
STUDIA INFORMATICA

Nr 1-2(17) Systems and information technology 2013

Parallelization of computations for finding the rank

of a rectangular matrix

Sergey Novikov

Institute of Computer Science, Siedlce University of Natural Sciences

and Humanities, 3 Maja Street, 54, 08-110 Siedlce, Poland

Abstract: The paper presents two parallel algorithms for finding the rank of a rec-

tangular matrix and two parallel algorithms for generation of combinations without

repetitions represented by Boolean vectors, that are used in an algorithm for finding

the rank of a rectangular matrix .

Keywords: parallel algorithm, cluster, control processor, Boolean vector, combina-

tions without repetitions, matrix, fringing minor, determinant, rank.

1 Introduction

As you know, over 75% of all computer problems can be reduced to the problem of

solving systems of linear algebraic equations [1]. An important task in solving sys-

tems of linear algebraic equations is to find the rank of an m × n matrix A, where m

is the number of rows and n is number of columns of А. Without loss of generality,

we can assume that m  n.

The column rank of a matrix A is the maximum number of linearly independent

column vectors of A. The row rank of a matrix A is the maximum number of linearly

independent row vectors of A. The column rank and the row rank are always equal.

This number (i.e. the number of linearly independent rows or columns) is simply

called the rank of A. It is commonly denoted by either rk(A) .

The rank of an m × n matrix cannot be greater than m or n.

One useful application of calculating the rank of a matrix is the computation of the

number of solutions for a system of linear equations. According to the Kronecker –

Capelli theorem, a system of linear equations is inconsistent if the rank of the aug-

mented matrix is greater than the rank of the coefficient matrix. If, on the other

hand, the ranks of these two matrices are equal, the system must have at least one

solution. The solution is unique if and only if the rank equals the number of varia-

bles. Otherwise the general solution has k free parameters, where k is the difference

between the number of variables and the rank. Hence in such case there are an infi-

nite number of solutions.

In the control theory, the rank of a matrix can be used to determine whether a linear

system is controllable, or observable.

50 Novikov S.

Systems and information technology

The easiest way to compute the rank of a matrix A is given by the Gauss elimination

method [1,2]. However, Gaussian elimination is not always the fastest algorithm to

compute the rank of a matrix, procedure consistent elimination of the matrix ele-

ments is difficult for parallelization, when applied to floating point computations on

computers, basic Gaussian elimination can be unreliable [3].

Another well-known method of finding the rank an m × n matrix is based on a study

of fringing (bordering) minors [1] with increasing orders (i.e. the amount of 1, 2,.

..., m). Having established that a determinant D(Mi*)  0 for a minor Mi
*

 with the

order i (i-minor), the conclusion is that rk(A) i. Next you need to calculate the

determinants of all i+1-minors, fringing the minor Mi
*
. If it turns out that each of

the i+1-minors is equal to 0, then the conclusion is that the rk(A)= i.

Using this method you should to calculate a large number of determinants, the order

of which can increase to a maximum. The number of minors with the order r+1,

each of which spans a r-minor Mr, is equal to (m-r)(n-r) . It may be necessary to

explore 





1

1

))((
m

i

inim minors for finding the rank of an m × n matrix. In this

regard it is interesting to explore the possibilities of using modern high-performance

computational systems for solving the above-mentioned important task.

2 A parallel algorithm for finding the rank of a matrix by the

method fringing minors

Multiprocessor computer systems (clusters) allow to accelerate significantly the

process of generation of the fringing minors.

Each minor Mr with the order r (r-minor) of a matrix A can be formed with the help

of the pair of Boolean vectors (b
r
(m), c

r
(n)) , where b

r
(m)

=

b

r
1 b

r
2 ...

b

r
m

, c

r
(n)

=

c
r
1 c

r
2 ...

c

r
n . Each of these vectors contains a r of single components. Such a pair of

vectors uniquely identifies a minor Mr. So, for example, for the matrix

all 3-minors, fringing minor M2, can be described with the help of the following

pairs of Boolean vectors:1) b
3
(4) = 1110 , c

3
(5) = 11100; 2) b

3
(4) = 1110 , c

3
(5)

= 11010; 3) b
3
(4) = 1110 , c

3
(5) = 11001; 4) b

3
(4) = 1101 , c

3
(5) = 11100;

5) b
3
(4) = 1101 , c

3
(5) = 11010; 6) b

3
(4) = 1101 , c

3
(5) = 11001.

-4 3 2 1 0

-2 1 1 -4 2 with a non-zero -4 3

12 -6 -6 9 3 -2 1

-6 4 3 -3 1

A= M2 =

 Parallelization of computations for finding the rank of a rectangular matrix 51

Studia Informatica 1-2(17)2013

We will also use the k-component Boolean vector e(k)i = e1 e2 ...

ek

 with the only

non-zero component of ei =1, where 1 i  k, in our algorithms of generating vec-

tors b
r
(m) and c

r
(n).

The algorithm А1 to generate vectors b
r+1

(m) for the set S1, elements of which iden-

tify the rows of (r+1)-minors , fringing r-minor Mr, has the form

 b
r
(m)

=

b

r
1 b

r
2 ...

b

r
m

 , S1 = , i:=1;

 while i  m do

 if b
r
i =0 then

 begin b
r+1

(m) := b
r
(m)  e(m)i ; S1 : = S1  { b

r+1
(m) };

 end;

 i:=i+1;

 print S1

 end.

The algorithm А1 allows us to generate also the vectors c
r+1

(n) for the set S2 ,

elements of which identify the columns of (r+1)-minors, fringing r-minor Mr. After

slight modernization the algorithm (А1’) takes the following form

 c
r
(n)

=

c

r
1 c

r
2 ...

c

r
n

 , S2 = , i:=1;

 while i  n do

 if c
r
i =0 then

 begin c
r+1

(n) := c
r
(n)  e(n)i ; S2 : = S2  { c

r+1
(n) };

 end;

 i:=i+1;

 print S2

 end.

Our parallel algorithm for finding the rank of a matrix by the method of fringing

minors can be described as follows:

1. Selection of non-zero a minor

The control processor p0 finds a non-zero element of an m × n matrix A, where m 

n, with the help of the algorithm A0(А; b
r
(m), c

r
(n)). This element aij  0 is a mi-

nor with the first order (1-minor), We can identify the 1-minor by a pair of Boolean

vectors b
r
(m), c

r
(n), where b

r
(m):= e(m)i , c

r
(n):= e(n)j. It is obvious that in case of

absence of non-zero elements in the matrix we have rk(A)= 0. The transition to the

paragraph 6.

Then the control processor sends vectors b
r
(m) and c

r
(n)

 as the input data for com-

puting processors p1 and p2 of our cluster.

2. The generation of Boolean vectors, identifying the fringing minors

A computing processor p1 generates the set S1, elements of which identify the rows

(r+1)-minors, fringing the r-minor Mr
*
 , with the help of our algorithm A1(b

r
(m);

S1) .

52 Novikov S.

Systems and information technology

At the same time a computing processor p2 generates the set S2, elements of which

identify the columns of (r+1)-minors, fringing the r-minor Mr
*
, with the help of our

algorithm A1’(c
r
(n); S2) .

Then each computing processor sends to the control processor p0 the sets S1 and S2 .

3. The formation of pairs of vectors to build fringing minors

The control processor p0 composes the pairs of this vectors to build fringing (r+1)-

minors for the r-minor Mr
*
 with the help of the algorithm A2(S1, S2;(b

r

+1

(m),

 c
r+1

(n))). After that p0 sends one of the pairs together with the matrix A as a source

of data for each of the computing processor.

4. The building of fringing minors and calculation of the determinants

Every computing processor pi, where i {1,2,...,(m-r)*(n-r)}, builds (r+1)-minors

with the help of the algorithm A3(А, (b
r

+1

(m), c
r+1

(n)); Mr+1). After that p0 com-

putes the determinant D(Mr+1) for built submatrices Mr+1 with the help of the algo-

rithm A4(Mr+1 ; D(Mr+1)). To compute the determinant you can use the method of

Gauss elimination [1,2].

The algorithm A4 for the calculation of the determinant of a square n×n matrix A

has the following form

k:=1

While k  n-1 do

 i=k+1

 While i  n do

 t ik := aik / akk

 i:=i+1

 j=k+1

 While j  n do

 aij := aij – tik*akj

 j: = j+1

 k: = k+1

Det A = a11*a22*…*ann

Note that the task of finding out, if a determinant is equal to 0 , is solved much easi-

er (using modular arithmetic) objectives of the actual computation of this determi-

nant [4].

After that each computing processor pi sends the obtained results (a pair of vectors

(b
r+1

(m), c
r+1

(n)) and the value of the (r+1) - minor) to the control processor p0 .

5. Adoption of a decision on the continuation of computing

The control processor p0 analyzes the results with the help of the algorithm

A5((b
r+1

(m), c
r+1

(n)), D(Mr+1) ; rk(A), b
r
(m), с

r
(n)). If each of the (r+1)-minors,

 Parallelization of computations for finding the rank of a rectangular matrix 53

Studia Informatica 1-2(17)2013

fringing r-minor Mr*, is equal to zero, then the rank of the matrix A is equal to rk(A)

= r. The end of the calculations. The transition to the paragraph 6. If there is a minor

Mr+1* with D(Mr+1*)  0, then the rk(A)  r. In this case we must continue to cal-

culate.

Then b
r
(m) := b

r+1
(m) , с

r
(n) := с

r+1
(n) .

The transition to paragraph 2.

6. Stop.

Our parallel algorithm APRM1 for finding the rank of a matrix by means of re-

search fringing r-minors implements the following computer schedule

SR+1 (APRM1)=((A0, p0), (A1, p1 ,p2), (A2, p0), (A3, p1, …, pR), (A4, p1, …, pR), (A5,

p0)),

where a record (Aj,pi) indicates that the processor pi implements the algorithm Aj.

We are finishing the process of finding the rank of the matrix discussed above as an

example.

Our 3-minor M3
*
, identified by vectors 1110 and 11010 , is not zero. Then rk(A) 

3. Only two 4-minors fringe the minor M3
*
. The first of them, identified by vectors

1111 and 11110, is zero, and the second, identified by vectors 1111 and 11011, is

equal to -270. Thus it is established, that rk(A)=4.

We can use this algorithm for matrices with a large number of zero elements, as

well as for matrices with equal (or almost equal) rows, or columns. For such matri-

ces there is a high probability that the rank of A is significantly smaller than m .

3 Finding the rank of a matrix by means of research r-minors

with descending orders

We must solve the task of finding the rank of a matrix A for matrices with different

properties. The considered task can be solved faster through research minors, start-

ing with a minor of maximum the order, if it is strong possibility, that the rank of the

matrix is not much smaller than m.

So, for example, to find the rank of the matrix A, discussed above, there are twelve

2-minors, fringing the minor M1 = -4, six 3-minors, fringing the minor M2, deter-

mined by the vectors 1100 and 11000, and two 4-minors, fringing the minor M3,

defined by vectors 11100 and 11010. It turned out that rk(A)=4. It would be enough

to explore the whole five 4-minors for finding the rank of this matrix by means of

research minors, starting with a minor of maximum order.

The rank of an m × n matrix can be found as follows.

We generate all the maximal minors with the m-order. For this, we need to generate

all possible combinations without repetitions of n elements taken m at a time. We

form the m-minor Mm for each combination represented by vectors c
m

(n) , b
m

(m)

and calculate the corresponding determinant. If it turns out, that the formed minor

has D(Mm)  0 , then the rk(A)= m . We must explore (m-1)-minors using vectors

b
m-1

(m) and c
m-1

(n), if the determinant of each of the formed m-minor is equal to

0. Calculations are repeated until the rank of our matrix is found.

54 Novikov S.

Systems and information technology

The effectiveness of this approach can be improved using modern multiprocessor

computational systems.

 For realization of this approach required an algorithm for generation of combi-

nations without repetitions.

4 Generation of combinations without repetitions represented by

Boolean vectors

We will represent a combination without repetitions of n elements taken m at

a time, where m ≤ n, by the n-component Boolean vector b
 m

(n) =b1 b2 … bn, which

contains a m of single components (units). For example, we can imagine the combi-

nation (1,3,4,7), selected from the set {1,2,3,4,5,6,7,8}, by the 8-component Boole-

an vector b
4
(8) = 10110010, where components b1= b3= b4= b7=1. It is obvious,

each n-component Boolean vector can be regarded as the word of length n in the

alphabet {0,1}.

An algorithm was proposed, where combinations are presented as a sequence of

integers and generated in the lexicographical order [5]. We can offer a more effi-

cient and convenient for parallelization algorithm for generation of combinations

without repetitions, where combinations are presented as Boolean vectors.

The initial combination C0 is written as the n-component Boolean vector b
 m

(n) =b1

b2 … bn , in which the first (far left) m components are equal to 1, and all other com-

ponents are equal to 0. Another combination Ci+1 we obtain from the previous Ci as

follows. We find the right-most «unit» in the Ci (let it be placed in the position of j)

and move it to the right by one bit, provided that, in position j+1 is written 0. If in

the position j+1 of the combination Ci was recorded 1 or a sign of the end of the

word, we get the new combination Ci+1 by another way.

We find the right-most « unit » in the Ci , which is recorded to the left of the block of

s «right-wing» units, where 1  s  m-1 . We move it on one bit to the right (from

position j to position j+1) , but in the positions j+2, j+3, …, j+s+1 we move all s

«right-wing» units.

After the completion of the building of the Ci+1 we build a new combination from

the previous Ci := Ci+1 .

If it turns out that to the left of the block of s «right-wing» units have no «units» in

the Ci , the final combination represents the n - component Boolean vector, in which

the most right-wing m components are equal to 1, and all other components are

equal to 0.

Our algorithm A11(m,b
m

(n); S) for generation of combinations without repetitions,

used below in a parallel algorithm for finding the rank of a matrix, has the form:

j:=m; S:={b
 m

 (n) }

while j  n-1 do

begin

 if bj =1 and bj+1 =0 then

 begin b
 m

 (n):=b
 m

 (n)  ej ; b
 m

(n):=b
 m

(n)  ej+1 ; S:= S  {b
 m

(n) }

 end

 until bj+1 = 1 or j=n

 Parallelization of computations for finding the rank of a rectangular matrix 55

Studia Informatica 1-2(17)2013

 begin

 j:=n ; d:= 0;

 while j  1 and bj =1 do

 if bj =1 then

 begin d:= d+1 ; b
 m

 (n):=b
 m

 (n)  ej ; j:=j-1

 end

 until bj = 0 ;

 while j  1 do

 begin

 if bj =0 then j: = j-1

 until bj = 1 ;

 begin b
 m

 (n):=b
 m

 (n)  ej ; b
 m

 (n):=b
 m

(n)  ej+1 ;

 end

 i:= 1; k:=j+1;

 while i  d do

 begin

 k:=k+1; b
 m

 (n):=b
 m

 (n)  ek ; i:= i+1

 end

 end

 S:= S  {b
 m

 (n) }

 end

 j:= j+d+1

end;

write S. Stop.

Example 1. Let n=5, m = 3

The initial combination is b
3
(5)= C0 = 11100. Then we have C1 = 11010, C2 = 11001.

To obtain C3 we move the «unit», recorded to the left of the block of s=1 «right-

wing» units, by one digit (from the second to the third). In addition we move to the

fourth position block of s=1 the «right wing» of the units. Thus we get C3 = 10110.

Then we have C4 = 10101. The following combination is equal to the C5 = 10011.

Block «right-wing» units already contains two units.

For obtaining C6 we move the «unit», recorded to the left of the block of s=2 the

«right» units, by one digit (from the first to the second). In addition to this move in

the third and fourth position the block of s=2 the «right wing» of the units. We get

C6 = 01110. Next, we obtain C7= 01101, C8= 01011, C9= 00111. Finally we get

S={11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011, 00111 }

={123, 124, 125,134, 135,145, 234,235,245,345}.

We can parallelize the process of generation of combinations without repetitions in

the process of finding the rank of an m×n matrix.

56 Novikov S.

Systems and information technology

5 A parallel algorithm for generation of combinations without

repetitions

We can parallelize the task of generation of all possible combinations of n ele-

ments taken m at a time, where m ≤ n, on 2
k
 processes, where k < m, 2

k
  R, R -

number of planned for generation of computing processors.

Our parallel algorithm APGC1 for generation of combinations without repetitions

can be described as follows:

1. Preparation of data for parallelization

The control processor p0 prepares for each computing processor pi input data with

the help of the algorithm A10P1(m, n, R; k, αi(k)). The input data are the numbers

n, m, k, as well as Boolean vector αi(k) of length k. Boolean vector αi(k) is record-

ed in the binary notation of the number i. The number i, where 0  i  2
k
-1, indi-

cates the number of the i-th group of combinations, planned for generation by

a computing processor pi . We'll plan a computing processor, which denote by the

number 2
k
, for generation of the 0-th group of combinations and plan computing

processors p1 , p2 , …, p2
k

-1 for generation 1-th, 2-th, …, 2
k
-1-th groups of combina-

tions.

2. Generation of a i-th group of combinations without repetitions

Each computing processor pi first generates the (n-k) - component Boolean vector

b
s
(n-k)=b1

s
 b2

 s
 … bn-k

 s
 with the help of the algorithm A11P1(m, n, k, αi(k) ; Si).

The first (far left) s components of this vector are equal to 1, i.e. b1
s
 =b2

 s
 =... =bs

s

=1. The value of s is determined by the formula s =m-i(1), where i(1) is the num-

ber of units in the word i. In the rest of the n - k - s positions of this Boolean vector

b
s
(n-k) should be written down 0. The presence of the vector b

s
(n-k) allows us to

take advantage of the described above serial algorithm A11 for generation of com-

binations without repetitions of n-k elements taken s at a time. The initial combina-

tion is a vector: b:=b
 s
(n-k) , m:=s, n:=n-k. Each computing processor pi generates

s

knC 

 of Boolean vectors of length n-k with the help of the serial algorithm A11.

After this each processor pi appends to the left up to each of these vectors the prefix

αi(k) and forms the set Si of vectors with length n. Thus the process of generation of

the i-th group combinations will be completed. Next each processor pi sends the set

Si to the control processor.

3. The completion of the generation of all possible combinations of n elements

taken m at a time

Our control processor sums the sets (S0  S1…  S2
k
-1=S) received from the

computing processors with the help of the algorithm A12P1(S0 , S1,…, S2
k

-1; S) and

 Parallelization of computations for finding the rank of a rectangular matrix 57

Studia Informatica 1-2(17)2013

completes the process of generation of all possible combinations of n elements taken

m at a time.

Our parallel algorithm APGC1 for generation of all possible combinations of n

elements taken m at a time uses R=2k computing processors and implements the

following computer schedule

S2
k
+1 (APGC1)=((A10P1, p0), (A11P1, p1 , …, pR), (A12P1, p0)),

where a record (Aj,pi) indicates that the processor pi implements the algorithm Aj.

We prove that our parallel algorithm really generates all Cn
m

 combinations without

repetitions of n elements taken m at a time by the method of mathematical induc-

tion on the parameter k, where k is the prefix length.

For k =1 we have two sets of vectors (S0 and S1). The prefix of each of the combina-

tions from the set S0 is 0 = 0, and the prefix of each of the combinations from the

set S1 is 1 = 1. Hence it follows

,|| 1

)1(

10
0 m

n

m

n CCS 



 


.|| 1

1

)1(

11
1 





  m

n

m

n CCS


It is obvious that S0  S1 = .

Therefore

.|||||| 1

111010

m

n

m

n

m

n CCCSSSS  



Let us assume (induction assumption) that for the prefix length equal to k , is equal

to

 .|...|
12210

m

nCSSSS k 


 (*)

Let prefix length be equal to k+1.

Each prefix length k+1 can be written in the form of a prefix length k to which it is

written right side 1 or 0. For each prefix i with length k there are two prefixes with

length k+1 different the last letter. For example, for i with length k there is a prefix

’j =i 0 and the prefix ’l =i 1 with length k+1. These words are prefixes with

length k+1 of Boolean vectors (words), which represent combinations of sets S’j

and S’l .

We have

s

kn

m

kn

m

knj CCCS ij

)1(

)1(

)1(

)1('

)1(|'| 







 


58 Novikov S.

Systems and information technology

1

)1(

1)1(

)1(

)1('

)1(|'| 









  s

kn

m

kn

m

knl CCCS il 

From here we get

,|'||'||''| 1

)1()1(

s

kn

s

kn

s

knljlj CCCSSSS 



 

where s =m-i(1).

Thus, for each prefix i with length k , where 0  i  2
k
-1 , there are two prefix ’j

=i 0 and ’l =i1 with length k+1. Each element of the set S’j has a prefix with

length equal to ’j =i 0 and each element of the set S’l has a prefix length equal to

’l =i1 . The sum of powers of these sets S’j and S’l is equal to the power of the

sets Si.

We have

.|...||'...'''|
1221012000 1 

  kk SSSSSSSS

On the basis of (*) we conclude

.|'...'''|
12210 1

m

nCSSSS k 


Thus proven, if we parallelize computations on the 2
k

processes by the above

method it would generate all possible combinations without repetitions of n ele-

ments taken m at a time. This provides high performance our computing system.

However, the above method requires too much computing processors. This leads to

an increase of the cost of our computing system.

In addition, some of these processors may duplicate calculations that other compu-

ting processors perform.

For example, if k = 3 , each of the processors p1 and p2 will generate the same set of

(n-3) - component vectors with m-1 single components S(n-3,m-1), where

.|)1,3(| 1

3



 m

nCmnS

Then for every vector from this set S(n-3,m-1) the processor p1 appends to the left

up the prefix 001, and for every vector from this set S(n-3,m-1) the processor p2

appends to the left up the prefix 010. Thus will be constructed the sets S1 and S2 of

vectors with length n.

In order to reduce the cost of computations and eliminate duplications of calcula-

tions we offer the following algorithm. We can parallelize the task of generation of

all possible combinations of n elements taken m at a time, where m ≤ n, on k=R-1

processes, where R - number of planned for generation of computing processors.

 Parallelization of computations for finding the rank of a rectangular matrix 59

Studia Informatica 1-2(17)2013

Our parallel algorithm APGC2 for generation of combinations without repetitions

can be described as follows:

1. Preparation of data for parallelization

The control processor p0 prepares for each computing processor p1, p2 ,…, pk+1

input data with the help of the algorithm A10P2(m, n, k; i, b
i
(k), m-i, b

m-i
(n-k)).

Here i, k, m, n are the numbers, where 0  i  k < m < n , k = R-1 , and b
i
(k),

 b
m-i

(n-k) are Boolean vectors with length k and n-k , in which the first (far left)

 k (n-k for b
m-i

(n-k)) components are equal to 1, and all other components are equal

to 0. The number i, where 0  i  k, indicates the number of the i-th group of com-

binations, planned for generation by a computing processor pi . We'll plan a compu-

ting processor, which denote by the number R, for generation of the 0-th group of

combinations and plan computing processors p1 , p2 , …, pR-1 for generation 1-th,

2-th, …, k-th groups of combinations.

2. Generation of a i-th group of combinations without repetitions

Each computing processor pi with the help of the algorithm A11P2(i, b
i
(k), m-i,

b
m-i

(n-k); Si) first generates all k - component Boolean vectors, each of which

contains i single components. Processor pi then generates all (n-k) - component

Boolean vectors, each of which contains m-i single components. We can use the

described above serial algorithm A11 for these goals.

Processor pi then writes all the generated vectors with length k to the set Si1 and

writes all the generated vectors with length n-k to the set Si2, where

.||,|| 21

im

kni

i

ki CSCS 



After this processor pi appends to the left up to each of vector from the set Si2 the

vector from the set Si1 and forms the set Si of vectors with length n, where

.*|| im

kn

i

ki CCS 



Thus the process of generation of the i-th group combinations without repetitions n

elements taken m at a time will be completed.

After that processor pi sends the set Si to the control processor.

3. The completion of the generation of all possible combinations of n elements

taken m at a time

Our control processor sums the sets (S0  S1…  Sk = S) received from the com-

puting processors with the help of the algorithm A12P2(S0 , S1,…, Sk; S) and com-

pletes the process of generation of all possible combinations of n elements taken m

at a time.

60 Novikov S.

Systems and information technology

Our parallel algorithm APGC2 for generation of all possible combinations of

n elements taken m at a time uses R=k+1 computing processors and implements

the following computer schedule

Sk+2 (APGC2)=((A10P2, p0), (A11P2, p1 , …, pk+1), (A12P2, p0)),

where a record (Aj,pi) indicates that the processor pi implements the algorithm Aj.

The corresponding computational system requires far less computing processors

(than computational system for the algorithm APGC1), none of which not dupli-

cates computations from other computing processors.

Due to the way of parallelization of calculations according to the algorithm APGC2

we can solve our task of generating combinations for the large values of parameter

k (up to 32), and, consequently, the parameters n, m.

Example 2. Let n=10, m=6, R=5, k=4.

1. Data for parallelization

b
0
(4)=0000 , b

6
(6)= 111111 for p5

b
1
(4)=1000 , b

5
(6)= 111110 for p1

b
2
(4)=1100 , b

4
(6)= 111100 for p2

b
3
(4)=1110 , b

3
(6)= 111000 for p3

b
4
(4)=1111 , b

2
(6)= 110000 for p4

2. Generation of a i-th group of combinations

| S01|=1, | S02|=1 , | S0|=1, S0={0000111111} ;

| S11|=4 | S12|=6 | S1|=24; , S1={1000111110, 0100111110,…, 0010011111,

0001011111};

| S21|=6 , | S22|=15, | S2|=90; S2={1100111100, 1010111100,…, 0101001111,

0011001111};

| S31|=4 , | S32|=20, | S3|=80; , S3={1110111000, 1101111000,…, 1011000111,

0111000111};

| S41|=1, | S42|=15 , | S4|=15, S4={1111110000, 1111101000, …, 1111000101,

1111000011}.

 3. S0  S1 S2  S3  S4 = S, where |S|= C10
6
=210 .

6 A parallel algorithm for finding the rank of a matrix by means

of research r-minors with descending orders

Our parallel algorithm can be described as follows:

1. Construction of initial Boolean vectors l
k
(m) and l

 k
(n)

The control processor p0 generates Boolean vectors l
k
(m) and l

 k
(n) with the help of

the algorithm A10(m,n; l
 k

(m), l
 k

(n)) . These vectors are different lengths, but each

 Parallelization of computations for finding the rank of a rectangular matrix 61

Studia Informatica 1-2(17)2013

of them contains exactly k “units” in the extreme left positions. In the beginning of

the calculation is taken k:= m. After that the control processor p0 sends these vec-

tors l
k
(m) and l

 k
(n) as the input data to computing processors p1, p2 .

2. Generation of combinations without repetitions

A computing processor p1 generates the set S1
k
, the elements of which are combina-

tions (Boolean vectors with length m) to identify the lines of k-minors, with the help

of the algorithm A11(k, l
k
(m) ; S1

k
). Similarly, a computing processor p2 generates

the set S2
k
, the elements of which are combinations (Boolean vectors with length n)

to identify the columns of k-minors, with the help of the algorithm A11’(k,l(n)
k
 ;

S2
k
).

We can parallelize the process of generation of combinations without repetitions

using the parallel algorithms APGC1 or APGC2 described above.

3. The formation of pairs of vectors to build k-minors

The control processor forms a pair of vectors to build a k-minor and sends one of

the pairs together with the matrix A as a source of data to computing processors with

the help of the algorithm A13(S1
k
, S2

k
 ;(b

k
, c

k
)). The maximum number of the pairs

of this vectors does not exceed the value M = Cm
k

* Cn
k

. We have high performance

of our problem solution if the number of computing processors equals to value

R=M. In this case the control processor sends only one of the pairs of this vectors

for each computing processor. If we have R < M , our control processor sends

]M/R[of the pairs of this vectors for each computing processor.

4. Construction of k - minors and calculation of the determinants

Every computing processor pi builds k-minor with the help of the algorithm

A14((b
k
, c

k
); Mk). Then it computes the determinant D(Mk) for the submatrix

Mk with the help of the algorithm A15(Mk ; D(Mk)).

5. The adoption of a decision on the continuation of computing

The processor p0 analyzes the results with the help of the algorithm A16(D(Mk) ;

rk(A), b
k
, с

k
). If at least one of k-minors is not equal to zero, the rank of the matrix

A is equal to rk(A) = k. The end of the calculation. The move to step 6. If every k-

minor is equal to zero, the rk(A)  k. In this case, we must decide about the contin-

uation of the calculations. Then k:=k-1 and the control processor forms new vec-

tors l
 k
(m) and l

 k
(n).

The transition to paragraph 2.

62 Novikov S.

Systems and information technology

6. Stop.

Our parallel algorithm APRM2 for finding the rank of a matrix by means of re-

search r-minors with the descending orders implements the following computer

schedule

SR+1 (APRM2)=((A10, p0), (A11, p1 ,p2), (A13, p0), (A14, p1, …, pR),(A15, p1, …, pR),

(A16, p0)),where a record (Aj,pi) indicates that the processor pi implements the

algorithm Aj.

7 Conclusion

Our studies suggest the following conclusions.

You can use modern high-performance multiprocessor computer systems (clusters)

to solve the important problem of finding of the rank of a rectangular matrix.

With this purpose we propose two parallel algorithm for finding the rank of an m×n

matrix. One of them allows you to find the rank by paralleling process of generation

of fringing minors. Another algorithm allows you to parallelize calculations in the

process of finding the rank by research minors with descending orders. For the study

of minors also proposed two parallel algorithms for generation of combinations

without repetitions.

The use of multiprocessor computing systems and the proposed parallel algorithms

will allow to increase considerably the speed of solving the task of finding the rank

of a rectangular matrix, which needs to be addressed when checking of the compati-

bility of a system of linear algebraic equations.

References

1. Demmel J.W. Applied Numerical Linear Algebra, SIAM, 1997. - 431 pages.

2. Gauss C.F. Beiträge zur Theorie der algebraischen Gleichungen. – Gött., 1849.

3. V. Strassen, Gaussian elimination is not optimal, Num. Math., 13(4): 1969. 354–

356.

4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

ISBN 0-262-03293-7. Section 31.3: Modular arithmetic, pp. 862–868.

5. Witold Lipski. Kombinatoryka dla programistów, WNT, 2004. -274 s.

http://www.twirpx.com/file/325964/

