
STUDIA INFORMATICA

Nr 1-2(17) Systems and information technology 2013

Solving the abstract planning problem using genetic

algorithms

Jarosław Skaruz
1
, Artur Niewiadomski

1
, Wojciech Penczek

1,2

1
 Institute of Computer Science, University of Natural Sciences and Humanities,

3 Maja 54, 08-110 Siedlce, Poland,

 jaroslaw.skaruz@uph.edu.pl, artur.niewiadomski@uph.edu.pl
2
 Institute of Computer Science, Polish Academy of Sciences,

Jana Kazimierza 5, 01-248, Warsaw, Poland,

penczek@ipipan.waw.pl

Abstract: The paper presents a new approach based on genetic algorithms to the ab-

stract planning problem, which is the first stage of the web service composition prob-

lem. An abstract plan is defined as an equivalence class of sequences of service types

that satisfy a user query. Intuitively, two sequences are equivalent if they are com-

posed of the same service types, but not necessarily occurring in the same order. The

objective of our genetic algorithm (GA) is to return representatives of abstract plans

without generating all the equivalent sequences. The paper presents experimental re-

sults compared with the results obtained from SMT-solver, which show that GA finds

solutions for very large sets of service types in a reasonable time.

Keywords: abstract planning, genetic algorithms, web service composition

1 Introduction

The number of web services available in the Internet has recently increased

tremendously [29]. The users may want to achieve some goals taking advantage of

these services, but they also demand more sophisticated functionality from computer

systems. Frequently, a simple web service does not realize the user objective, so

a composition of them need to be executed to this aim. The problem of finding such

a composition is hard and well known as the Web Service Composition Problem

(WSCP) [3,1,25]. There is a number of various approaches to solve WSCP [5,4,7,8],

some of them we discuss in the next section. In this paper, we follow the approach

of our system PlanICS [12,13,14], which has been inspired by [1,2]. The main

assumption is that all the web services in the domain of interest as well as the

mailto:jaroslaw.skaruz@uph.edu.pl

30 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

objects which are processed by the services, can be strictly classified in a hierarchy

of classes, organised in an ontology. Another key idea is to divide planning into

several stages. The first phase of the planning process works with types (classes),

while the second one - in the space of concrete services (instances of classes). The

first stage produces an abstract plan, which becomes a concrete plan in the second

phase. Such an approach enables to reduce dramatically the number of concrete

services which are taken into account. This paper focuses on the abstract planning

problem only.

The current approaches to the abstract planning (see Section 2) behave nicely for

small and medium size ontologies. However, for ontologies containing a large

number of service types, the computational time could be very long or even

prohibitive. In this paper we propose a new approach based on an application of GA.

Despite of the fact that GA have been widely used to solving the concrete planning

problem its application to the abstract planning is much more sophisticated. The

main challenge in this work is related to the fact that the search space could contain

only a few or just one feasible solution, which need to be found by the algorithm. On

the other hand, in the concrete planning problem, initial population of individuals in

GA represent only feasible potential solutions, which is not the case here. The

abstract planning approach based on GA is much more involved and this is our first

contribution. Our second contribution consists in the new representation of the

abstract plans (by multisets of service types), which allows for pruning the state

space from all the sequences that correspond to the generated abstract plans so far.

An individual of GA represents a multiset of service types and all the operators

of GA are performed on this multiset. This feature of GA constitutes a great

improvement in comparison to the linear form of service types. The main advantage

of this approach is that the algorithm does not need to bother about the correct order

of the service types represented. It means that in comparison to a linear

representation of the individual, the offspring created through genetic operators do

not have to contain service types in the correct order. Next, a linear form of an

abstract plan is created using the heuristic procedure before the fitness function

evaluation has been done. An abstract plan is defined by a multiset of service types

such that its linear form satisfies a user query. If GA finds a new abstract plan, then

it is stored. All the individuals in the subsequent iterations are then ’punished’ by

decreasing their fitness value if they are similar to the abstract plan found. The

individual fitness value is lowered proportionally to the similarity to the abstract

plans stored. To the best of our knowledge, the above approach is novel, and as our

experiments show is also very promising.

The rest of the paper is organized as follows. Related work is discussed in the

next section. Section 3 discusses the abstract planning problem. In Section 4 we

present how GA is applied to obtain abstract plans. Section 5 presents the ontology

generator we use to generate the service types for GA and discusses the

experimental results of our algorithm. The last section summarizes the results and

shows some possible future work.

 Solving the abstract planning problem using genetic algorithms 31

Studia Informatica 1-2(17)2013

2 Related Work

Some approaches to the abstract planning are shortly discussed below. However, to

the best of our knowledge neither of the existing algorithms uses GA. Peer [24]

illustrates a plan-space based algorithm which improves the plan search with

a feedback gained from a plan execution for the automatic Web Service

Composition. A new framework for incorporating QoS in a dynamic workflow

system is presented in [9]. This algorithm is actually a depth-first traversal of all

service types with an intermediate pruning. The selection of the best workflow is

done by evaluating the QoS constraints of each candidate. In [17] a dynamic service

composition framework with two layers is presented. The semantics of the

components and the user query is modeled and then in the second layer an execution

path is discovered based on the query and the semantics of the components. In [27],

the authors present a logic based planner for DAML-S services, which is the

predecessor of OWL-S. The authors of [15,16] define a framework, called Dynamic

Composition of Service (DynamiCoS) that aims at supporting the service

composition on demand at a runtime.

The problem of the concrete planning has been recently also extensively studied

in the literature. Besides various metaheuristics [10], there are many papers dealing

with an application of non-deterministic algorithms, namely evolutionary

algorithms. In [26] a simple GA was used to obtain a good quality concrete plan.

The problem is also tackled with a multiobjective optimization genetic algorithm to

find a set of optimal Pareto solutions from which the user can choose the most

interesting tradeoff [11]. In [6] the authors applied GA to the concrete planning

problem based on a delivered abstract plan. The number of genes is the same as the

number of the abstract services in the abstract plan and each gene corresponds to an

offer of a given abstract service from the abstract plan. In the experimental study the

authors used 25 abstract services and up to 25 offers for each service. Their

approach allows to find the optimum in 500 iterations of GA.

In [21] the authors used a genetic algorithm to one phase planning, which

combines an abstract and a concrete planning. They studied a QoS-aware semantic

web service composition and showed how to effectively compute optimal

compositions of QoS-aware web services by considering their semantic links. In the

fitness function they maximize semantic quality attributes, while minimizing the

QoS attributes. The experiments were conducted using 500 offers for each of 500

abstract services.

The paper [23] presents an application of a combination of two algorithms,

namely Tabu Search (TS) and GA. In this approach the idea consists in

incorporating TS as a local procedure of GA in order to escape from a local

minimum of GA. Their experimental results were compared to the results obtained

from a standalone TS and GA. They show that a hybrid algorithm outperforms the

two other approaches.

A combination of two different algorithms was also defined in [19]. The authors

transformed the problem of a concrete planning into a selection of the optimal path

in the weighted directed acyclic graph. Unfortunately, they used only 10 abstract

services and 35 offers belonging to each of them. The proposed algorithm works

better than a simple GA.

32 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

The idea of a multiset representation of an individual is not entirely new as it was

presented in [18]. The authors have shown a new Proportional GA with

a representation based on protein concetrations rather than on their ordering. As

a result there was no fitness preasure for any special order of genes. Moreover, such

an individual representation allows for an evolution until genes are distributed

evenly in individuals. In [28] the authors model a problem of non-coding DNA in

biological systems as a new floating representation in which built blocks of

a problem are not fixed at a position within an individual. The experimental studies

have shown that this representation allows to find better results than using standard

representation with genes at fixed positions. Constrained optimization problems

were also studied in the literature [20]. In many classical optimization problems

a penalty function approach is used. However, the most difficult aspect of this

approach is to find appropriate penalty parameters needed to guide the search

towards the constrained optimum. The authors proposed a special form of a penalty

function rather than a standard one. In their approach a penalty function is penalty

parameter free.

3 Abstract Planning Problem

This section introduces the Abstract Planning Phase (APP) as the first stage of

WSCP in the PlanICS framework. APP makes intensive use of the service types and

the object types defined in the ontology. A service type represents a set of web

services with similar capabilities, while the object types are used to represent data

processed by the service types. The set of all object types is denoted by T. The

attributes are components of the object types, while a single attribute consists of

a name and a type. The ontology defines the inheritance relation, such that a subtype

of some base object type retains all the attributes of a base type, and optionally

introduces some new attributes. The objects are instances of the object types and are

distinguishable by unique identifiers. The set of all the objects is denoted by O. The

values of the attributes of an object determine its state. A set of the objects in

a certain state is called a world. One of the crucial concepts of PlanICS is a world

transformation, described in details in the next subsection.

The abstract values are another important idea in APP. Since for APP there is no

need to know the exact states of the objects, it is sufficient to know only whether an

attribute does have some value or it does not. Thus, we introduce the special

functions isSet and isNull defining abstract values of the attributes of the objects, to

be used in the specifications of the user queries and the service types.

3.1 User queries and service types

The main aim of PlanICS is to find a composition of web services, which allows to

achieve a user goal. The user requirements are specified in a form of a user query.

A user query specification as well as a service type specification, consists of three

sets of objects: in, inout, and out, and two Boolean formulas over the attributes of

the objects from these sets, namely preCondition and postCondition (pre and post,

for short). More precisely, pre is defined over the attributes of the objects from in

and inout, while post can involve also the objects from out. Before APP the pre and

 Solving the abstract planning problem using genetic algorithms 33

Studia Informatica 1-2(17)2013

post formulas are reduced to their DNF forms, and the values of the attributes are

mapped to the abstract values only. That is, in the general case, a reduced formula is

a disjunction of conjunctions of literals without negations, where each literal is of

the form isSet(o.a) or isNull(o.a) with o denoting an object and a its attribute. Thus,

during APP we deal with sets of objects and such reduced formulas only. The

interpretation of a single disjunct of a reduced formula and of the respective set of

objects leads to obtaining an abstract world, i.e., a set of objects which attributes

have abstract values: set or null. We simply say that an attribute is set or is null.

Thus, an interpretation of a whole reduced formula constitutes a set of abstract

worlds. As this paper deals with APP only, in what follows we use the notions of

worlds and values instead of abstract worlds and abstract values, resp., when it is

clear from the context.

Now, we are in a position to define the service types and the user queries.

A service type s is a pair of world sets (W
s
pre, W

s
post), called the input and the output

worlds, respectively. That is, a service type is an interpretation of the respective

service type specification, such that the input worlds are defined by in, inout, and

pre, while the output worlds are determined by in, inout, out, and post. Moreover, let

S denote a set of all the service types defined in the ontology. The definition of

a user query is similar: a user query q is a pair of world sets (W
q

init, W
q

exp), called the

initial and the expected worlds, respectively. That is, a user query is an interpretation

of the respective user query specification, such that the initial worlds are defined by

in, inout, and pre, while the expected worlds are determined by in, inout, out, and

post. Fig. 1 presents an example of a service type specification. BookSelling is

a simple service type, which does not take any “read-only” object as an input (its in

set is empty), modifies an object of type Book, and produces an object of type

Invoice with all the attributes set. Note that in the absence of alternatives in the pre

and post formulas, BookSeling defines exactly one input and one output world.

Figure 1: A simple service type specification and its interpretation as a pair of worlds

34 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

3.2 World transformations

A fundamental concept of PlanICS is a world transformation by a service of a given

type. However, before we get to the details, we need to introduce a notion of the

object states and the worlds compatibility. Assume we are given two objects o
1
 and

o
2
 of some worlds, thus we know the (abstract) valuation of their attributes. We say

that the state of the object o
1
 is compatible with the state of the object o

2
, if o

1

contains all the attributes of o
2
 (thus both objects are of the same type, or o

1
 is

a subtype of o
2
 type), and their valuations are not contradictory. This means that if

o
1
 is compatible to o

2
, then every attribute of o

2
 with the set (null) value,

corresponds the same attribute of o
1
, which is also set (null, resp.). Moreover, we

say that a world w
1
 is compatible to a world w

2
, if both of them contain the same

number of objects, and there exists a one-to-one mapping of the objects from w
1
 to

w
2
, such that every object from w

2
 corresponds to a compatible object from w

1
.

Finally, by a sub-world of a world w we mean a restriction of w to some subset of

objects from w, and by the size of w we mean the number of the objects in w,

denoted by |w|. Thus, a service of type s transforms a world w into w', denoted by

'ww s , if all of the following conditions hold:

• w contains a sub-world IN compatible with a sub-world of the input world of

s, restricted to the objects from in,

• none of the objects of IN does change its state during the transformation,

• w contains a sub-world IO compatible with a sub-world of some input world

of s, restricted to the objects from inout,

• w' contains a sub-world IO compatible with a sub-world of some output

world of s, restricted to the objects from inout,

• w' contains a sub-world OU compatible with a sub-world of some output

world of s, restricted to the objects from out,

• the sets of objects from IN, IO, OU are mutually disjoint, and w does not

contain any of the objects from OU,

• |w'|=|w|+|OU|.

Intuitively, a service type s transforms w into w' by matching some sub-worlds of

w (denoted by IN and IO) to its input world, “copying” all the objects from w to w',

changing the states of the objects from IO according to the post formula, and

creating new objects according to the set out and setting their states to be consistent

with post (i.e., the sub-world OU). We refer to a world transformation by a service

type s also as an execution of a service type s and by transform(w,s) denote the

world w' if w s
w'.

 Solving the abstract planning problem using genetic algorithms 35

Studia Informatica 1-2(17)2013

Transformation sequences

Let seq = (s1, ..., sk) be a sequence of service types of length k, and let w
0
 and w

k
 be

worlds, for some k ∈ N. We say that the sequence seq transforms the world w
0
 into

w
k
, denoted by kww seq0 , if there exist worlds w1, ..., wk-1, such that

i

s

i ww i1 , for every i=1,…,k.

A sequence seq of service types is called a transformation sequence, if there are

worlds w,w', such that 'ww
seq
 . The world w', i.e., the world obtained after the

transformation of w by the transformation sequence seq, is called a final world of

seq. The set of all the transformation sequences is denoted by S
⋆
 while by M

seq
 we

denote the multiset of the service types [s1, ..., sk] of the transformation sequence

seq. A transformation sequence seq that transforms a given world w is called

a transformation sequence for w, and the process of transformation of w by seq is

called the execution of seq in w.

Quasi-transformation sequences

Let seq = (s1, ..., sk) be a sequence of service types of length k, and w be a world. We

say that seq is a quasi-transformation sequence for w, if there exists 1≤ j <k and (s1,

..., sj) is a transformation sequence for w. Such a maximal j is called the q-length of

the quasi-transformation sequence for w, and the prefix of seq of length j is called

the executable prefix of seq. The final world of the quasi-transformation sequence

for w of q-length is the world obtained by transformation of w by the executable

prefix of seq. Intuitively, if seq is not a transformation sequence for w, but some

non-empty prefix of seq is so, then seq is a quasi-transformation sequence for w.

Equivalent transformation sequences

Let seq = (s1, ..., sk) and seq
'
 = (s

'
1, ..., s

'
k) be two transformation sequences of length

k. Let us define a reflexive, transitive, and symmetric relation ≡ ⊆S
⋆
×S

⋆
 such that

(seq,seq')∈ ≡, denoted by seq≡seq', if M
seq

=M
seq'

.

User query solutions

Let seq = (s1, ..., sk) be a transformation sequence of length k, and q = (W
q
init, W

q
exp)

be a user query. We say that the transformation sequence seq is a solution of a user

query q, if there are worlds w,w', such that 'ww
seq
 , w∈W

q
init, and w'∈W

q
exp.

The set of all solutions of the user query q is denoted by QS
q
.

Intuitively, a solution of the user query q is every transformation sequence

that transforms some initial world into some expected world, defined by the user

query q.

36 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

Abstract plans

Let seq∈QS
q
 be a solution of some user query q. An abstract plan is a set of all

solutions being equivalent to seq, i.e., it is the equivalence class [seq]
≡
. An abstract

plan [seq]
≡
 is represented by the multiset of the service types M

seq
 for q.

Example 1 Assume that Selling (S), Transport (T), Assembly (A) are service types,

while Boards, Nails, and Doghouse are object types extending the object type Ware.

The service type Selling is able to provide any Ware, Transport can deliver any

Ware to the requested destination, and Assembly builds a doghouse using nails and

boards. If the user wants to obtain a doghouse, there are several ways to reach this

goal.

The shortest solution is the sequence (S,T). This is the only solution of the

abstract plan represented by the multiset [S,T]. Another possibility is (S,T,S,T,A),

where the first pair (S,T) provides and transports boards while the second pair

provides and delivers nails, which are finally assembled by A providing a doghouse.

This solution constitutes another abstract plan represented by [A,S,S,T,T]. Note that

there exists another equivalent solution, namely the sequence (S,S,T,T,A).

The next possible plan is represented by [A,S,S,T,T,T], when the requested doghouse

is assembled elsewhere than at the client, and it has to be finally transported.

4 Application of GA to the abstract planning

The objective of GA is to find abstract plans for a user query q While GA maintains

a population of individuals representing a multiset M of service types, it is essential

to check whether M represents an abstract plan. To this aim, for M a sequence of

service types seq
M

 is constructed according to the procedure seqGen (see Sec. 4.2).

If seq
M

 is a solution to the user query q, then M represents a new abstract plan. In

the next four subsections we describe in detail how GA works.

4.1 An abstract plan coding scheme

An individual is used for modelling an abstract plan we would like to find. A gene

of an individual models a service type. So, the number of the genes of an individual

is equal to the number of service types in an abstract plan. Let n denote the number

of service types defined in the ontology, i.e., n=|S|, and let Num={0,1,…,n−1}. We

define a one-to-one function stype: S⟼Num, which to every service type assigns

a natural number between 0 and n−1. Finally, in our implementation an individual is

a multiset over Num.

All the individuals in the initial population of GA are generated randomly. This

means that at the beginning of the algorithm the whole population contains multisets

of service types, which do not necessarily represent abstract plans. One of the

advantages of our approach is that while an individual is a multiset of service types,

we do not need to care about the order of the service types within the individual.

This non-standard form of a GA individual allows for performing genetic operations

 Solving the abstract planning problem using genetic algorithms 37

Studia Informatica 1-2(17)2013

in such a way that we do not have to receive offspring containing service types in

the correct order. However, before the fitness function evaluation, a sequence of

service types should be generated from an actual multiset. Since we do not generate

all the sequences, the state space searched is dramatically reduced. This feature of

GA allows us to obtain user query solutions in search spaces of sizes exceeding even

2
100

 (see Sec. 5).

4.2 Generating a sequence from a multiset

Although, an individual is a multiset of service types, at some points of our

algorithm (like, for example, computation of a fitness value) we need to consider

a transformation sequence built over the elements of the multiset. Obviously, we

search for user query solutions, and therefore the sequences able to transform an

initial world are of our particular interest.

Algorithm 1. Proc. seqGen generating a sequence from multiset

The procedure seqGen allowing to obtain such sequences from a multiset is

given in Alg. 1. In the successive iterations we build a resulting sequence by

removing from the multiset a service type s, which is able to transform
1
 a current

world w, starting from some initial world w
0
, randomly selected at the start of GA

from W
q

init, of the user query q. Then, the current world becomes the one obtained

from the transformation of w by s, and s is appended to the resulting sequence. If

none of the service types remaining in the multiset can be executed in the current

world, then they are copied in a random order at the end of the sequence. Besides the

sequence seq, the procedure returns also a natural number l, and a world w, which

1 If there are more than one such a service type, then one of them is chosen randomly.

38 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

are used later to compute the fitness value of the individual. The world w is the final

world of the sequence seq, while l is the (q-)length of seq if seq is a (quasi-)

transformation sequence.

There are several reasons for the procedure not to consider all possible sequences

that could be constructed from a given multiset. Firstly, for a given multiset of

cardinality k the number of all possible sequences is equal to k!. Secondly, we prefer

the sequences transforming an initial world of the user query. And finally, if the

individual passes to the next generation, still it will be possible to construct another

sequence from the same multiset.

4.3 Fitness function

To evaluate an individual, its fitness value should be calculated. The fitness function

is defined in such a way that it leads to significant improvements of the initially

randomly selected individuals, aiming at obtaining user query solutions.

Before we get to the details of the fitness function, we first need to define the

notion of a good service type. Assume, we are given a sequence of service types of

length k seq = (s1, ..., sk), and a user query q. Let us consider service types s
i
 and s

j
,

where i,j∈{1,…,k}, i≠j, and s
i
≠s

j
. By in

si
, inout

si
, out

si
, inout

q
, and out

q
 we denote

the sets of objects used, modified, and produced by the services type s
i
, and

requested to be modified, and produced by the user query q, respectively. Moreover,

let us define the function T:2
O

⟼2
T

, which with a set of objects assigns the set of

the types of these objects. We say that s
i
 is a good service type for the sequence seq

and the user query q, if T(inout
si
∪out

si
)∩T(inout

q
∪out

q
)≠∅, or there exists s

j
 in

seq, such that s
j
 is a good service type and T(inout

si
∪out

si
)∩T(in

sj
∪inout

sj
)≠∅.

Intuitively, a service type s
i
 is good, if it produces the objects that can be a part

of the expected world, or they can be an input for other good service types. The

procedure GST computing a set of the good service types for a transformation

sequence and a user query is given in Alg. 2.

Thus, an individual M is transformed to a sequence of service types seq
M

, using

the procedure seqGen, described in the previous subsection. Next, the fitness

function, taking a triple (seqM, lM, wM) returned by sepGen and an expected world
2

w
q
 as arguments, is calculated according to Eq. 1:

where:

2 Selected randomly from Wq,exp at the start of GA

 Solving the abstract planning problem using genetic algorithms 39

Studia Informatica 1-2(17)2013

f
w

M

=|w
sub

|, where w
sub

 is a maximal sub-world of w
M

 compatible with a

subworld of w
q
,

c
w

M

 is the number of the objects from w
M

, which types are consistent with types

of the objects from w
q
,

g
seq

M

is the number of the good service types occuring in seq
M

,

k is the length of seq
M

, and

α,β,γ are parameters of the fitness function. In all the experiments presented in

Sec. 5 we used the following values: α=0.7, β=0.1, γ=0.2, and δ=0.1.

After a user query solution has been found by GA and stored in the memory, the

requirement for GA is to assure that other solutions remaining in the search space

will be found. On the other hand, each individual that represents a solution

equivalent to one of the already known should be eliminated. The latter is the task of

the measure of similarity between the currently rated individual and the plans found

so far. Obviously, the measure of similarity grows with the number of the service

types common for the assessed multiset and one of the plans in the memory.

Let Sol denote a non-empty set of plans (in a form of multisets) found at some

point of GA. Then, the measure of similarity of a multiset M is computed as follows:

Note that the similarity measure of a multiset identical to some plan is equal to 1,

while 0 is the similarity measure of a multiset built over completely different types

than these in the plan.

Finally, when there are solutions found, the fitness value of the individual M is

calculated according to Eq. 3:

The more the individual M is similar to some known plan, the more the value of

sim
Sol

M decreases the fitness value of M.

40 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

Algorithm 2. Proc. GST computing a set of good service types accurring in a sequence

4.4 Mutation operator

One of our contributions in this paper is a new mutation operator specialized to the

problem considered, which takes advantage of the good service type concept.

Therefore, a gene is mutated only if it does not represent a good service type, and if

there exists a good service type for the considered sequence, generated by the

algorithm seqGen. To this aim, one has to compute a set of all good service types for

this sequence (see Alg. 3). If this set is not empty, then a randomly selected element

of the set replaces the mutated gene. Thus, the mutation operator is not deterministic

and it does not work in a greedy way.

 Solving the abstract planning problem using genetic algorithms 41

Studia Informatica 1-2(17)2013

Algorithm 3. Proc. mutGST computes a set of the good service types for a sequence and

a user query to be used by the mutation operator

5 Experimental Results

We have evaluated our algorithm using the ontologies, the user queries, and the

abstract plans generated by our software - Ontology Generator (OG, for short). Each

ontology contains an information about the services and the object types. OG

generates the ontologies in a random manner such that semantic rules are met.

Morever, OG provides us with a user query which corresponds to services and

object types contained in the ontology. Each query is also generated randomly in

such a way that the number of various abstract plans equals to the value of a special

parameter of OG. This guarantees that we know a priori whether GA finds all

solutions. The remaining parameters of the generator are: the number of various

object types, the minimal and maximal number of the object attributes, the number

of service types, the minimal and maximal number of objects in the sets in, inout,

and out of the service types, the number of the objects required by a user, and the

number of the services in an abstract plan. Thanks to many different settings of OG,

one can receive such data, which are helpful for checking how well GA scales for

finding optimal solutions. The scalability can be examined by fixing different sizes

of services in the ontology and the number of services in the abstract plans.

The experimental study was divided into two stages. In the first one, we have

tuned the values of all GA parameters.

The tuning procedure is as follows. We select a parameter, the other parameters

are set to the typical values, and several experiments are conducted in order to find

the best value of the selected parameter, which is then fixed and set to this value.

This procedure is repeated in the same way for all the remaining parameters, where

42 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

the values of the fixed parameters are not changed anymore. The number of the

individuals is equal to 1000, probability of mutation and two-point crossover are 5%

and 95%, respectively. The roulette selection operator was used in all experiments.

Each benchmark has been stopped after 50 iterations. The experiments were run on

a standard PC computer with two cores 2.8GHz CPU and 8GB RAM. The table 1.

presents experimental setup.

Table 1: Experimental setup

Exp. No. Plan length
Number of

solutions

Number of

 service types

Search space

size

1

64 2
36

2

1 128 2
42

3

256 2
48

4 6

64 2
36

5

10 128 2
42

6

256 2
48

7

64 2
54

8

1 128 2
63

9

256 2
72

10 9

64 2
54

11

10 128 2
63

12

256 2
72

13

64 2
72

14 12 1 128 2
84

15

256 2
96

16

64 2
90

17 15 1 128 2
105

18

256 2
120

 Solving the abstract planning problem using genetic algorithms 43

Studia Informatica 1-2(17)2013

Table 2: Experimental results

Exp. No. Prob Max Avg GA GA GA SMT SMT SMT SMT

 [%] sol. sol. first next [s] first[s] next

[s]

unsat

[s]

total[s]

 1 100 1 1 6 — 6 4.28 — 2.9 8.09

 2 100 1 1 6 — 7.5 7.76 — 5.87 14.83

 3 100 1 1 8 — 10 11.19 — 7.57 20.57

 4 100 6 4.1 9 11 6 4.89 4.99 4.95 12.86

 5 100 6 3.7 7 8 7.5 5.95 6.0 9.63 20.5

 6 100 4 2.6 11 13 11 13.85 14.68 17.56 38.47

 7 100 1 1 10 — 11 21.05 — 25.57 47.63

 8 100 1 1 10 — 15 39.48 — 41.75 83.04

 9 100 1 1 12 — 22 94.55 — 77.65 174.5

 10 80 2 1 15 17 12 17.84 19.44 161.1 239.2

 11 60 2 0.8 18 23 15 34.19 44.76 276.1 341.8

 12 50 1 0.5 26 — 22 65.85 67.87 542.5 669.7

 13 100 1 1 15 — 16 91.9 — 429.8 523.2

 14 100 1 1 21 — 22 126.4 — 1141 1270

 15 90 1 0.9 29 — 34 213.1 — 4*>1800

 16 80 1 0.8 21 — 28 191.7 —

 17 20 1 0.2 22 — 35 425.7 —

 18 20 1 0.2 21 — 49 552.2 —

Table 2 presents the summary of all the 18 experiments comparing the efficiency

of our GA with an SMT-based planner [22]. The columns from left to right display:

the experiment labels, the number of service types in the plans, the number of the

existing plans, the total number of the service types, and the search space size. The

next six columns contain the following GA results: the probability of finding

a solution, the maximum and average number of the solutions found, the number of

iterations needed to find the first and the second abstract plan, and the total GA

runtime. The last four columns contain the times consumed by the SMT-based

planner, in order to: find the first and the second solution, search the whole state

space to ensure that there is no more plans, and the total SMT-planner runtime.

The experimental results can be summarized in the following way. As far as the

time needed to find the first plan is concerned, the approach based on GA

outperforms that based on SMT, because GA finds it dozen of times faster.

However, the probability of finding a solution by GA decreases along with the

increase of the length of abstract plans, similarly as for the average and the

maximum number of the solutions found. Obviously, the more service types in an

abstract plan the longer runtime of both the planners. In all the experiments the time

required to find a solution by GA is below 21 seconds, while SMT needs even over

500 seconds. On the other hand, the SMT-based planner finds all the solutions in

each run. Moreover, it is able to check that all possible abstract plans have been

found.

44 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

(a)

(b)

 Solving the abstract planning problem using genetic algorithms 45

Studia Informatica 1-2(17)2013

(c)

(d)

Figure 2: GA performance for 64, 128, and 256 service types. exp1−exp3 (a), exp4−exp6 (b),

exp7−exp9 (c), exp10−exp12 (d)

Figure 2 presents the fitness value of the best individuals obtained in the

experiments exp1-exp12. The most important observation resulting from the

interpretation of the charts is a significant reduction of the best individual fitness

value just after finding the solution, by the similarity measure. The fitness of the best

46 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

individual chart shape can be viewed as a proof that our algorithm works as we have

expected.

In the case of the first three experiments (Fig. 2a) the plans were found quite

quickly and in all the runs of GA we have obtained solutions. Since the similarity

measure works nicely, in the experiments exp4−exp6 (Fig. 2b) we obtained

a number of solutions within the first 20 iterations. In the experiments exp7−exp9

(Fig. 2c) the fitness values of the initially generated individuals are in the range

between 0.5 and 0.62. In the subsequent iterations GA finds better potential

solutions. Finally, optimum is found in the 10th and the 12th iteration. In the

experiments exp10−exp12 (Fig. 2d) GA obtains solutions before the 26th iteration.

After one solution has been found the algorithm tries to find the next one, as the

fitness value of the best individual increases in subsequent iterations. However, due

to a much larger search space than in the experiments exp4−exp6, only in the

experiment exp10 the next solution has been found.

6 Conclusions

In the paper we presented a novel approach to the abstract planning problem with

use of a genetic algorithm. Optimal solutions representing abstract plans have been

found in each instance of the problem. This was achieved thanks to the special forms

of the fitness function and the mutation operator. To overcome the problem of

generating similar abstract plans, we have used multisets of service types for

representing abstract plans as well as individuals of GA. Such a representation

allows to generate only one solution from the set of all the equivalent ones. The

experimental results give a clear evidence that our approach is quite efficient and

allows to find abstract plans containing as many as 15 service types. In comparison

to the results obtained using an SMT-solver, GA finds solutions in a much shorter

time, which makes it a suitable tool for deployment in information systems.

Acknowledgments

The research described in this paper has been supported by the National Science

Centre under the grant No. 2011/01/B/ST6/01477.

References

1. S. Ambroszkiewicz. Entish: An approach to service description and composition.

ISBN 83-910948-7-1, ICS PAS, 2003.

2. S. Ambroszkiewicz. Entish: A language for describing data processing in open

distributed systems. Fundam. Inform., 60(1-4):41–66, 2004.

3. M. Bell. Introduction to Service-Oriented Modeling. John Wiley & Sons, 2008.

4. M. Blake, T. Weise, and S. Bleul. A graph-based approach to web services

composition. In Proceedings of the Applications and the Internet Symposium,

pages 183–189, 2005.

 Solving the abstract planning problem using genetic algorithms 47

Studia Informatica 1-2(17)2013

5. M. Blake, T. Weise, and S. Bleul. Wsc-2010: Web services composition and

evaluation. In Proceedings of the Service-Oriented Computing and Applications

(SOCA), 2010 IEEE International Conference, pages 1–4, 2010.

6. G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for qos-

aware service composition based on genetic algorithms. In Proceedings of the

2005 conference on Genetic and evolutionary computation, pages 1069–1075,

2005.

7. P. Chan and M. Luy. Dynamic web service composition: A new approach in

building reliable web service. In Proceedings of the Advanced Information

Networking and Applications Conference, pages 20–25, 2008.

8. W. Ching-Seh and I. Khoury. Tree-based search algorithm for web service

composition in SaaS. In Proc. of the International Conference, Information

Technology: New Generations (ITNG), pages 132–138, 2012.

9. D. Chiu, S. Deshpande, G. Agrawal, and R. Li. Cost and accuracy sensitive

dynamic workflow composition over grid. In Proceedings of the 9th IEEE/ACM

Int. Conf. on Grid Computing (GRID’08), pages 9–16, 2008.

10. H. Chun-hua, C. Xiao-hong, and L. Xi-ming. Dynamic services selection

algorithm in web services composition supporting cross-enterprises

collaboration. Journal of Central South University of Technology, 16(2):32–45,

2009.

11. D. B. Claro, P. Albers, and J. Hao. Selecting web services optimal composition.

In Proceedings of the 2nd Int. Workshop On Semantic And Dynamic Web

Process, pages 32–45, 2005.

12. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Polrola,

and J. Skaruz. Harmonics - a tool for composing medical services. In Proc. of

ZEUS’12, pages 25–33, 2012.

13. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Polrola,

and M. Szreter. Web services composition - from ontology to plan by query.

Control & Cybernetics, 40(2):315–336, 2011.

14. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Polrola,

M. Szreter, and A. Zbrzezny. Planics - a web service compositon toolset.

Fundamenta Informaticae, 112(1):47–71, 2011.

15. S. Eduardo, F. P. Luis, and S. V. Marten. Supporting dynamic service

composition at runtime based on end-user requirements. In Proceedings of the

1st Int. Workshop on User-generated Services (UGS2009), pages 464–471, 2009.

16. S. Eduardo, F. P. Luis, and S. V. Marten. Towards runtime discovery, selection

and composition of semantic services. Computer Communications, 34(2):159–

168, 2011.

17. K. Fujii and T. Suda. Semantics-based context-aware dynamic service

composition. ACM Transactions on Autonomous and Adaptive Systems (TAAS),

4(2):1–31, 2009.

48 Skaruz J., Niewiadomski A., Penczek W.

Systems and information technology

18. I. Garibay, A. S. Wu, and O. Garibay. Emergence of genomic self-similarity in

location independent representations. Genetic Programming and Evolvable

Machines, 7(1):55–80, 2006.

19. Z. Jang, C. Shang, Q. Liu, and C. Zhao. A dynamic web services composition

algorithm based on the combination of ant colony algorithm and genetic

algorithm. Journal of Computational Information Systems, 6(8):2617–2622,

2010.

20. D. Kalyanmoy. An efficient constraint handling method for genetic algorithms.

Computer Methods in Applied Mechanics and Engineering, 186:311–338, 2000.

21. F. Lecue, M. D. Penta, R. Esposito, and M. Villani. Optimizing qos-aware

semantic web service composition. In Proceedings of the 8th International

Semantic Web Conference, pages 375–391, 2009.

22. A. Niewiadomski, W. Penczek, and A. Polrola. SMT-based abstract planning in

PlanICS ontology. ICS PAS Reports, 127:1–62, 2012.

23. J. A. Parejo, P. Fernandez, and A. R. Cortes. Qos-aware services composition

using tabu search and hybrid genetic algorithms. Actas de los Talleres de las

Jornadas de Ingenieria del Software y Bases de Datos, 2(1):55–66, 2008.

24. J. Peer. A pop-based replanning agent for automatic web service composition.

Lecture Notes in Computer Science, 3532:189–198, 2005.

25. J. Rao and X. Su. A survey of automated web service composition methods. In

Proc. of SWSWPC’04, pages 43–54, 2004.

26. T. Senivongse and N. Wongsawangpanich. Composing services of different

granularity and varying QoS using genetic algorithm. In Proceedings of the

World Congress on Engineering and Computer Science, 2011.

27. M. Sheshagiri, M. desJardins, and T. Finin. A planner for composing services

described in daml-s. In Proceedings of the AAMAS Workshop on Web Services

and Agent-based Engineering, pages 45–51, 2003.

28. A. S. Wu and R. Lindsay. A comparison of the fixed and floating building block

representation in the genetic algorithm. Evolutionary Computation, 4(2):169–

193, 1996.

29. Z. Zheng, Y. Zhang, and M. Lyu. Distributed QoS evaluation for real-world web

services. In Proc. of the Web Services (ICWS), 2010 IEEE International

Conference on Web Services, pages 83–90, 2010.

