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1 Introduction 
 

As you know, over 75% of all computer problems can be reduced to the problem of 

solving systems of linear algebraic equations [1].  An important task in solving sys-

tems of linear algebraic equations is to find the rank of an m × n matrix A, where m 

is the number of rows and n is number of columns of  А. Without loss of generality, 

we can assume that   m   n.  

The column rank of a matrix A is the maximum number of linearly independent 

column vectors of A. The row rank of a matrix A is the maximum number of linearly 

independent row vectors of A. The column rank and the row rank are always equal. 

This number (i.e. the number of linearly independent rows or columns) is simply 

called the rank of A. It is commonly denoted by either rk(A) .  

The rank of an m × n matrix cannot be greater than m or n. 

One useful application of calculating the rank of a matrix is the computation of the 

number of solutions for a system of linear equations. According to the Kronecker –

Capelli theorem, a system of linear equations is inconsistent if the rank of the aug-

mented matrix is greater than the rank of the coefficient matrix. If, on the other 

hand, the ranks of these two matrices are equal, the system must have at least one 

solution. The solution is unique if and only if the rank equals the number of varia-

bles. Otherwise the general solution has k free parameters, where k is the difference 

between the number of variables and the rank. Hence in such case there are an infi-

nite number of solutions.  

In the control theory, the rank of a matrix can be used to determine whether a linear 

system is controllable, or observable. 
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The easiest way to compute the rank of a matrix A is given by the Gauss elimination 

method [1,2]. However, Gaussian elimination is not always the fastest algorithm to 

compute the rank of a matrix, procedure consistent elimination of the matrix ele-

ments is difficult for parallelization,  when applied to floating point computations on 

computers, basic Gaussian elimination can be unreliable [3]. 

Another well-known method of finding the rank an m × n matrix is based on a study 

of fringing (bordering) minors [1] with increasing orders ( i.e. the amount of 1, 2,. 

..., m ). Having established that a determinant D(Mi* )  0 for a minor Mi 
*

   with  the 

order i (i-minor), the conclusion is that rk(A) i. Next you need to calculate the 

determinants of all i+1-minors, fringing the minor Mi 
*
.  If it turns out that each of 

the i+1-minors  is equal to 0, then the conclusion is that the rk(A)= i.   

Using this method you should to calculate a large number of determinants, the order 

of which can increase to a maximum. The number of minors with the order r+1, 

each of which spans a r-minor Mr, is  equal to (m-r)(n-r) . It may be necessary to 

explore 





1

1

))((
m

i

inim  minors for  finding the rank of an m × n matrix. In this 

regard it is interesting to explore the possibilities of using modern high-performance 

computational systems for solving the above-mentioned important task. 

 

2 A parallel algorithm  for  finding the rank of a matrix  by the 

method fringing minors 
 

Multiprocessor computer systems (clusters) allow to accelerate significantly the 

process of generation of the fringing minors. 

Each minor Mr  with the order r (r-minor) of a matrix A can be formed with the help 

of the pair of Boolean vectors ( b
r
(m), c

r
(n) ) , where b

r
(m)

  
=

  
b

r
1 b

r
2  ...

   
b

r 
m

  
, c

r
(n)

 
=

  

c
r
1 c

r
2  ...

 
c

r 
n . Each of these vectors contains a r of single components. Such a pair of 

vectors uniquely identifies a minor Mr. So, for example, for the matrix 

                                                                                                                                                                                                               

 
                                                                                                                                                                                                

                                                                                                                                                                                                                                                                  

 

all 3-minors, fringing minor M2, can be described with the help of the following 

pairs of Boolean vectors:1) b
3
(4) = 1110 ,  c

3
(5)  = 11100;   2) b

3
(4)  = 1110 ,    c

3
(5)   

= 11010;  3) b
3
(4) = 1110 ,     c

3
(5)   = 11001; 4) b

3
(4)  = 1101 ,     c

3
(5)   = 11100;  

5)  b
3
(4)  = 1101 ,     c

3
(5)   = 11010;  6) b

3
(4)  = 1101 ,     c

3
(5)   = 11001. 

-4 3 2 1 0

-2 1 1 -4 2 with a non-zero -4 3

12 -6 -6 9 3 -2 1

-6 4 3 -3 1

A= M2 = 
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We will also use the k-component Boolean vector e(k)i   = e1 e2  ...
  
ek

 
 with the only 

non-zero component of ei =1, where 1  i   k, in our algorithms of generating vec-

tors b
r
(m)  and c

r
(n). 

The algorithm А1 to generate vectors b
r+1

(m) for the set S1, elements of which iden-

tify the rows  of (r+1)-minors , fringing r-minor Mr, has the form 

      b
r
(m) 

  
=

  
b

r
1 b

r
2  ...

     
b

r 
m

  
       ,     S1 = , i:=1; 

   while   i  m   do      

     if   b
r
i =0 then   

       begin   b 
r+1

(m)  := b
r
(m)  e(m)i   ; S1 : = S1   { b 

r+1
(m)  }; 

       end; 

   i:=i+1; 

   print S1 

   end. 

The algorithm А1  allows us to generate also the vectors c 
r+1

(n)  for the set S2 , 

elements of which identify the  columns of (r+1)-minors, fringing r-minor Mr. After 

slight modernization the algorithm (А1’) takes the following form 

 

      c
r
(n) 

  
=

  
c

r
1 c

r
2  ...

     
c

r 
n

  
       ,     S2 = , i:=1; 

   while   i  n  do      

     if   c
r
i =0 then   

       begin   c 
r+1

(n)  := c
r
(n)  e(n)i   ; S2 : = S2   { c 

r+1
(n)  }; 

        end; 

    i:=i+1; 

    print S2 

    end. 

 

Our  parallel algorithm for finding the rank of a matrix by the method of fringing 

minors can be described as follows: 
 

1. Selection of non-zero a minor 

 

The control processor p0 finds a non-zero element of an m × n matrix A, where m  

n, with the help of the algorithm  A0(А; b
r
(m), c

r
(n) ). This element aij  0 is a mi-

nor with the first order (1-minor),  We can identify the 1-minor by a pair of Boolean 

vectors b
r
(m), c

r
(n), where b

r
(m):= e(m)i , c

r
(n):= e(n)j. It is obvious that in case of 

absence of non-zero elements in the matrix we have  rk(A)= 0. The transition to the 

paragraph 6. 

Then the control processor sends vectors b
r
(m) and c

r
(n) 

 
 as the input data for com-

puting processors p1 and p2 of our cluster. 

 

2. The generation of Boolean vectors, identifying the fringing minors 

 

A computing processor p1 generates the set S1, elements of which identify the rows 

(r+1)-minors, fringing  the r-minor Mr
*
 , with the help of our algorithm A1( b

r
(m); 

S1 ) .         
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At the same time a computing processor p2 generates the set S2,  elements of which 

identify the columns of (r+1)-minors, fringing  the r-minor Mr
*
, with the help of our 

algorithm A1’(c
r
(n); S2 )  .         

 

Then each computing  processor sends to the control processor p0 the sets S1  and S2 . 

 

3. The formation of pairs of vectors to build fringing minors 

 

The control processor p0  composes the pairs of this vectors to build fringing (r+1)-

minors for the r-minor Mr
*
  with the help of the algorithm A2(S1, S2;( b

r
 
+1

(m), 

 c 
r+1

(n)) ).  After that p0 sends one of the pairs together with the matrix A as a source 

of data for each of the computing processor. 

 

4.  The building of fringing minors and calculation of the determinants 

 

Every computing processor  pi, where i {1,2,...,(m-r)*(n-r)}, builds (r+1)-minors 

with the help of the algorithm A3(А, ( b
r
 
+1

(m), c 
r+1

(n)); Mr+1 ). After that p0 com-

putes the determinant D(Mr+1 ) for built submatrices Mr+1 with the help of the algo-

rithm A4( Mr+1 ; D(Mr+1 ) ). To compute the determinant you can use the method of 

Gauss elimination [1,2]. 

The algorithm A4 for the calculation of the determinant of a square n×n matrix A 

has the following form  

 

k:=1 

While k   n-1 do 

       i=k+1 

      While i   n do 

        t ik := aik / akk 

        i:=i+1 

           j=k+1 

          While j   n do 

           aij := aij – tik*akj 

            j: = j+1 

 k: = k+1 

Det A = a11*a22*…*ann 

 

Note that the task of finding out, if a determinant is equal to 0 , is solved much easi-

er (using modular arithmetic) objectives of the actual computation of this determi-

nant  [4]. 

After that each computing processor  pi  sends the obtained results (a pair of vectors 

(b
r+1

(m), c
r+1

(n))  and the value of the (r+1) - minor )  to the control processor p0 . 

 

5.  Adoption of a decision on the continuation of computing 

 

The control processor p0 analyzes the results with the help of the algorithm 

A5((b
r+1

(m), c
r+1

(n)), D(Mr+1 ) ; rk(A),  b
r
(m), с

r
(n) ). If each of the (r+1)-minors, 
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fringing r-minor Mr*, is equal to zero, then the rank of the matrix A is equal to rk(A) 

= r. The end of the calculations. The transition to the paragraph 6. If there is a minor 

Mr+1* with D( Mr+1* )  0, then the rk(A)   r. In this case we must continue to cal-

culate.  

Then  b
r
(m) := b

r+1
(m)  , с

r
(n) := с

r+1
(n) . 

The transition to paragraph 2. 

 

6.  Stop. 

 

Our  parallel algorithm APRM1 for  finding the rank of a matrix by means of re-

search fringing r-minors implements the following  computer schedule 

SR+1 (APRM1)=( (A0, p0), (A1, p1 ,p2), (A2, p0), (A3, p1, …,  pR  ), (A4, p1, …,  pR  ),  (A5, 

p0) ), 

where a record (Aj,pi)  indicates that the processor pi   implements the algorithm Aj. 

We are finishing the process of finding the rank of the matrix discussed above as an 

example. 

Our 3-minor M3 
*
,  identified by vectors 1110 and 11010 , is not zero. Then rk(A)  

3. Only two 4-minors fringe the minor M3 
*
. The first of them, identified by vectors 

1111 and 11110, is zero, and the second, identified by vectors 1111 and 11011, is 

equal to   -270. Thus it is established, that rk(A)=4. 

We can  use this algorithm for matrices with a large number of zero elements, as 

well as for matrices with equal (or almost equal) rows, or columns. For such matri-

ces there is a high probability that the rank of  A   is significantly smaller than m . 

 

3 Finding the rank of a matrix by means of research r-minors   

with descending orders 
 

We must solve the task of finding the rank of a matrix A for matrices with different 

properties. The considered task can be solved faster through research minors, start-

ing with a minor of maximum the order, if it is strong possibility, that the rank of the 

matrix is not much smaller than m. 

So, for example, to find the rank of the matrix A, discussed above,  there are twelve 

2-minors, fringing the minor M1 = -4, six 3-minors, fringing the minor M2, deter-

mined by the vectors 1100 and 11000, and two 4-minors, fringing the minor M3, 

defined by vectors 11100 and 11010. It turned out that rk(A)=4. It would be enough 

to explore the whole five 4-minors for finding  the rank of this matrix by means of 

research minors, starting with a minor of maximum  order.  

The rank of an m × n matrix can be found as follows. 

We generate all the maximal minors  with the m-order. For this, we need to generate 

all possible combinations without repetitions of n elements taken  m at a time. We 

form the  m-minor Mm  for each combination represented by vectors c
m

(n)  ,  b
m

(m)   

and calculate the  corresponding determinant. If it turns out, that the formed minor 

has D(Mm )  0 , then the rk(A)= m . We must explore (m-1)-minors using vectors  

b
m-1

(m)   and  c
m-1

(n), if the determinant of each of  the formed  m-minor is equal to 

0. Calculations are repeated until  the rank of our matrix is found.  
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The effectiveness of  this approach can be improved using modern multiprocessor 

computational systems.  

      For realization of this approach  required an algorithm for generation of combi-

nations without repetitions. 

 

4  Generation of combinations without repetitions represented by  

Boolean vectors 
 

We will represent a combination without repetitions of n elements taken  m at 

a time, where m ≤  n, by the n-component Boolean vector b
 m

(n) =b1 b2 … bn, which  

contains a m of single components (units). For example, we can imagine the combi-

nation  (1,3,4,7), selected from the set {1,2,3,4,5,6,7,8},  by the 8-component Boole-

an vector b
4
(8) = 10110010, where components b1= b3= b4=  b7=1. It is obvious,  

each n-component Boolean vector can be regarded as the word of length n in the 

alphabet {0,1}. 

An algorithm was proposed, where combinations are presented as a sequence of 

integers  and generated in the lexicographical order [5]. We can offer a more effi-

cient  and convenient for parallelization  algorithm for generation of combinations 

without repetitions, where combinations are presented as Boolean vectors. 

The initial combination C0 is written as the n-component Boolean vector b
 m

(n) =b1 

b2 … bn , in which the first (far left) m components are equal to 1, and all other com-

ponents are equal to 0. Another combination Ci+1 we obtain from the previous Ci  as 

follows. We find the right-most «unit» in the Ci  (let it be placed in the position of j) 

and move it to the right by one bit, provided that, in position j+1 is written 0. If in 

the position j+1 of the combination Ci was recorded 1 or a sign of the end of the 

word, we get  the new combination  Ci+1   by another way.  

We find the right-most « unit » in the Ci , which is recorded to the left of the block of 

s «right-wing» units, where 1  s  m-1 . We move it on one bit to the right (from  

position j to position j+1) , but in the positions   j+2, j+3, …, j+s+1 we move all s 

«right-wing» units.  

After  the completion of the building of the  Ci+1   we build a new combination from 

the previous Ci  := Ci+1   . 

If it turns out that to the left of the block of s «right-wing» units have no «units» in 

the Ci , the final combination represents the n - component Boolean vector, in which  

the most right-wing m components are equal to 1, and all other components are 

equal to 0. 

Our algorithm A11(m,b
m

(n); S) for generation of combinations without repetitions, 

used below in a parallel algorithm for finding the rank of a matrix,  has the form: 

 

j:=m; S:={b
 m

 (n) } 

while  j   n-1   do  

begin 

         if   bj =1  and bj+1 =0 then 

             begin b
 m

 (n):=b
 m

 (n)   ej  ; b
 m

(n):=b
 m

(n)   ej+1  ; S:= S    {b
 m

(n) }  

             end 

        until bj+1 = 1 or j=n 
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             begin 

              j:=n ; d:= 0; 

             while  j  1  and bj =1  do 

             if   bj =1  then 

            begin d:= d+1 ; b
 m

 (n):=b
 m

 (n)   ej  ; j:=j-1 

             end 

             until bj = 0 ; 

                   while  j  1  do 

                    begin 

                          if   bj =0  then  j: = j-1 

                          until bj = 1 ; 

                          begin b
 m

 (n):=b
 m

 (n)   ej  ; b
 m

 (n):=b
 m

(n)   ej+1  ; 

                         end 

                          i:= 1; k:=j+1; 

                         while i   d   do  

                         begin 

                         k:=k+1;  b
 m

 (n):=b
 m

 (n)   ek  ; i:= i+1 

                         end 

                    end 

                      S:= S    {b
 m

 (n) }  

               end 

 j:= j+d+1    

end; 

write S. Stop.        

 

Example 1. Let n=5, m = 3  

 

The initial combination is b
3
(5)= C0 = 11100. Then we have C1 = 11010, C2 = 11001. 

To obtain C3 we  move the «unit», recorded to the left of the block of s=1 «right-

wing» units, by one digit ( from the second to the third). In addition we  move to the 

fourth position  block of s=1 the «right wing» of the units. Thus we get C3 = 10110. 

Then we have C4 = 10101. The following combination is equal to the C5 = 10011. 

Block «right-wing» units already contains two units. 

 

For obtaining C6  we move the «unit», recorded to the left of the block of s=2 the 

«right» units, by one digit ( from the first to the second). In addition to this move in 

the third and fourth position the block of s=2 the «right wing» of the units. We get 

C6 = 01110. Next, we obtain C7= 01101,  C8= 01011,   C9= 00111.  Finally we get  

 

S={11100,  11010,  11001,  10110,  10101,  10011,  01110, 01101, 01011, 00111 } 

={123, 124, 125,134, 135,145, 234,235,245,345}. 

 

We can parallelize the process of generation  of combinations without repetitions in 

the process of finding the rank of an m×n  matrix. 
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5 A parallel algorithm for generation of combinations without 

repetitions  
 

We can parallelize the task of generation  of all possible combinations of  n ele-

ments taken  m at a time, where m ≤ n,  on 2
k
 processes, where k < m, 2

k
   R,  R  - 

number of planned for generation of computing processors. 

Our parallel algorithm  APGC1 for generation of combinations without repetitions 

can be described as follows: 

 

1. Preparation of data for parallelization  

 

The control processor p0  prepares for each  computing processor pi input data with 

the help of the algorithm A10P1(m, n, R; k, αi(k) ). The input data are  the numbers 

n, m, k,  as well as Boolean vector αi(k)  of length k. Boolean vector αi(k)  is record-

ed in the binary notation of the number i. The number i, where 0  i    2
k
-1, indi-

cates the number of the i-th group of combinations, planned for generation by 

a computing processor pi . We'll plan  a computing processor, which denote by the 

number 2
k
, for generation of the 0-th group of combinations and plan  computing 

processors p1 , p2 , …, p2
k

-1  for generation  1-th, 2-th, …, 2
k
-1-th groups of combina-

tions. 

2. Generation of a i-th group of combinations without repetitions  

 

Each computing processor pi first generates  the (n-k) - component Boolean vector 

b
s
(n-k)=b1 

s
 b2

 s
 … bn-k

 s
 with the help of the algorithm A11P1(m, n, k, αi(k) ; Si ). 

The first (far left)  s  components of this vector are equal to 1, i.e. b1 
s
 =b2

 s
  =... =bs 

s
  

=1. The value of s is determined by the formula s =m-i(1), where i(1) is the num-

ber of units in the word i. In the rest of the n - k - s positions of this Boolean vector 

b
s
(n-k) should be written down 0. The presence of the vector b

s
(n-k) allows us to 

take advantage of the described above serial algorithm A11 for generation of  com-

binations without repetitions of n-k elements taken  s at a time. The initial combina-

tion is a vector: b:=b
 s
(n-k)  , m:=s, n:=n-k. Each computing processor pi  generates 

s

knC   
 
  of Boolean vectors of length n-k with the help of the serial algorithm  A11. 

After this each processor pi  appends to the left up to each of these vectors the prefix 

αi(k)  and forms the set Si of vectors with length n. Thus the process of generation of  

the i-th group combinations will be completed. Next each processor pi sends the set 

Si  to  the control processor. 

 

3. The completion of the generation of all possible combinations of n elements 

taken  m at a time 

 

Our control processor sums the sets (S0  S1…   S2
k
-1=S) received from the 

computing processors with the help of the algorithm A12P1(S0 , S1,…,  S2
k

-1; S ) and  
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completes the process of generation of all possible combinations of n elements taken  

m at a time.  

Our  parallel algorithm APGC1 for generation of all possible combinations of n 

elements taken  m at a time uses  R=2k  computing processors and implements the 

following  computer schedule 

 

S2
k
+1 (APGC1)=( (A10P1, p0), (A11P1, p1 , …,  pR  ), (A12P1, p0) ), 

 

where a record (Aj,pi)  indicates that the processor pi   implements the algorithm Aj. 

We prove that our parallel algorithm really generates all Cn
m

 combinations without 

repetitions of  n elements taken  m at a time by the method of mathematical induc-

tion on the parameter k, where k is the  prefix length. 

For k =1 we have two sets of vectors (S0 and S1). The prefix of each of the combina-

tions from the set S0 is 0 = 0, and the prefix of each of the combinations from the 

set S1 is 1 = 1.   Hence it follows 

 

,|| 1

)1(

10
0 m

n

m

n CCS 



 


 

.|| 1

1

)1(

11
1 





  m

n

m

n CCS


 

It is obvious that S0   S1  = . 

 

Therefore 

.|||||| 1

111010

m

n

m

n

m

n CCCSSSS  

  

 

Let us assume (induction assumption) that for the prefix length equal to k , is equal 

to 

 

 .|...|
12210

m

nCSSSS k 


                                                    (*) 

 

Let prefix length be equal to k+1. 

Each prefix length k+1 can be written in the form of a prefix length k to which it is  

written right side 1 or 0. For each prefix i with length k there are two prefixes with 

length k+1 different the last letter. For example, for i with length k there is a prefix 

’j =i 0  and the prefix ’l =i 1 with length k+1. These words are prefixes with 

length k+1 of Boolean vectors  (words), which represent combinations of sets S’j 

and S’l  . 

We have 

s

kn

m

kn

m

knj CCCS ij

)1(

)1(

)1(

)1('

)1(|'| 







 


 



58  Novikov S. 

Systems and information technology 
 

1

)1(

1)1(

)1(

)1('

)1(|'| 









  s

kn

m

kn

m

knl CCCS il 
 

From here we get 

,|'||'||''| 1

)1()1(

s

kn

s

kn

s

knljlj CCCSSSS 



   

where s =m-i(1). 

Thus, for each prefix i  with length k , where 0  i  2
k
-1 , there are two prefix ’j 

=i 0  and ’l =i1  with  length k+1.  Each element of the set S’j has a prefix with 

length equal to ’j =i 0  and each element of the set S’l  has a prefix length equal to 

’l =i1 . The sum of powers of these sets S’j and S’l is equal to the power of the 

sets Si. 

 

We have 

.|...||'...'''|
1221012000 1 

  kk SSSSSSSS  

On the basis of (*) we conclude 

.|'...'''|
12210 1

m

nCSSSS k 
  

Thus proven,  if we  parallelize computations on the 2
k 

processes by the  above 

method it would generate all possible combinations without repetitions of  n ele-

ments taken  m at a time. This provides high performance our computing system.  

However, the  above method requires too much computing processors. This leads to 

an increase of the cost of our computing system. 

In addition, some of these processors may duplicate calculations that other  compu-

ting processors perform.  

For example, if k = 3 , each of the processors p1 and p2 will generate the same set of 

(n-3) - component   vectors with m-1 single components S(n-3,m-1 ), where  

 

.|)1,3(| 1

3



 m

nCmnS  

 

Then for every vector from this set S(n-3,m-1 )  the processor p1 appends to the left 

up the  prefix  001, and for every vector from this set S(n-3,m-1 )   the processor p2 

appends to the left up the  prefix  010. Thus will be constructed the sets S1 and  S2 of 

vectors with length n. 

In order to reduce the cost of computations and eliminate duplications of calcula-

tions we offer the following algorithm. We can parallelize the task of generation  of 

all possible combinations of  n elements taken  m at a time, where m ≤ n,  on k=R-1 

processes, where R  - number of planned for generation of computing processors. 
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Our parallel algorithm APGC2 for generation of combinations without repetitions 

can be described as follows: 

 

1. Preparation of data for parallelization  

 

The control processor p0  prepares for each  computing processor p1, p2 ,…, pk+1 

input data with the help of the algorithm A10P2(m, n, k; i, b
i
(k), m-i, b

m-i
(n-k)). 

Here  i,  k,  m, n   are  the  numbers, where  0  i  k < m < n , k = R-1 , and  b
i
(k), 

 b
m-i

(n-k)  are  Boolean  vectors  with length k and  n-k , in which the first (far left) 

 k  (n-k for b
m-i

(n-k)) components are equal to 1, and all other components are equal 

to 0. The number i, where 0  i    k, indicates the number of the i-th group of com-

binations, planned for generation by a computing processor pi . We'll plan  a compu-

ting processor, which denote by the number R, for generation of the 0-th group of 

combinations  and  plan  computing  processors p1 , p2 , …, pR-1  for generation  1-th, 

2-th, …, k-th groups of combinations.    

 

2. Generation of a i-th group of combinations without repetitions 

 

Each computing  processor  pi  with the help  of  the algorithm A11P2(i, b
i
(k), m-i, 

b
m-i

(n-k); Si ) first generates  all  k - component Boolean vectors, each of which 

contains i single components. Processor pi then generates all  (n-k) - component 

Boolean vectors, each of which contains m-i single components. We can use the 

described above serial algorithm A11 for these goals. 

Processor pi  then writes all the generated vectors with length k to the set Si1 and 

writes all the generated vectors with length n-k to the set Si2, where   

 

.||,|| 21

im

kni

i

ki CSCS 

  

 

After this processor pi  appends to the left up to each of vector from the set Si2 the  

vector  from the set Si1  and forms the set Si of vectors with length n, where  

 

.*|| im

kn

i

ki CCS 

  

 

Thus the process of generation of  the i-th group combinations without repetitions n 

elements taken  m at a time will be completed.  

After that processor pi sends the set Si  to  the control processor. 

 

3. The completion of the generation of all possible combinations of n elements 

taken  m at a time 

Our control processor sums the sets (S0  S1…   Sk = S) received from the com-

puting processors with the help of the algorithm A12P2(S0 , S1,…,  Sk; S ) and  com-

pletes the process of generation of all possible combinations of n elements taken  m 

at a time.  
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Our  parallel algorithm APGC2 for generation of all possible combinations of 

n elements taken  m at a time uses  R=k+1 computing processors and implements 

the following  computer schedule 

Sk+2 (APGC2)=( (A10P2, p0), (A11P2, p1 , …,  pk+1  ), (A12P2, p0) ), 

where a record (Aj,pi)  indicates that the processor pi   implements the algorithm Aj. 

The corresponding computational system requires far less computing processors 

(than computational system for the algorithm APGC1), none of which  not dupli-

cates computations from other computing processors. 

Due to the way of parallelization of calculations according to the algorithm  APGC2 

we can solve our  task of generating combinations for the large values of parameter 

k (up to 32), and, consequently, the parameters n, m. 

 

Example 2.  Let n=10, m=6,  R=5,  k=4.     

1. Data for parallelization 

 

b
0
(4)=0000 , b

6
(6)= 111111    for   p5     

b
1
(4)=1000 , b

5
(6)= 111110   for   p1    

b
2
(4)=1100 , b

4
(6)= 111100    for   p2  

b
3
(4)=1110 , b

3
(6)= 111000    for   p3    

b
4
(4)=1111 , b

2
(6)= 110000    for   p4   

 

2. Generation of a i-th group of combinations 

 

| S01|=1,  | S02|=1 , | S0|=1,  S0={0000111111} ;      

| S11|=4  | S12|=6  | S1|=24; ,  S1={1000111110, 0100111110,…, 0010011111, 

0001011111}; 

| S21|=6 , | S22|=15,     | S2|=90; S2={1100111100, 1010111100,…, 0101001111, 

0011001111}; 

| S31|=4 ,  | S32|=20,   | S3|=80; ,     S3={1110111000, 1101111000,…, 1011000111, 

0111000111}; 

| S41|=1,  | S42|=15 ,  | S4|=15, S4={1111110000, 1111101000, …, 1111000101, 

1111000011}. 

 

      3. S0  S1  S2  S3   S4 = S, where    |S|= C10
6
=210 .  

 

6  A parallel algorithm for finding the rank of a matrix by means 

of research r-minors with descending orders 

Our parallel algorithm can be described as follows: 

 

1. Construction of initial  Boolean vectors l 
k
(m) and l

 k
(n) 

 

The control processor p0 generates Boolean vectors  l 
k
(m) and l

 k
(n) with the help of 

the algorithm  A10(m,n; l
 k

(m), l
 k

(n)) . These vectors are different lengths, but each 
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of them contains exactly k  “units” in the extreme left positions. In the beginning of 

the calculation is taken k:= m. After that the control processor p0 sends  these vec-

tors l 
k
(m) and l

 k
(n) as the input data to computing processors p1, p2 . 

 

2. Generation of combinations without repetitions 

 

A computing processor p1 generates the set S1
k
, the elements of which are combina-

tions (Boolean vectors with length m) to identify the lines of k-minors, with the help 

of the algorithm A11(k, l 
k
(m) ; S1

k
 ). Similarly, a computing processor p2  generates 

the set S2
k
, the elements of which are combinations ( Boolean vectors with length n) 

to identify the columns of k-minors, with the help of the algorithm  A11’(k,l(n)
k
 ; 

S2
k
 ). 

We can parallelize the process of generation of combinations without repetitions 

using the parallel algorithms APGC1  or  APGC2  described above. 

 

3. The formation of pairs of vectors to build k-minors 

 

The control processor forms a pair of vectors to build a k-minor  and sends one of 

the pairs together with the matrix A as a source of data to computing processors with 

the help of the algorithm A13(S1
k
, S2

k
 ;( b

k
, c

k
) ). The maximum number of the pairs 

of this vectors does not exceed the value M = Cm
k  

* Cn
k  

. We have high performance 

of our problem solution if the number of computing processors equals to value 

R=M.  In this case the control processor sends only one of the pairs of this vectors 

for each computing processor. If we have R <  M , our control processor sends 

]M/R[  of the pairs of this vectors for each computing processor. 

 

4. Construction of  k - minors and calculation of the determinants 

 

Every  computing   processor  pi   builds  k-minor  with  the  help  of the  algorithm 

A14( ( b
k
, c

k
); Mk ).  Then it computes the determinant D(Mk )  for  the   submatrix 

Mk with the help of the algorithm A15(  Mk ; D(Mk ) ). 

 

5. The adoption of a decision on the continuation of computing 

 

The  processor p0 analyzes the results with  the help  of  the algorithm A16( D(Mk ) ; 

rk(A), b
k
, с

k
 ). If at least one of k-minors  is not equal to zero, the rank of the matrix 

A is equal to rk(A) = k.  The end  of  the calculation. The move to step 6. If every k-

minor is  equal to zero, the rk(A)   k. In this case, we must decide about the contin-

uation  of the calculations. Then k:=k-1  and the control  processor forms  new vec-

tors l
 k
(m)  and l

 k
(n). 

The transition to paragraph 2. 
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6. Stop. 

 

Our  parallel algorithm APRM2 for  finding the rank of a matrix by means of re-

search r-minors with the descending orders implements the following  computer 

schedule 

SR+1 (APRM2)=( (A10, p0), (A11, p1 ,p2), (A13, p0), (A14, p1, …,  pR  ),(A15, p1, …,  pR  ),  

(A16, p0) ),where a record (Aj,pi)  indicates that the processor pi   implements the 

algorithm Aj. 

 

7  Conclusion 

Our studies suggest the following conclusions.  

You can use modern high-performance multiprocessor computer systems (clusters) 

to solve the important problem of finding of the rank of a rectangular matrix. 

With this purpose we propose two parallel algorithm for finding the rank of an m×n 

matrix. One of them allows you to find the rank by paralleling process of generation 

of fringing minors. Another algorithm allows you to parallelize calculations in the 

process of finding the rank by research minors with descending orders. For the study 

of  minors  also proposed two parallel algorithms for generation of combinations 

without repetitions. 

The use of multiprocessor computing systems and the proposed parallel algorithms 

will allow to increase considerably the speed of solving the task of finding the rank 

of a rectangular matrix, which needs to be addressed when checking of the compati-

bility  of a system of linear algebraic equations. 
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