
perspective,

• logical perspective - presents architecture of the system modeled by the de-
signer,

• implementation perspective - presents components of the system in terms of
implementation,

• process perspective - presents a fragmentation of the system operations and
the executive organs,

• implementation perspective - presents physical structure of the system.
UML is a graphical notation and offers a variety of diagrams used for modeling the
structure and dynamics of the system. In the MDA approach, UML notation is used
when creating the model, PIM and PSM imaging model, which is automatically
generated from the PIM. Additionally, the UML defines the extensions in the form
of stereotypes and marks that allow for precise modeling of systems and better trans-
formations. In addition, there are many UML profiles for specific use such as
CORBA, EJB. Another extension of the UML Action Semantics, which, combined
with UML makes Executable UML. After that, the UML standard OCL is used,
which allows transmission constraints on the elements of the models.

UML can also be used to design a data warehouse with the participation of
CWM.

CWM (Common Warehouse metamodel) [10] is a standard designed to de-
scribe and manage the metadata associated with databases. Standard containers can

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

25

metamodeling data and thus determines their architecture. CWM is located at the
four-layer M2 models (Figure 2) equally with UML, and this means that it is defined
using MOF. CWM standard provides a universal approach to metadata about data
sources, a target data transformation, analysis, operations and processes that create,
manage warehouse data and provide information about its use.

XMI is recommended by the MDA standard for the exchange of metadata be-
tween repositories of different tools. Initially, metadata are exchanged using stan-
dard CORBA-IDL, which proved to be inefficient for sending large models. The
XMI models are not written in the form of graphical notation, but in the form of text
in XML format understood by the computer. Because the MOF is the primary stan-
dard, which defines standards for modeling such as UML or CWM, all models are
imported to the MOF metamodels and saved in XML, which allows for a certain
universality. XMI standard defines:

• rule schema definition (XSD) for the transformation of MOF metamodels
based on XML schemas (XML Schemas),

• rules for creating XML documents with the encoding and decoding MOF
based metadata,

• design principles for XMI based on schemas and XML documents,
• rules for importing XML DTD to MOF-based metamodel.

Objects recorded in XML documents using the appropriate tags and their attributes.
You can also store links to other objects in the same document or separately. Each
XML document has a defined template so that it is possible to validate metamodels.
Using UML models can immediately save it to XML as the standard is equipped
with the appropriate schemas documents. If you save the custom model to describe
its metamodel in the MOF and then create XML schemas. The use of XMI is becom-
ing increasingly popular due to its platform-independent XML.

3 Comparison of MDA to ols

MDA tools are those that reflect a greater or lesser extent, a series of processes
leading to the generation of part or all software based on MDA standard. A key as-
pect of the characteristics of all these tools is the model transformation, which is the
target model generation procedure based on the source model. In order to solve
complex transformation model transformations should be clearly specified. Com-
mon specification QVT transformation is technology, which was described in one of
these chapters. Transformation specification defines the behavior of the tools of
transformation during transformation. Overall, the MDA tools, we can distinguish
the transformation model to the model and the model code. MDA frameworks iden-
tifies four types of transformation:

• PIM to PIM - platform independent, lies in improving the model and is
used to filter PIM model or specialization.,

• PIM to PSM - is used for the transformation of the model selected infra-
structure performance,

• PSM to PSM - refine the model refers to the selected platform,
• PSM to PIM - convert a model for the selected platform for the model

independent,

 Pietraszek K.

Systems and information technology

26

• PSM to application code - the program code is generated for a given plat-
form (e.g. Java or database schema in SQL) in text form.

Figure 3 presents two types of transformation:
• model to application code - vertical arrow presents transformation leading

from M1 to M0 layer,
• model to model - transformation illustrates the horizontal arrow leading

from the source to the target model in layer M1.
Metamodels layers are located vertically from the layer M0 to M3, while the MDA
is presented in the form of source and target (meta) models, avoiding any reference
to models of PIM, CIM and PSM. Such a move is intended to transforming the basic
classification model to code, and model to model.

In this chapter, are analyzed different MDA tools, a variety of implementations
and features offered. Each realizes MDA in its own way using various technologies
and terminology. So far there is no tool that covers all the requirements of standard
MDA. There are two reasons:

• no unified standard for the specification transformation or transformation
model,

• absence of demand tools to support MDA.
Comparison of MDA tools [11] will be presented in a table containing a summary of
the following criteria: manufacturer, model for model transformation and model to
code, available on the market, support for development platforms, development life
cycle (levels of abstraction). Previously, each of the tools will be described in terms
of functionality, etc.

Figure 3. Model-to-code and model-to-model transformation tools

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

27

3.1 OptimalJ

OptimalJ [12] is a tool developed by Compuware, which provides methods for
implementing the MDA approach, starting from the level of PIM. The tool supports
UML 2.0 and allows for modeling the static structure and dynamics of the system
using different diagrams. OptimalJ allows you to import and export of models using
XMI standard. The product provides three levels of models: model fields, model ap-
plication and model code. Model fields coincides with the PIM model and consists
of two models: the model of classes and services. Model class includes a static struc-
ture of system and application data, while the service model is used to describe the
system behavior. Model classes is in the form of class diagrams with each other
forming different compounds such as associations, compositions, aggregations. Each
class must have a defined primary key, which is later used to create the database.
Service model is used for the specification of system behavior independent of im-
plementation.

Application model is a model of PSM, which is represented by three layers:
presentation, business logic and database. The presentation layer provides a graphi-
cal interface system, which may subsequently be reflected in the technologies JSP,
Struts, etc. Model application business logic is represented by the EJB or DAO
(Data Access Object). While the database layer represents the logical database
schema, which is implemented on platforms such as MS SQL, Oracle, IBM DB2,
MySQL.

The application code is generated from the PSM model through appropriate
transformations. OptimalJ offers several tools for testing and debugging of applica-
tion code created. In addition, the product provides features such as configuration,
application servers JBoss, WebLogic, IBM Websphere, Oracle Applications Server.
OptimalJ offers two types of patterns for the transformation: patterns of technology
and implementation. Patterns of technology are used to transform PIM to PSM, and
the patterns of implementation of the transformation of PSM in the application code.
Patterns in OptimalJ are based on the language of TPL (called Template Pattern
Language), which was specially created for this purpose by Compuware. With TPL
can write your own definitions of patterns, but the tool provides a ready-made pat-
terns of transformation for a specific J2EE.

In addition to the functionality described OptimalJ allows you to:
• create metamodels, provides ready-made according to MOF metamodels,
• use of OCL and XMI standards,
• web page design and navigation,
• provides plug-ins for the IDE, i.e. Eclipse, NetBeans,
• project support team.
JOptimal also provides a mechanism for active sync, which updates the appli-

cation model and the source code with the changes incorporated in the model area.
The functionality of the generated code and distinguishes between extensions added
by the developers, and provide the developer makes changes in the model is a model
and the code will be automatically synchronized. Active synchronization ensures
consistency between code and models, resulting in application is easier to manage

 Pietraszek K.

Systems and information technology

28

and maintain. Active Synchronization is an intelligent process with which the parts
of the applications that are subject to change and those that are not.

3.2 ArcStyler

ArcStyler [13] is one of the leading tools on the market of software as standard
MDA. It supports the full life cycle of software applications developed in Java/J2EE
and architectures. NET. ArcStyler was developed by Interactive Objects. The tool
has three ways of modeling the system:

• creating models from scratch using UML and OCL,
• import existing models with the XMI standard,
• creating models based on the code (reverse engineering).
PIM in ArcStyler is represented in the form of classes that represent business

objects in a manner independent of the technology platforms. The tool does not pro-
vide support for the PSM model. The idea is to use special markings PIM compo-
nents that store information about the target platform. With this information, creating
a platform-specific code. Model code is represented in the form of packages with
source code provided as components.

ArcStyler cartridge uses the term MDA model transformation. It supports cre-
ating and editing cartridges MDA to define their own rules of transformation. The
language used to build the container is an object-oriented MDA JPython, which con-
sists of the Java and Python. The tool also has a MDA engine which performs trans-
formations based on the selected cartridge. Each container MDA introduces its own
specific characteristics that represent their capabilities, which are performed and
controlled by the engine MDA. In addition, the product provides a graphical tool to
create ready-made cartridges and containers for several technologies and platforms
such as Java, J2EE,. NET.

3.3 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [14] is an open source framework for de-
veloping model-driven applications initiated by IBM. In EMF, while source model
can be modeled by UML and XML Schema, the target model generated as Java
classes. It creates Java code for graphically editing, manipulating, reading, and seri-
alizing data based on a model specified in XML Schema, UML, or annotated Java.
EMF is the basis for many of the tools within IBM WebSphere Studio and Eclipse
projects. It contains the elements necessary to keep the development focus on the
model, and not on the implementation details. The main focus areas are: generation
of models that support customization, notification, referential integrity, and other es-
sential features; generation of customizable model editors; and default serialization.
Individual tools, like the serialization or the graphical editor, may be pulled out and
used independently, but the full power comes when all areas are used together. EMF
consists of three fundamental concepts:

• EMF - The core EMF framework includes a meta model, called Ecore for
describing models and runtime support for the models including change no-

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

29

tification, persistence support with default XMI serialization, and a reflec-
tive API for manipulating EMF objects generically.

• EMF.Edit - The EMF.Edit framework includes generic reusable classes for
building editors for EMF models. It provides content and label provider
classes, property source support, and other convenience classes that allow
EMF models to be displayed using standard desktop (JFace) viewers and
property sheets. And it also provides a command framework, including a set
of generic command implementation classes for building editors that sup-
port fully automatic undo and redo.

• EMF.Codegen - The EMF code generation facility is capable of generating
everything needed to build a complete editor for an EMF model. It includes
a GUI from which generation options can be specified, and generators can
be invoked. The generation facility leverages the JDT (Java Development
Tooling) component of Eclipse. Three levels of code generation are sup-
ported:
– Model - provides Java interfaces and implementation classes for all the

classes in the model, plus a factory and package (meta data) implemen-
tation class.

– Adapters - generates implementation classes (called ItemProviders)
that adapt the model classes for editing and display.

– Editor - produces a properly structured editor that conforms to the rec-
ommended style for Eclipse EMF model editors and serves as a starting
point from which to start customizing.

All generators support regeneration of code while preserving user modifications.
The generators can be invoked either through the GUI or from a command line.
In addition to code generation, it provides the ability to save objects as XML docu-
ments for interchange with other tools and applications. Models can be created using
annotated Java, XML documents, or modeling tools like Rational Rose, and then
imported into EMF. The code generator turns a model into a set of Java implementa-
tion classes. These classes are extensible and able to regeneration - user can modify
them by adding user-defined methods and instance variables. When the model
changes, user can regenerate the implementation classes and user modifications will
be retained. This works both ways - changes in the Java code can be used to update
the model.

3.4 AndroMDA

AndroMDA [15] is an extended frame generator system which is used in the
paradigm of MDA. It is worth noting that this is an open source tool and therefore
has no licensing restrictions.

Design of PIM model is done by using an external modeling tools such as
Magic Draw UML, ArgoUML, Poseidon or Enterprise Architect supports standard
exchange models - XMI. The PIM model consists of structure and behavior of the
system modeled using class diagrams, state diagrams and use case diagrams. Addi-
tionally, you can use to define the standard OCL constraints for elements of the
models. The resulting PIM model is transformed to able to implement the compo-

 Pietraszek K.

Systems and information technology

30

nents of the platform, which can be a J2EE or. NET. AndroMDA as ArcStyler has
special containers with the rules of transformation models for specific technologies.
Cartridges are now available to support the transformation of: EJB, Spring, Struts,
Hiberante, Axis, jBPM, Web Services, XSD, Java, C #, NHibernate, NSpring, PHP,
HTML. In addition, AndroMDA has the ability to build their own containers or
adapting existing ones. It is used in the Java language and the language of ATL
(Atlas Transformation Language called) based on modeling standard QVT transfor-
mation.

In addition, by using a template tool allows you to generate various types of
text output for the source code, scripts, databases, writing O / R mapping in the con-
figuration files, web pages, etc. The templates are based on the well known template
engines such as Velocity and FreeMarker. AndroMDA doesn’t operate as a separate
tool, it offers plug-ins for specific development environments (IDE) such as Eclipse
and Visual Studio. Created on the PIM model code is located directly in the IDE, so
you can compile and test the system. In addition, you must install the Maven, which
is used for construction and project management.

Most of the applications built using AndroMDA is a web-based applications
applying the three-layer architecture - the presentation layer, business logic layer and
data access layer. The individual layers are implemented by different technologies
depending on the chosen platform.

3.5 Integranova Model Execution System

The Integranova Model Execution System (MES) [16] is the commercially
available software system that generates complete applications from software mod-
els. It supports model-to-code transformations. The source model is modeled via
Modeler (very similar to UML) and the target model is

generated as Visual Basic or Java, JSP codes. Unlike other software solutions,
Model Execution System isn’t limited to building embedded systems (that lack
GUIs), database infrastructure, or integration plumbing. Instead the Integranova
Model Execution System takes class models, functional models, and presentation
models and creates a completely functional and executable software application.

There are two main components that make up the Integranova Model Execu-
tion System, namely the Modeler and the Transformation Engine. The Modeler cap-
tures business objects as classes with attributes and connects them via relationships.
Integranova Modeler allows analysts and developers to capture actual business
logic, business rules, and system constraints without having them write any code.
These rules and constraints are then translated by the Transformation Engine into
language and architecture-specific code that is ready for compiling and deployment.
The Transformation Engine (a collection of code generators) is run as a web service
that allows clients to send XML definition files for models created in the Modeler.
With a simple-to-use interface, clients select the kind of architecture and language
support they desire for the application and upload the definition file. From there the
web service collects the file, runs it through the appropriate code generator and
mails back the code to the client.

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

31

In Integranova Model Execution System can be make Client/Server application
by mixing VB and COM+ or internet application with JSP and EJB or even extranet
application combining CF with VB and EJB.

3.6 Enterprise Architect

Enterprise Architect (EA) [17] was developed by Sparx Systems supports a full
system design standard MDA. EA has its own editor for modeling systems using
UML 2.1 standard and provides support for the exchange of models between reposi-
tories of different design tools through XMI. It also offers several additional tools to
support steps in the creation of systems in the MDA standard, such as:

• possibility complete transformation PIM to PSM,
• synchronization of changes in the PIM and PSM,
• the use of templates transformation, UML Profiles, UML models during the

code generation,
• possibility mapping contained in the code also changes in the models

(reverse engineering),
• define their own transformations.
In addition, the tool has built-in ready for transformation definitions EJB, Java,

C #, XSD, CORBA. EA also supports the transformation of the following languages
implementations: C + +, VB.NET, VB, PHP. The main component of MDA in the
EA is a template-based transformation engine, which generates a PSM model based
on the PIM source model. MDA transformation templates are similar to the code
generation templates and have the same syntax. EA tool allows you to generate DDL
scripts, and create a logical model of the database via ODBC on the basis of physical
implementation. EA supports these steps for Oracle, MS SQL, MS Access, Post-
greSQL and others.

3.7 Objecteering

Objecteering tool Objecteering Software's [18] support among other standard
MDA. The program provides a set of mechanisms for the production of a model
driven application architecture. Objecteering manages the consistency of models and
tracking of changes to the software life cycle from requirements analysis and design
through code generation, testing and deployment. Objecteering consists of several
modules, which are connected together into one complete tool gives MDA. These
modules include Requirements, UML Modeler, UML Profile Builder, MDA Mod-
eler, Java Developer, C + + Developer, C # Developer, SQL Designer.

The module "Requirements" allows you to collect user requirements in text
form by using a dedicated editor or by importing from Word documents. In addition
to creating a dictionary for the business area containing all possible terms. Based on
the requirements and the dictionary, you can create reports and documentation ac-
cording to specific templates in HTML or Word.

UML Modeler module enables full system modeling using UML version 2.0
which allows you to create a full PIM. Modeling uses the building blocks based on
the requirements and the dictionary, which are stored in the repository. When design-

 Pietraszek K.

Systems and information technology

32

ing, you can use the existing UML profiles or created by yourself. Based on UML
models can automatically generate documentation in HTML or RTF / Word. In addi-
tion, there XMI mechanism that enables the exchange of models between different
tools.

UML Profile Builder allows the construction of UML profiles to define the
rules of transformation. UML Profiles are formulated in a special editor, and using
a special language similar to Java JLanguage.

MDA Modeler has a dedicated graphical tool for creating the definition of the
code generation, documentation generation, and model on the target technology
(PSM) of the PIM model. By using tools such as Java Developer, C + + Developer,
C # Developer application code is created based on the PSM model. Database sche-
mas for a particular platform are built by the SQL Designer. Available platforms are:
Oracle, Sybase, MS SQL.

3.8 Summary

Currently on the market there are many solutions to commercial and open
source approach to support MDA. Their functionality varies from advanced to sim-
ple carrying a minimum of assumptions MDA. The above tools support different
programming languages, technologies and platforms. Most of them have their own
definition of transformation languages, and templates. Some create an independent
environment that supports MDA and others are in the form of concrete IDE plugin,
and require the support of specific tools such as UML modeling, e.g. Magic Draw.
Moreover, most of these programs is mainly dedicated to designing Web applica-
tions.

Having sketched the image and functionality of particular tools can provide the
most important requirements for an application to support the process of software
development in the MDA standard:

• presence of UML modeling tools,
• opportunity to transform PIM → PSM → code of the application,
• the ability to define their own transformations,
• artifacts repository,
• exchange of models between different tools using XMI,
• UML profiles for a wide range of technologies such as EJB, CORBA, UML

models used in the transformation,
• support for as many programming languages, technologies and databases,
• generation of documentation based on models,
• synchronization changes on each level models.
Below in tabular form is presented a general comparison tool based on criteria

such as manufacturer, the ability to transformations the model into the model, the
ability to transformations the model to code availability (license), support for devel-
opment platforms, databases, UML modeling tool, etc., development life cycle.

 Comparative analysis of MDA tools

Studia Informatica 1-2(16)2012

33

Table 1. Summary - part 1

MDA tools Vendor Model to model Model to code
Optimal J CompuWare X X
ArcStyler Interactive Objects X X

Eclipse Modeling
Framework IBM X

AndroMDA AndroMDA.org X X
Integranova Model
Execution System Sosy Inc. X

Enterprise Architect Sparx Systems X X

Objecteering Objecteering
Software

X X

Table 2. Summary - part 2

MDA tools Availability Support for UML Development life cycle

Optimal J

Developer
Edition,

Professional
Edition,

Architecture
Edition

J2EE, Oracle,
DB2, MSSQL,

MySQL
X

Domain Model,
Application Model,
Code Model

ArcStyler

Enterprise
Edition,

Architect
Edition

J2EE, .NET X

Application Model,
Define Target Technology,
Transformation
and deployment

Eclipse
Modeling

Framework
Open Source J2EE X

Specify EMF Model,
Generate Code,
Customize generated code,
Regenerate

AndroMDA Open Source

J2EE, .NET, DB2,
Firebird, MSSQL,

MySQL,
Oracle,

PostgreSQL

Application Model,
Code Model

IntegraNova
Model

Execution
System

Integranova
MES

.NET, EJB, COM,
Oracle, MSSQL,
DB2, MySQL,

PostgreSQL

X
Model Business Logic,
Transform

Enterprise
Architect

Ultimate,
Systems

Engineering,
Business

& Software
Engineering,
Corporate,

Professional

J2EE, .NET,
CORBA, PHP,

Oracle, MSSQL,
Access,

PostgreSQL,
Informix,
InterBase,
FireBird

X
Domain Model,
Application Model,
Code Model

Objecteering

Objecteering
Enterprise
Edition,

Objecteering
UML Free

Edition,
Objecteering
SOA Edition

J2EE, .NET, C++,
Oracle, Sysbase,

MSSQL
X

Model Business Logic,
Domain Model,
Application Model,
Code Model

 Pietraszek K.

Systems and information technology

34

References

1. A. Kleppe, J. Warmer, W. Bast, 2003. MDA Explained: The Model Driven Architecture –

Practice and Promise, Addison-Wesley Professional.
2. S. Mellor, K. Scott, A. Uhl, D. Weise, 2004. MDA Distilled: Principles of Model-Driven

Architecture, Addison-Wesley Professional.
3. J. Siegel, OMG Staff Strategy Group, 2004. Developing in OMG’s Model-Driven Archi-

tecture, OMG White Paper.
4. http://www.omg.org/mda
5. OMG, 2003. MDA Guide Version 1.0.1.
6. http://www.jot.fm
7. OMG, 2005, Revised submission for MOF 2.0 Query/View/Transformation RFP.
8. S. Mellor, M. Balcer, 2002. Executable UML: A Foundation for Model-Driven Architec-

ture, Addison-Wesley Professional.
9. D. Varro, A. Pataricza, 2003. UML Action Semantics for Model Transformation Systems,

Citeseer.
10. OMG, 2003. Common Warehouse Metamodel Specification.
11. N. Tariq, N. Akhter, Comparison of Model Driven Architecture based tools.
12. http://www.compuware.com
13. http://www.interactive-objects.com
14. http://www.eclipse.org/modeling/emf
15. http://www.andromda.org
16. http://www.integranova.com
17. http://www.sparxsystems.com
18. http://www.objecteering.com

