
STUDIA INFORMATICA
Nr 1-2(16) Systems and information technology 2012

Tools and methods of databases optimization
in Oracle Database 10g. Part 1 – tuning instance

Andrzej Barczak1,
Dariusz Zacharczuk2,
Damian Pluta3
1 University of Natural Sciences and Humanities, Institute of Computer Science,

3 Maja Str. 54, 08-110 Siedlce, Poland, andrzej.barczak@neostrada.pl
2 University of Natural Sciences and Humanities, Institute of Computer Science,

3 Maja Str. 54, 08-110 Siedlce, Poland, dzariusz@dzariusz.pl
3 University of Natural Sciences and Humanities, Institute of Computer Science,

3 Maja Str. 54, 08-110 Siedlce, Polska

Abstract: The purpose of this article is to show the various questions and issues of
databases optimization, and learn methods to improve the performance of the database
based on the Oracle 10g DBS. The following parts will present working of these
mechanisms, obtained effects and estimation of the results.

Key words: database, optimization, Oracle 10g, tools, methods

1 Introduction

Modern memory and hard drives are becoming increasingly cheaper and more

capacious. Storage of large amounts of information for a relatively low price be-
come possible. This allowed users to increase the amount of data and processing
them in increasingly complex ways. For optimal processing performance, you can
not concentrate only on one part of the system. It is necessary to analyze the applica-
tion, the database instance, the operating system and hardware configuration. In this
article we will raise the first aspect: the issue of optimizing databases. Discussed is-
sues have a direct impact on database performance.

Optimization of the database involves hardware and software configuration
in such a way that it execute as fast as possible all application's tasks. Each database
can have different performance criteria. In some cases it requires optimization
in terms of amount of data volumes, and other optimization in terms of response
time. It is important to define the purpose of optimization for a given database.
Ambitious objective defines the type of activities that should be carried out during
the process of tuning. Databases can be optimized in terms of:

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

6

 Response time - the time from when you approve the request specific data
until the data displayed on the screen. In systems, which has imposed strict
time criteria, may be required to carry out certain tasks laterm to the time at
which the server is less busy.

 Capacity - is the ratio of work and time required to perform the job. The
work that has been done is often defined as the number of transactions.

Bandwidth = number of transactions / time
A side effect of the system configuration in terms of processing capacity, may

be a worsening of other parameters such as: the number of supported users, waiting
time, etc.

 Loading time - there is a group of systems that have a lower load time to
load a certain amount of data. Time is limited and must be sufficient to load
all the required data. Optimization of the system in terms of time will have
a positive charge, also on the overall system performance.

 Fault tolerance - in some systems fault tolerance is very important in every
aspect of the system. Any downtime in such a system, may have some dis-
astrous consequences. Systems with high resistance to damage may require
frequent checkpoints and regular backups. If fault tolerance is the highest
priority, subsystem disks should use the appropriate level of RAID to pro-
tect against the failure of a single disk, and memory should support ECC
technology, which allows for error correction.

 The number of supported users - such systems need to be tuned for effec-
tive handle large numbers of users simultaneously. When tuning the system
in this regard sufficient memory plays a particular role.

2 Tuning methodology

Tuning the database can be divided into five stages.

1. System analysis
At this point, the system should be carefully investigated in the state, in which

it is and pay attention to the problems occurring: bottlenecks or areas, where in-
creased activity can be observed. During the analysis we should pay attention to the
following system components:

 Application code - the problem may be not optimal application code.
 Oracle Server - the problem can be improperly defined SGA memory size

or poorly chosen initialization parameters.
 Configuring the operating system - an operating system can not provide

adequate amounts of resources to Oracle server.
 Hardware configuration - the problem may be bad disk configuration,

which creates a bottleneck when accessing files.
 Network - the problem may also be overloaded network, causing delays.

2. Identification of the problem
If after analyzing the system turns out, that the problem occurs, you should ca-

refully examine the cause of the problem. Valuable information can also be users
feedback, which can help locate the source of the problem.

Tools and Methods of Databases Optimization in Oracle Database 10g. Part 1 – Tuning Instatce

Studia Informatica 1-2(16)2012

7

3. Designation of solutions and target
It should set a goal to achieved, eg: query optimization and increase the cache

hit ratio.
4. Testing solutions

At this stage, you should test whether the implemented solution is consistent
with expectations. The safest way to check the validity of the changes is to conduct
tests in a special test environment, that emulates the load generated by users.
5. Analysis of results

Make sure that the targets have been achieved. If targets are not met, consider
the point at which mistake has been made. Depending on the response, it is neces-
sary to go back to the corresponding tuning phase.

Tuning Oracle

Scaling SGA (System Global Area)

In the Oracle instance, the data is stored in two types of memory: RAM and
disk storage. Oracle tries to keep in SGA memory as much data as possible, to
which access has been implemented recently. Except the data, Oracle caches in
RAM the shared SQL and necessary data dictionary information. You can easily ad-
just the size of memory allocated to the Oracle instance, by changing the
SGA_TARGET initialization parameter. Valid memory size allocated for the SGA
depends on: the characteristics of the application, the number of users and the size of
the transaction. If the amount of memory is insufficient, the application will have to
perform time-consuming input-output operations. A good solution is, if the size of
the allocated memory will be slightly larger than the minimum size required. It is
important that the available memory is used as efficiently as possible, so you should
allocate it in the right proportions to Oracle buffer and user's processes.

Figure 1. Oracle memory structure. Source: Oracle [8]

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

8

Tuning Shared Pool
During the process of optimizing the database, special attention should be paid

to the proper configuration of shared area, because it directly affects the perform-
ance of the application. Shared area is part of the SGA that holds most of the neces-
sary components to perform SQL queries and PL / SQL programs. Proper configura-
tion of the shared area leads to a radical improvement in performance. However, the
configuration performed improperly, can cause the following problems:

 fragmentation of the shared area;
 increasing the number of input-output operations, due to the lack of parsed

version of SQL executed queries in the shared area;
 higher CPU usage caused unnecessary parsing SQL code.
A big impact on the waitng of the shared area is also not optimal SQL code,

and in particular, no use of variables bound.
Shared area consists of the library buffer and dictionary buffer. Can not allo-

cate or decrease memory of only one of these two areas. By increasing the total size
of the shared area, the buffer size will automatically increasing cache the library and
dictionary, in proportions determined by Oracle.

Library Cache

Library buffer stores the parsed code and an executable version of SQL and
PL/SQL. Parsing is a very resource-intensive operation, so if the application needs
to do the same SQL query several times, the presence of the query in the parsed
form stored in memory, greatly reduce CPU usage, number of input and output, as
well as memory usage. Execution plan and the path, will be stored in the library ca-
che, before the query is executed for the first time. Subsequent calls to the same qu-
ery will only have to go through a execution stage, which will bypass the step of
parsing the SQL query. If the SQL statement is a SELECT, the last step is to down-
load the data.

Libraries with limited buffer size, removes old SQL query, when there is no
space to store new SQL queries. To reuse parsed SQL queries stored in the buffer,
library must meet the following conditions:

 SQL code must be identical to the code stored in the buffer inquiries,
including white space, the size of the letters and comments.

 All variables associated gotta be identical in name and type.
 Objects, that are referenced by the SQL query, must be the same objects

that are referenced by the query stored in the buffer.
 Both queries must have the same plans for execution, set in the same mode

of the optimizer.
This example shows three queries, that look exactly the same in terms of syn-

tax, with the exception of the variable person_id.
SELECT * FROM persons WHERE person_id = 10;
SELECT * FROM persons WHERE person_id = 999;
SELECT * FROM persons WHERE person_id = 6666;

Each query will parsed and executed separately. Because of the similarity que-
ries, separate parsing is a waste of resources. The solution to this problem is bound
variables, which will mean that all three will have the same query execution plan,

Tools and Methods of Databases Optimization in Oracle Database 10g. Part 1 – Tuning Instatce

Studia Informatica 1-2(16)2012

9

and thus will only parsed the first request. The following example shows a query
using a tird variable:

SELECT * FROM persons WHERE person_id =: var;

Using variables bound query performance dramatically raise.

Data Dictionary Cache
Data Dictionary Cache is a collection of tables and perspectives with informa-

tion, that Oracle uses to describe all of the objects in the database. It kept informa-
tion about both the physical and logical structures. Parsing queries are very frequent
references to the dictionary cache, so access to it is often a sore point of applica-
tions, which can be the bottleneck. To change the size of this cache you should simi-
larly change the size of the shared area. If the buffer library in the Oracle instance is
well configured, it is highly likely that the dictionary cache is also properly tuned.
Data dictionary cache capacity can check by using the statistics from the dynamic
perspective V$ROWCACHE. This query describes how to obtain the number of hits
to dictionary cache:

SELECT SUM(getmisses) as "Cache misses", SUM(gets) as "Requests",

 (100*(SUM(gets - getmisses) / SUM(gets)))as "Cache hit ratio"

FROM V$ROWCACHE;

The result of this query is as follows:
Cache misses Requests Cache hit ratio
337 7051 95.220536

Tabela 1. The most important column of V$ROWCACHE perspective

Kolumn Description
GETS The number of appeals to the buffer in general.
GETMISSES Number of misses references to buffer.

Source: Whalen E. [15]

A good result is, if the buffer hit ratio is not less than 95%. However, the same
Oracle recommends that the hit rate already at a level above 85% is adequate. To in-
crease the hit rate, just increase the size of the shared area

Tuning Buffer Cache

The most important buffer in Oracle is data buffer. It occupies the most space
in the SGA memory and is used during the execution of each query. When reading
the data from the disk, Oracle copied the relevant data blocks to the data buffer.
In the next step the data is supported. Modify the requested data can be carried out
only if they are in the data buffer and may be made only by server process. The
modified data blocks are written back to disk by the DBWR process.

Due to the very large number of references to the data buffer, it must have
a sufficiently large size to ensure a high rate of hits. This factor, can be monitored by
a dynamic perspective V%SYSSTAT.

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

10

Tabela 2. The most important column of V%SYSSTAT

Kolumn Description
PHYSICAL READS Number of misses references to buffer, which finished reading

data from the disk.
DB BLOCK GETS Number of ordinary buffer references - references CURRENT

mode.
CONSISTENT GETS The number of appeals to the buffer CONSISTENT mode.

Source: Whalen E. [15]

To get the total number of appeals, the appeal DB BLOCK GETS and CON-

SISTENT GETS shall be summed. Data from a dynamic perspective V%SYSSTAT:
SELECT name, value FROM V$SYSSTAT
WHERE name IN (‘db block gests’, ‘consistent gets’, ‘physical reads’);

The result of this query is as follows:
NAME VALUE
db block gests 155
consistent gets 5293
physical reads 334

Hit Ratio should be calculated from the following formula:
Cache Hit Ratio = 1 - (physical reads / (db block gests + consistent gets))
Cache Hit Ratio = 1 - (334 / (155 + 5293)) = 0,938

In this example, the hit ratio of the data buffer is 93.8%. If the hit ratio is lower
than 70% - 80%, it is recommended to increase the size of the data buffer, we can do
it with the parameter DB_CACHE_SIZE. This ratio below 70%, can significantly
contribute to the decline in performance of the entire Oracle instance. Despite the
crucial role that buffer cache has, do not increase it at the expense of the size of sha-
red area.

Data buffer starting from Oracle8, is divided into three parts, each of which has
the same structure, but has a different function:

 Keep Pool Buffer – is intended for long-term storage blocks that have a hi-
gh chance of re-use. Objects in it can be removed only by other objects to
be stored in it. The size of this area can be determined by the parameter
DB_KEEP_CACHE_SIZE.

 Recycle Pool Buffer – is intended for blocks that do not require long-term
storage. The size of this buffer is defined bz parameter
DB_RECYCLE_CACHE_SIZE.

 Default Pool Buffer – stores objects that do not hit the other two buffers.
Its size can be determined by the following formula:

Default Pool Cache Size = DB_CACHE_SIZE - DB_KEEP_CACHE_SIZE -
DB_RECYCLE_CACHE_SIZE

Automatic SGA memory management

Automatic memory management simplifies the configuration of the SGA and is
the solution recommended by Oracle (the default is enabled).

To enable automatic SGA management, set the initialized parameter
SGA_TARGET to a value corresponding to the total amount of memory to be allo-
cated to the area of the SGA, and set the value of the parameter STATIS-

Tools and Methods of Databases Optimization in Oracle Database 10g. Part 1 – Tuning Instatce

Studia Informatica 1-2(16)2012

11

TICS_LEVEL TYPICAL or ALL. The amount of memory allocated to the SGA
area should be equal to the size of the total available memory, minus the amount
of memory required by the operating system and applications other than Oracle, run-
ning on the same platform and minus the memory area allocated to the PGA.

Oracle is actively monitoring the memory requirements for each of the areas of
the SGA and dynamically allocates memory according to demand. Using the auto-
matic management of the size of the SGA areas, you can still determine the mini-
mum size for each of these areas. A few areas, such as: Keep Cache, Recycle cache,
Streams cache and buffers with custom data block size, are still scaled manually.

You can disable automatic management by setting SGA_TARGET to zero.
When off, the values of all the parameters that were set automatically, are assigned
to the current values of these parameters.

Tuning PGA (Program Global Area)

Program Global Area is an area of memory, that contains data and control in-
formation about server process. It is not shared memory created by Oracle when
starting the server process. This memory is read and written only by Oracle code.
The total size of the PGA memory allocated to each server process is also referred to
as the total PGA memory allocated by the instance. PGA elements:

 Private SQL area - Each session, which contains the SQL statement has
a private SQL area. Anyone who uses the same SQL has its own private
SQL area.

 Workspace - in the case of complex SQL queries, a large part of the PGA
memory is designed to work for memory-absorb operators such as ORDER
BY, GROUP BY, ROLLUP, join, create a bitmap.

Size of the work area can be controlled and tuned. Larger workspace can gre-
atly improve the performance of individual operators, at the expense of greater me-
mory utilization.

 Session memory - memory allocated to store session variables and other in-
formation related to the session. For a shared server, session memory is
shared and not private.

Automatic PGA memory management

The optimal size of the work area is the size large enough to accommodate the
input data and auxiliary memory structures, allocated by its associated SQL opera-
tor. The increase in the response time is caused by the lack of workspace to load the
whole of input data, which is necessary to further progress.

The default and recommended an initial amount of memory allocated for the
area is the size of PGA equal to 20% of the SGA, and the minimum size is 10MB.

At any time, the total amount of PGA memory available to work in all areas of
the PGA memory area occupied by the sessions, and other elements of the system, is
equal to the size of the parameter assigned to the PGA_AGGREGATE_TARGET
initialization. To disable automatic PGA management area, set the
PGA_AGGREGATE_TARGET initialization parameter to zero.

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

12

3 Ways to improve Oracle performance

Indexes

Indexes in Oracle provide quick access to the rows in the table, by storing the

sorted values of specific columns and use those sorted for easy browsing of related
rows.

Indexes in Oracle are optional data structure, after it is created, Oracle auto-
matically maintains and uses them. All data modifications, such as adding new rows,
updating rows, or deleting rows of the table are reflected on all indexes associated
with the table, without any user intervention. Using the index requires a compromise
between the fast search records, and free of updating and inserting. In databases,
where the majority of the operation is to capture the data, a large number of indexes
can dramatically reduce the access time to data. However, in databases, in which the
operations are the most common inserts large amounts of data, and then updating
and deleting indexes should be used with caution.

The main types of indexes in Oracle
 Unique and non-unique indexes. Unique index is an index based on

a unique column of the table - no value in it can be repeated.
Non-unique index does not impose constraints on the uniqueness of the data.

It applies in the case of the column in which the data is duplicated.
 Indexes simple and complex. Complex indexes are indexes containing two

or more columns of the same table. The columns can be specified in any
order and need not be consecutive columns of the table. Complex indexes
can speed up search for relevant rows in SELECT query when WHERE
clause column references are included in the complex index. In this case,
it is also important the order of the columns. The column with the highest
frequency of use, should be defined in the complex index first.

 Indexes based on functions. These are indexes that instead of columns ta-
ken from the table, keep the value calculated on the basis of the given func-
tion when creating the index. This feature can be a function of the arithme-
tic or PL/SQL. Index based on function may be B*tree or bitmap index.
Indexes of this type are useful when the query in the WHERE clause
is identical to the function used when creating the index. example:

SELECT c_id FROM customers
WHERE this_year_sales - last_year_sales > 0;

CREATE INDEX idx
ON customers (this_year_sales – last_year_sales);

Below is a collection of the most important rules, that should apply to the proc-
ess of defining indexes:

 Indexes should only be used if you need access to no more than 15% of the
records in the table.

 Relatively small tables shouldn't be indexed - in this case, the best solution
is a full scan.

 Columns that are involved in join operations, should be indexed.

Tools and Methods of Databases Optimization in Oracle Database 10g. Part 1 – Tuning Instatce

Studia Informatica 1-2(16)2012

13

 For low selectivity columns of data (eg, data type "Yes / No") the most
efficient are bitmap indexes, and for columns with high selectivity data,
indexes, B*-tree.

 columns involved in the operations ORDER BY and GROUP BY or others,
such as UNION or DISTINCT that require sorting should be indexed.

 Indexing columns that contain long strings is inefficient.
 The columns, which are often updated should not be indexed.
 Number of indexes should be as small as possible.

Indexed organized tables

Indexed organized tables are implemented internally as well as the basic vari-

ant of the B-tree. Unlike ordinary tables (organized as a heap), which store data in
the form of disordered collection, data in indexed organized table are stored in the
index structure, B *-tree and sorted by the primary key. Each leaf in the structure of
the index holds the key and rest of non-key columns. Indexed organized tables have
full functionality of the regular tables.

This way of writing tables provides the following benefits:
 Fast random access to data based on primary key, because you only need

scan the index.
 Fast-band access to data based on the primary key because the rows are

arranged according to the key.
 Less consumption of disk space, because the column which is a primary

key is not duplicated, as it is a split record with index and table.
To create Indexed organized table, use the normal CREATE TABLE enriched

by ORGANIZATION INDEX qualifier. It is also necessary to define the primary
key for the table being created.

Clusters

A cluster is an optional data structure that improves read performance and, as

well as the index, is transparent to the user and applications - cluster affects only
way to store data. A cluster is a logical way to store related values together on the
disk. Oracle reads the data by blocks, so keeping related data together - in one block,
reduces the number of input-output operations need to download the related values.
A single block of data contains only related rows.

A cluster consists of one or more related tables, that are stored in data blocks
together, because they have common columns and are often used together in queries
making their joints. Common columns of the tables are called the cluster key, this
key is indexed and the index is called a cluster index. Each cluster index value indi-
cates a block of data that contains only the rows with the same cluster key value.

The use of the cluster will be beneficial if the system contains two tables with
related data and the queries that operate on them, often make their join. The use of
cluster also allows you to search one of the tables, which is part of a cluster, but en-
tails additional load on the system, associated with the presence of a single block of

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

14

data, records from both tables of the value of the cluster key, which has not place
in case of standard tables.

In summary, in the form of a cluster should be stored tables, from which the
data are collected in most cases, in a join. This will reduce the number of input-
output operations. Do not use clusters for tables from which data are taken individu-
ally or carried out on them a lot of INSERT operations. Another contraindication of
cluster tables are tables frequently scanned by full scan.

Hash clusters

Hash cluster works in a similar way as a normal cluster, but instead of pointing

to the index key of the cluster, hash function is using for this purpose. Rows are sto-
red based on the result of the hash function. To find the desired value line, must find
the value of the hash function for the cluster key. The result is the number clearly
designating the block that contains the requested data. In the case of simple cluster,
to find the data block, it was necessary to perform several operations on the input-
output on cluster index, and in the case of hash cluster, based on the key values, you
should be able to locate the search block using only one input-output operation.

In a hash cluster, data is stored in a different order than in the ordinary cluster.
In normal cluster data with the same key value are stored close to each other, and
hash cluster are stored close to each other the same hash value.

Contraindications to the use of hash clusters are the same as for ordinary clus-
ters. Not recommended for tables with frequent modified cluster key and for tables
whose size increases rapidly.

In hash cluster you can put only one table. This advantage is the fact that ac-
cess to the requested data is obtained by performing only one IO operation, while
with B*-tree, the operation will be a few more. The best suited tables for using hash
cluster, is one which key columns containing unique values and for which addressed
queries, have a condition of equality for key columns.

Partitions

Partitioning is a mechanism that allows you to store tables or indexes of large

size in the form of smaller parts - the partition. Smaller parts easier to manage, and
access to them are faster and more efficient. From the point of view of the user and
applications sharing a partitioned table is completely negligible. The only noticeable
difference will increase query performance directed against partitioned tables, con-
tains in the WHERE clause a condition corresponding to the applied partitioning
scheme.

Each partition is stored in a separate segment, giving it independence. Parti-
tions can be addressed individually, collectively or to all, treating them as one. Parti-
tions are created on the basis of keys - key column sets partitions that contain data
records.

An additional advantage of partitioning is the fact that in the event of failure of
one of the drives do not lose the entire table, only a part of it, the rest of the data is

Tools and Methods of Databases Optimization in Oracle Database 10g. Part 1 – Tuning Instatce

Studia Informatica 1-2(16)2012

15

still available to users. You can also use partitioning for backup - you can only cre-
ate a backup for a single partition.

Partitions can be divided into the following types:
 ranged partitions
 list partitions;
 hashed partitions;
 complex partition.
Each row of a partitioned table can only exist in one partition. Partitioning me-

chanism has been developed for large tables where the indexes can be inefficient.
Oracle recommends the use of partitioning on all tables and indexes that are larger
than 2GB. On lack of effectiveness of use of indexes on the table, affect the use of
the aggregate queries that operate on a large part of the data in the table. This is
where a good solution is to split the table into partitions.

Ranged partitions

Ranged partitioning involves broken down into defined ranges of values - data
from individual ranges are stored in a separate partition. Fields for which the parti-
tions are created is supplied together with the definition of the table. It is the most
common type of partitioning and is often used with dates. The effectiveness of this
method of partitioning is best when data is evenly distributed in all areas. In the case
of uneven distribution of the data, this method of partitioning can not improve per-
formance.

Example: The partitions are created according to the date of sale.
CREATE TABLE sales_data (
region VARCHAR2(10), sales_person INT, sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY RANGE (sales_date) (
PARTITION jan2011 VALUES LESS THAN (TO_DATE(‘01/02/2011’,
‘DD/MM/YYYY’)),
PARTITION feb2011 VALUES LESS THAN (TO_DATE(‘01/03/2011’,
‘DD/MM/YYYY’)),
PARTITION mar2011 VALUES LESS THAN (TO_DATE(‘01/04/2011’,
‘DD/MM/YYYY’)),
PARTITION apr2011 VALUES LESS THAN (TO_DATE(‘01/05/2011’,
‘DD/MM/YYYY’)),
PARTITION may2011 VALUES LESS THAN (TO_DATE(‘01/06/2011’,
‘DD/MM/YYYY’)),
PARTITION jun2011 VALUES LESS THAN (TO_DATE(‘01/07/2011’,
‘DD/MM/YYYY’)),
PARTITION jan2011 VALUES LESS THAN (TO_DATE(‘01/08/2011’,
‘DD/MM/YYYY’)),
PARTITION aug2011 VALUES LESS THAN (TO_DATE(‘01/09/2011’,
‘DD/MM/YYYY’)),
PARTITION sep2011 VALUES LESS THAN (TO_DATE(‘01/10/2011’,
‘DD/MM/YYYY’)),
PARTITION oct2011 VALUES LESS THAN (TO_DATE(‘01/11/2011’,
‘DD/MM/YYYY’)),
PARTITION nov2011 VALUES LESS THAN (TO_DATE(‘01/12/2011’,
‘DD/MM/YYYY’)),
PARTITION dec2011 VALUES LESS THAN (TO_DATE(‘01/01/2012’,
‘DD/MM/YYYY’)),
PARTITION maxval VALUES LESS THAN (MAXVALUE));

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

16

Please note that in the absence of the last clause MAXVALUE partition, enter
or modify data in such a way that they move out of range of the defined partitions
will cause an error.

List partition

List partitioning uniquely specify the manner in which the rows are allocated to
partitions. List partition are similar to the ranged partition, except that the key be-
longs to a set of discrete values. These values must be different to make it possible
to assign a record to the appropriate partition:

CREATE TABLE sales_data (
region VARCHAR2(10), sales_person INT, sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY LIST (region) (
PARTITION office1 VALUES (1, 2, 3, 4),
PARTITION office1 VALUES (5, 6),
PARTITION office1 VALUES (7, 8, 9, 10),
PARTITION other VALUES(DEFAULT));

Hash partition

In the hash partitions rows are assigned to a specific partition on the basis of an
hash function, which operates on the column or several columns of the table.
Together with the definition of the table you give number of available partition.
Oracle ensures that the rows were assigned to the partition evenly:

CREATE TABLE sales_data (
region VARCHAR2(10), sales_person INT, sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY HASH (sales_person)
PARTITIONS 4
STORE IN (sp1, sp2, sp3, sp4);

Complex partition

Complex partitions additionally improve the process of partitioning, allowing
you to define two spit criteria. Complex partitioning is divided records into parti-
tions, first by ranges, and then partitions are divided into hashed or list sub-
partitions. This method of partitioning works on very large tables, where just the
ranged partition are not enough. Example:

CREATE TABLE sales_data (
region VARCHAR2(10), sales_person INT, sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY RANGE (sales_date)
SUBPARTITION BY HASH (sales_person)
SUBPARTITIONS 4 (
PARTITION jan2011 VALUES LESS THAN (TO_DATE(‘01/02/2011’,
‘DD/MM/YYYY’))(
 SUBPARTITION jan2011_a TABLESPACE ts1,
 SUBPARTITION jan2011_b TABLESPACE ts2,
 SUBPARTITION jan2011_c TABLESPACE ts3,
 SUBPARTITION jan2011_d TABLESPACE ts4),
 PARTITION feb2011 VALUES LESS THAN (TO_DATE(‘01/03/2011’,
‘DD/MM/YYYY’))(
 SUBPARTITION feb2011_a TABLESPACE ts1,
 SUBPARTITION feb2011_b TABLESPACE ts2,
 SUBPARTITION feb2011_c TABLESPACE ts3,

Tools and Methods of Databases Optimization in Oracle Database 10g. Part 1 – Tuning Instatce

Studia Informatica 1-2(16)2012

17

 SUBPARTITION feb2011_d TABLESPACE ts4),
.
PARTITION maxval VALUES LESS THAN(MAXVALUE));

Another example of use of the complex partition, this time range-list type, on
table sales_data is a split first range by date, and then list based on regions:

CREATE TABLE sales_data (
region VARCHAR2(10), sales_person INT, sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY RANGE (sales_date)
SUBPARTITION BY LIST (region)(
PARTITION jan2011 VALUES LESS THAN (TO_DATE(‘01/02/2011’,
‘DD/MM/YYYY’))(
 SUBPARTITION office1 VALUES (1, 2, 3, 4),
 SUBPARTITION office2 VALUES (5, 6),
 SUBPARTITION office3 VALUES (7, 8, 9, 10)),
PARTITION feb2011 VALUES LESS THAN (TO_DATE(‘01/03/2011’,
‘DD/MM/YYYY’))(
 SUBPARTITION office1 VALUES (1, 2, 3, 4),
 SUBPARTITION office2 VALUES (5, 6),
 SUBPARTITION office3 VALUES (7, 8, 9, 10)),

 PARTITION maxval VALUES LESS THAN(MAXVALUE));

Index partitioning

Just as they are partitioned tables, you can also to partition indexes. Indexes
can be partitioned according to scheme of partitioned table (local indexes) or com-
pletely independent of partitioning table scheme (global indexes). Local partitioned
indexes are easier to manage than other types of indexes. Each local index partition
is associated with exactly one partition table. Oracle automatically stores the index
partitions in sync with the partition table, so that each pair of table-index is inde-
pendent.

References

1. Alapati S.R., 2005, Expert Oracle Database 10g Administration, Apress.
2. Barczak A., Florek J., Sydoruk T., 2007, Bazy danych, Wydawnictwo Akademii Podla-

skiej, Siedlce.
3. Greenwald R., Stackowiak R., Stern J., 2004, Oracle Essentials: Oracle Database 10g, 3rd

Edition, O’Reilly.
4. Lonley K., Bryla B., 2008,Oracle Database 10g Podręcznik administrator baz danych, He-

lion, Gliwice.
5. Taniar D., Rahayu J.W., 2002,A Taxonomy of Indexing Schemes for Parallel Database

Systems. Distributed and Parallel Databases, Volume 12, Number 1, Kluwer Academic
Publishers, pp. 73-106.

6. Liebeherr J., Omiecinski E., Akyildiz I.F., 1993, The Effect of Index Partitioning Schemes
on the Performance of Distributed Query Processing. IEEE Transactions on Knowledge and
Data Engineering archive, Volume 5, Issue 3, pp. 510-522.

7. Helmer S., Moerkotte G., 2003, A performance study of four index structures for set-valued
attributes of low cardinality. VLDB Journal, 12(3): pp. 244-261.

8. Bertino E. et al., 1997, Indexing Techniques for Advanced Database Systems. Kluwer Aca-
demic Publishers, Boston Dordrecht London.

 Barczak A., Zacharczuk D., Pluta D.

Systems and information technology

18

9. Oracle: Oracle Database Administrator’s Guide, 10g Release 2 (10.2), Dokumentacja tech-
niczna, 2006.

10. Oracle: Oracle Database 10g Administration Workshop I, Dokumentacja techniczna, 2004.
11. Oracle: Oracle Database 10g Administration Workshop II, Dokumentacja techniczna, 2004.
12. Oracle: Oracle Database Concepts, 10g Release 2 (10.2), Dokumentacja techniczna, 2005.
13. Oracle: Oracle Database Data Warehousing Guide, 10g Release 2 (10.2), Dokumentacja

techniczna, 2005.
14. Oracle: Oracle Database Performance Tuning Guide, 10g Release 2 (10.2), Dokumentacja

techniczna, 2008.
15. Oracle: Oracle Database SQL Reference 10g Release 2 (10.2), Dokumentacja techniczna,

2005.
16. Oracle PL/SQL Database Code Library and Resources, [online]

http://psoug.org/reference/library.html
17. Tow D., SQL. Optymalizacja, Helion, Gliwice 2004.
18. Urman S., Hardman R., McLaughlin M.: 2007, Oracle Database 10g. Programowanie

w języku PL/SQL, Helion, Gliwice.
19. Whalen E., Schroeter M., 2003, Oracle Optymalizacja wydajności, Helion, Gliwice.

