
STUDIA INFORMATICA

Nr 1-2(17) Systems and information technology 2013

The influence of indexing methods on effective

functioning of the database

Andrzej Barczak

1
, Dariusz Zacharczuk

1
, Anna Korzeniecka

1

1
 Uniwersytet Przyrodniczo-Humanistyczny, Instytut Informatyki

ul. 3 Maja 54, 08-110 Siedlce, Poland

Abstract: The article describes the different types of indexes. Their characteristic de-

termines whether and when they can be used to improve database performance. Then

studies are performed using different indices for different situations. The conclusions

of the study can be serve as a guide to correct use of indexes.

Keywords: database optimization, T-SQL, MS Server, indices

1 Introduction

Regardless of the type of business, well-organized data maintenance is a key

of any project. To do so, indices come here with help. Well used, can significantly

optimize the performance of the database. The index is used primarily to improve

query performance. Database index consists of records with two fields:

 key: includes values of the attributes on which index is established

 pointer: block contains records, that values of attribute are equal

to the index key. Pointer determines the physical location of the row in the

database table. With index, we can effectively retrieve data from a table.

In some way, indices function as a shortcut to the data table. Indices are mostly

used for a SELECT query. The aim is to find relevant information in a database.

The way the indices work is as follows: at the time of execution of query the index

is searched. Then, based on the index, suitable records are found. How exactly

indices affect the performance of the database instance? Let's do example:

CREATE TABLE customers (id_klienta number, name varchar2 (30), name

varchar2 (30));

All "Smith" are show by the following query:

SELECT id_klienta, name, name FROM customers WHERE name = 'Smith';

6 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

When table has a lot of records query takes a long time. Why is this happening?

Query is searching table step by step, line by line. In this case, you can create

an index on the column `name`:

CREATE INDEX ON indeks_klienta customers (name);

When the table has a marginal number of records, with the name of 'Smith',

the index immediately locates the exact position of the block in the table.

In the case where the table has a large number of matching results, omit index and

search each block in the table would by efficiently and immediately.

Above example shows how important it is, that the implementation

of the database indices were carefully thought out.

2 Index characteristics

Creating indices take up disk space. They are not stored together with the tables,

but are defined on a table on one or more columns. Selecting columns, for which the

index is created, is very significant, because the indices in some cases may increase

the time of inserting or modifying data operations. Indices are creating primarily for:

 Columns of the primary key constraints (PRIMARY KEY)

 Column of the foreign key constraints (FOREIGN KEY) and columns used

to join tables

 The columns that contain data used as a search argument,

 Often ordered columns containing data.

Index must be removed when:

 It is no longer needed;

 Has become invalid and need to be re-build by removal;

 There is a need to move the index to another tablespace;

 In an indexed table will be performed large inserts or updates.

After deleting index by DROP instruction, the space occupied by it, will

be returned to the system. However, there are exceptions to this rule. Namely indices

created automatically for columns, while giving them the refinements UNIQUE or

PRIMARY KEY, can not be removed that easily. They can be removed by

following the appropriate ALTER TABLE.

2.1 Type of indices

indices can be divided according to: index attribute characteristics,

the number of levels, the structure, the number of indexed attributes, unique

key value, the number of index indications to the data file, the sequence of key

values, manner of storage and applications. In this article the five bolded above will

be discussed.

 The influence of indexing methods on effective functioning of the database 7

Studia Informatica 1-2(17)2013

Index attributes

Stands out for:

 primary index. For this type of index, records indicate from index leading

directly to the data blocks. Primary index is founded on ordering attribute

of indices file. This attribute specifies the order of the records in the file.

Values of unique attribute are keep in order. Not all records in the data file

in the index have a primary index records. This record contains the values

for a specific data block address, where the data record with index attribute

value equal to that values.

 clustered index. Clustered index is also founded on ordering attribute, but

the values are not unique. Indexed record of clustered index for a particular

value, contains the address to data block, where the first record of the

attribute value equal to the value of the index. This file organization is

a problem when inserting records, because after the addition of the data,

records order must remain unchanged. The solution to this problem would

be to book the entire block on the records with the same value. Another

solution is the use of redundant units. Added records are stored in the free

space of main block and when it fill-in, pointer from main block indicates

to appropriate excess block.

 Secondary index. Secondary index is founded on index attribute, which is

not an attribute of the file ordering. This index is also structured. Each

record has its counterpart in the index record. Secondary index record

consists of two fields: an index field value and a pointer to a record or data

block that contains the record.

Number of index level

 one level indices: one index is created for the data file. Finding data using

this kind of index requires search the index file. Through the use of

founded index records, read of data are made. Index file is searched by

binary algorithm because it is a structured file. This algorithm is not very

efficient. For this reason, a multi-level indices introduced, which are

searched in efficient manner.

 Multilevel indices: there is another index creates for the first one. One of

the main concepts of this type of index is the structure of ISAM (Indexed

Sequential Access Method). Conceptually, this structure consists of two

layers. At the first level cylinder are indexed. At this level the index records

contain pairs of values each key and the address of the tracks index. At the

second level disk paths are indexed. It contain pairs of values: the key and

the search path address. It is strongly connected to the hardware. ISAM is

a static index. This means that they do not have sophisticated mechanisms

for modifying the structure where a change to the contents of the indexed

file is made. Thus, removing record will cause the empty space in the index

block and new records will be added to the overflow blocks. As a result, the

structure of the ISAM index becomes ineffective.

8 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

Structure

 B-tree: usually used in OLTP systems. Is defined for the attributes of high

selectivity. In case of the B-tree with the indexed key a list of addresses of

records, where the attribute values are equal to the index key, maintain. In-

dex of this type offers efficient operations of conjunction, equal worth que-

ries and intervals, testing unique attribute, sorting, grouping, calculating the

minimum and maximum values and the elimination of duplication. B-tree is

a balanced tree structure. This means that the distance from the root to any

leaf is the same. The inside tops of trees are used to support the search for

records, and leaf nodes contain records with pointers to records in the data

files. In order to ensure effective implementation of appropriate queries leaf

nodes are bidirectional list. Search the record requires the transition away

from the root to leaf. Internal node B-tree is: a pointer to the node, the value

of the index key, the next indicator, the next value, etc. The number of indi-

cators is always one more than the number of key values. Leaf is: the value

of the index key, a pointer to the record (block) with the key value.

Finding the right leaf requires reading 3 blocks of index: root, inner, and leaf node.

Using the pointer of leaf we need to read one block of data that contains the search

record. In order to go through the tree and reach a specific record, required a few

pages accesses. The state of the tree must be continuously monitored and the

branches transformed as needed. Balance the tree is very important its property. If

you modify a single record it generated low cost of this modification. The high cost

is obtained when modifying a group of records.

Indices whether they are grouped or single are created mostly in the form

of a balanced tree. This ensures logarithmic time operations such as insert, search, or

delete items.

 bitmap index: it is the most widely used in OLAP systems. Is defined only

for attributes with low selectivity. With the index bitmap key is stored. The

bitmap is a table, where each cell contains a single bit corresponding to one

record in the table. The bit is set to 1 when attribute of record has a specific

value, otherwise is set to 0. Number of bitmap corresponds to the number

of different attribute values for this attribute. Bitmaps records are repre-

sented in the order in which they appear in the table. Bitmap index is used

in queries with the terms with operator "=". It is used quite often in queries

looking for blank values. The size of this index is strongly dependent on the

size of the index attribute fields. When modifying a single record, this type

of index generates a high cost modification. If you modify a group of rec-

ords the cost of modification is lower.

Number of attributes in the key

 simple indices is characterized by the fact, that the index key contains only

one attribute indexed.

 complex index: the index key contains not one but more attributes

of the relationship. Combinations of attributes: X, XY and XYZ of the in-

dex founded on attributes XYZ, is a leading part of the key, as opposed to

 The influence of indexing methods on effective functioning of the database 9

Studia Informatica 1-2(17)2013

a combination of Y, YZ and Z. Complex index is submitted on the attri-

butes that occur frequently together in a WHERE clause and attributes of-

ten read together by multiple queries. Attributes used quite frequently in the

WHERE clause should be part of the leadership key. In the case where the

frequency is the same, the first attribute should be the one, by which the da-

ta values are sorted.

Use

 functional indices: established on attributes which are often used in queries

as a parameter of functions eg. UPPER(name) or are part of expressions eg.

base_price*1.23. Index of this type can be implemented either as an index

B-tree index type as well as a bitmap.

 Connected bitmap indices: are defined for operations combine two or more

relationships. For each values of indexed attribute for one relationship,

another relationship addresses are stored, which have the same value of

linking attribute.

Number of indications to data file

 dense indices: contains records for each value indexed data file.

 sparse indices: has records only for selected values of an indexed data file.

3 The concept of a database

The database does not need to be very complicated but it should contain

thousands or even millions of records. ERD diagram is shown below.

The customer should be able to freely browse, edit and find information quickly.

Indices, in certain situations, can make adding difficult. The same applies to the

updating of data already stored in the database. System, that meets the above

requirements, should allow users to work comfortably.

Figure 3.1 Database logical model

10 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

3.1 Queries structure

In the created database, queries will have to display user-selected information,

add new and update existing data. Designed queries will be used to verify the impact

of indexing on effectiveness of the database. There will be 8 and they will vary in

terms of the obtained results and the complexity:

 Searching for materials that contain the name of a specific sequence

of letters.

 Search for materials by ID that contain the name of a string of letters.

 Searching for materials that match the pattern.

 Searching for materials for which the ID within the specified range and the

contractor city is e.g. Warsaw.

 Searching for materials for which the ID units within the specified range

and the name fits the pattern

 Find the number of materials for each unit of measure, which units ID

within the specified range.

 Search materials, whose name contains the string of letters and the name of

the package contains "szt".

 Search materials, whose name matches a certain pattern and dose contains

the name of the string.

Besides SELECT, to test a database will be used INSERT and UPDATE. They

will be used to check the database behaves when you enter new and update old data

in the absence and together with indices:

 Enter sample data into the table `tow`

 Modification of indexed fields id_jm.

 Modification not indexed fields.

3.2 The implementation of the database

Implementation of the system will be in T-SQL on SQL Server. After creating

a database, tables will be filled with data. Instructions for testing the aforementioned

points are as follows:

 SELECT nazwa_tow FROM materialy.dbo.tow WHERE nazwa_tow like

'%an%' GROUP BY nazwa_tow order by nazwa_tow

 SELECT nazwa_tow, id_jm FROM materialy.dbo.tow WHERE nazwa_tow

like '%an%' AND id_jm = 1 GROUP BY nazwa_tow, id_jm order by

nazwa_tow

 SELECT t.nazwa_tow, tm.jm_nazwa FROM materialy.dbo.tow t,

materialy.dbo.tow_jm tm WHERE nazwa_tow like '%an%' AND t.id_jm

= tm.id_jm GROUP BY nazwa_tow, tm.jm_nazwa order by nazwa_tow

 SELECT count(*), t.nazwa_tow, t.indeks_mat, tjm.jm_nazwa,

tk.nazwa_kontr, tm.bazyl FROM tow t, tow_kontrah tk, tow_jm

tjm, tow_med tm WHERE tm.id_tow=t.id_tow AND t.id_jm=tjm.id_jm

AND t.id_kontr=tk.id_kontr AND tjm.id_jm<20 AND tk.miasto =

 The influence of indexing methods on effective functioning of the database 11

Studia Informatica 1-2(17)2013

'Warszawa' GROUP BY t.nazwa_tow, t.indeks_mat, tjm.jm_nazwa,

tk.nazwa_kontr, tm.bazyl;

 SELECT count(*), t.nazwa_tow, t.indeks_mat, tjm.jm_nazwa,

tm.bazyl FROM tow t, tow_jm tjm, tow_med tm WHERE

tm.id_tow=t.id_tow AND t.id_jm=tjm.id_jm AND tjm.id_jm<20 AND

t.nazwa_tow LIKE '%Cew%' GROUP BY t.nazwa_tow, t.indeks_mat,

tjm.jm_nazwa, tm.bazyl;

 SELECT count(*), tjm.jm_nazwa FROM tow t, tow_jm tjm, tow_med

tm WHERE tm.id_tow=t.id_tow AND t.id_jm=tjm.id_jm AND

tjm.id_jm<20 AND tjm.jm_nazwa=t.jm_rozch_nazwa GROUP BY

tjm.jm_nazwa;

 SELECT tm.* FROM tow_med tm, tow t WHERE t.id_tow=tm.id_tow AND

t.nazwa_tow LIKE '%Złączka%' AND tm.w_opak_przych LIKE '%szt%'

 SELECT tm.* FROM tow_med tm, tow t WHERE t.id_tow=tm.id_tow AND

t.nazwa_tow LIKE '%SODIUM%' AND tm.dawka LIKE '%CM%'

 INSERT INTO tow (ID_KONTR, RODZA_KOD, ID_JM, NAZWA_TOW,VAT,

INDEKS_MAT, MNOZNIK,JM_ROZCH, JM_NAZWA, JM_ROZCH_NAZWA,

NIE_UZYW, OPIS_TOW) VALUES (5, 'SPM', 1, 'FILTR INFUZYJNY

NOWORODKOWY F 62', 8, 'SJ-06-0005', 1, 1, 'opak.', 'opak.', 0,

NULL)

 UPDATE tow SET nazwa_tow='Test mod.', id_jm=10, indeks_mat =

'SJ-01-010101' WHERE id_tow = 6684675

 UPDATE tow SET nazwa_tow = 'Test mod.2', indeks_mat = 'SJ-01-

020101', opis_tow = 'Test opisu' WHERE id_tow = 6684673

3.3 Creating indices

A database is not complicated nor complex. It was created in SQL Server, which

supports two types of indices: grouped and ungrouped. Both types store information

using a standard B-tree. Therefore, to test the effect of indexing methods for the

effective functioning of the database, three types of indices were selected: simple,

complex, clustered.

Most searches results relates to table `tow`, so at the beginning we created sim-

ple index for the table column `nazwa_tow` .

CREATE NONCLUSTERED INDEX ind_1_prosty ON tow(nazwa_tow ASC);

In addition, we created a simple index on a column `jm_nazwa` in the table

`tow_jm `.

CREATE NONCLUSTERED INDEX ind_3_zlozony_prosty

ON tow_jm(jm_nazwa ASC);

Composite index is create on the attributes often occur together in the WHERE

clause queries and attributes often read together by multiple queries. Composite

index created on columns `nazwa_tow` and `id_tow` on table `tow`.

CREATE NONCLUSTERED INDEX ind_1_zlozony

ON tow(id_tow ASC, nazwa_tow ASC);

12 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

For the purpose of search queries using the unit of measure, a composite index

on columns `nazwa_tow` and `id_jm` was created:

CREATE NONCLUSTERED INDEX ind_2_3_zlozony

ON tow(id_jm ASC, nazwa_tow ASC);

A clustered index (grouped) was founded on the columns `nazwa_tow`

and `id_jm`:

CREATE NONCLUSTERED INDEX ind_1_2_3_klastrowany

ON tow(nazwa_tow ASC, id_jm ASC);

Now it's time for gathering results.

4 Research process of impact indexing methods on the efficiency

of the database

Each of the created queries tested several times in four different cases:

1) a database with no indices, 2) with simple, 3) complex 4) and clustered index.

Testing performed on two types of factors, that affect the effectiveness

of the database. Namely, these are the query execution time and the volume

occupied by indices. The study was conducted in MS Windows, which is not real-

time system. Therefore, query execution time on different computers can vary and

be dependent on factors such as CPU utilization, CPU clock speed, amount

of memory, system load, number of processes running on the system, and many

others.

4.1 Query execution time

The tables below summarizes the execution times of individual queries

to the database without and with indices. Queries times for SELECT are given

in seconds, accurate to the thousandth of it.

First query is relatively simple: search for records from one table with only one

column. Therefore, the results are very similar. Although it can be noted,

that the worst results were obtained with a complex index. This is due to the fact,

that the query is based only on one column but this type of index is founded on two,

which slows down the performance of the query.

Table 4.1. Times summary of query No. 1

Query No index Simple index
Complex

index

Clustered

index

#1 23,234 22,371 23,971 21,115

23,561 22,201 24,013 20,945

23,011 22,112 24,71 20,899

Average 23,269 22,228 24,231 20,986

 The influence of indexing methods on effective functioning of the database 13

Studia Informatica 1-2(17)2013

A better result was achieved when the index is not used or the use of a simple in-

dex. The best results were obtained for the clustered index. This is because the index

contains the address of the block in which the first data record with the value of

indexed attribute equal to that value.

Table 4.2. Times summary of query No. 2

Query No index Simple index
Complex

index

Clustered

index

#2 25,69 24,501 22,512 22,311

26,11 24,087 22,411 22,113

25,918 24,211 22,417 22,415

Average 25,906 24,266 22,447 22,28

Query #2 search records from one table with two columns. Despite the fact, that

the results are close, you can see exactly the worst result was obtained without the

use of an index. This is due to the fact that the records are not sorted in any way, and

then the query table must be searched from the beginning to the end. Slightly better

results were obtained using a simple index. Much better results were for the complex

and the clustered index.

Table 4.3. Times summary of query No. 3

Query No index Simple index
Complex

index

Clustered

index

#3 24,612 23,15 22,071 21,912

24,332 23,088 21,819 22,012

24,387 22,978 22,009 22,142

Average 24,444 23,072 21,966 22,022

This query uses two tables. Definitely the worst result was obtained without use

of an index. In this query similar results and also the best, were obtained

for the clustered and complex index. This time, composed index works well, be-

cause it uses two columns used in the WHERE clause.

Table 4.4. Times summary of query No. 4

Query No index Simple index
Complex

index

Clustered

index

#4 65,968 57,543 56,225 51,056

65,745 57,439 55,798 51,211

66,012 56,811 55,922 50,698

Average 65,908 57,264 55,982 50,988

14 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

Request #4 is more complicated. Uses four tables and counting function,

so the execution times are longer and more varied. Once again, the worst results

were obtained for tables without indices, and the best for the clustered one.

Table 4.5. Times summary of query No. 5

Query No index Simple index
Complex

index

Clustered

index

#5 33,945 27,231 24,234 16,645

33,594 26,493 24,087 16,102

33,289 26,748 23,452 16,273

Average 33,609 26,824 23,924 16,340

Request #5 is similar to the previous query. However, in the condition indexed col-

umn has been used, which makes the execution times are shorter than previously and

is clearly different. Again, the worst without indices, and the best for the clustered

index. Note that in this case, execution time for the grouped index is half less, com-

pared to the result obtained without the use of indices.

Table 4.6. Times summary of query No. 6

Query No index Simple index
Complex

index

Clustered

index

#6 50,652 37,411 36,211 21,127

50,321 37,210 35,486 20,723

50,268 37,129 36,045 21,298

Average 50,414 37,250 35,914 21,049

Above query uses three tables and function count(), so the test results are quite var-

ied. The worst were obtained again without the use of indices, and the best for the

clustered index. The difference between the longest and the shortest execution time

request is approximately 30 seconds. Given the low complexity of the database is

a very significant difference.

Table 4.7. Times summary of query No. 7

Query No index Simple index
Complex

index

Clustered

index

#7 36,411 29,468 27,149 22,234

35,697 28,658 26,954 22,128

36,129 28,832 26,734 22,087

Average 36,079 28,986 26,946 22,150

Request #7 finds records containing the names matching the pattern. The results are

quite different, but once again the longest query execution time by far, was achieved

 The influence of indexing methods on effective functioning of the database 15

Studia Informatica 1-2(17)2013

without use of indices. Top times for the simple index and the complex one. The

fastest query is finished for the clustered index.

Table 4.8. Times summary of query No. 8

Query No index Simple index
Complex

index

Clustered

index

#8 30,225 26,896 26,210 20,736

29,798 26,621 25,736 21,163

30,289 26,795 25,938 21,240

Average 30,104 26,771 25,961 21,046

Request #8 is very similar to the previous one. It has only slightly different condi-

tions in the WHERE clause. This similarity has led to results, that do not differ sig-

nificantly from the query #7.

In addition to the index impact on the duration of the SELECT queries, you can also

explore the impact on adding new record (INSERT) and update existing ones (UP-

DATE). The study takes place in the same way as the previous queries. The only

difference is that the results are given in milliseconds. This is due to the fact, that for

the low complexity of the database is easier to see the difference when the measur-

ing unit is more accurate. Table 4.9. presents the time results for INSERT command.

It has been tested only once, because the command is not changing, so repeated

testing would the same results. UPDATE examines in two situations: when the in-

dexed and non indexed fields are modified.

Table 4.9. Times summary of query No. 9

Query No index Simple index
Complex

index

Clustered

index

#9 41 43 45 52

#10 596 663 1176 1305

#11 756 613 590 556

For queries inserting a new record into a indexed table, the worst result was obtained

for clustered indices, the best for a table without indices. This is due to the fact that,

a new record is added to the end of the table, which does not last long.

For the first updating query, the worst result obtained in the case of a clustered in-

dex, the best for a table without any. The query includes modifying the indexed

fields and its increases with the complexity of the indices.

For the second updating data query weakest result was obtained for tables without

and grouped indices, the best for the simple index. This is due to the fact that the

query does not modify the indexed fields.

16 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

4.2 Capacitive factor

Study capacitive factor is nothing but a verification of the assumed size

of the database indices. Indices, in addition to its advantages - speed up work re-

quests, has also disadvantages - very big size of space needed for storage. With

tables with millions of rows indices are beginning to address the mass of disk space.

It is therefore important to analyze this factor, as it often happens that a lot of indi-

ces involved to a small extent help to improve performance. The results appear in

Table 4.10. obtained by checking the properties of the size of the database before

adding the index and after its creation.

Table 4.10. Capacitive factor results

Index Table Capacity before Capacity after

ind_1_2_3_klastrowany tow 1171 MB 1823 MB

ind_1_prosty tow 1171 MB 1418 MB

ind_1_zlozony tow 1171 MB 1443 MB

ind_2_3_prosty tow 1171 MB 1417 MB

ind_2_3_zlozony tow 1171 MB 1443 MB

Database capacity before using indices was 1171 MB. After adding the indices

it increased accordingly. Minimum space is needed by a simple index. A little more

for composite index. By far the largest space for storage needs clustered one.

5 Summary

When examining the impact of indexing methods two factors were considered:

time and capacity. Test results show if and how each method affects the indexing

database. However the differences are not large. Today's systems are able to deal

better and more quickly with the performance of this type of queries. Despite that,

small differences can easily interpret the time results.

By far the worst results were obtained without the use of indices. Slightly better

results have been obtained using a simple index. This is understandable because in

the case of a simple index, records are sorted by a specific column. With sorting at

the start, we reject a large amount of unnecessary records. It is therefore no longer

necessary to view the entire table to find specific data. In the case of the complex

index, query execution times are generally better, than the time obtained using sim-

ple indices. The composite index is characterized in that, the index key has more

than one relationship attribute. Records are sorted by more than one column. There-

fore, in the WHERE clause when we have more conditions relating to the various

columns, composite index makes it easy to search for information. Sometimes, how-

ever, the times are worse. This happens when you create a composite index with

mismatched columns.

 The influence of indexing methods on effective functioning of the database 17

Studia Informatica 1-2(17)2013

By far the best results were achieved for clustered indices (grouped). Indexed

record of grouped index for a particular value, contains the address of data block,

where the first record of the searched value is located. In this way, data mining takes

place much faster than using grouped indices. This shows the positive impact of

indexing on performance of a SELECT command.

For INSERT command results are unlike in the case of a SELECT. This is due to

the complexity of grouped index file organizations. Such an organization may caus-

es problems with inserting records, because the records order modifications must

remain unchanged. The best result is achieved when you insert data in the table on

which any indices was established. This study shows the negative impact indices

have for the duration of commands such as INSERT.

UPDATE commands shows both positive and negative impact

on the performance of indices. The first contains modification of indexed field

`id_jm`, for that the time of its performance increases with the complexity

of the index. The second command does not modify the indexed fields. By contrast,

finds the records by `id_tow` (WHERE clause) thereby making this type would be

more optimal using composite index. The data write command is executed at the

same time for each of the variants, but to search the position of "id_tow", the indices

will operate faster.

The second factor is verification of the assumed size of the database indices. Ta-

ble 4.10. shows the obtained results. The indices need quite a space for storage. With

the rise of rows in a table, increases the amount of space needed to store indices on

disk. Databases containing large amounts of indices therefore require larger drives,

better equipment which of course is associated with additional costs.

Conclude is that, the indices makes a noticeable acceleration of the query execu-

tion for small tables, but it also brings great benefits for complex and large amounts

of data. Therefore, if a table is mainly used to read the data, there a larger number of

indices can support the operation on the database. Unfortunately, in addition to such

important advantages are also significant drawbacks, such as a fairly significant size

space required for their storage and increasing system load. indices also slow down

the operations of data entry and editing. If the table is modified quite often a better

solution is to reduce the number of indices.

At the end – indices are and must be used in databases for performance reasons,

but their use must be well considered.

References

1. Barczak A., Florek J., Sydoruk T.: Bazy danych. Wydawnictwo Akademii

Podlaskiej, Siedlce 2007.

2. Taniar D., Rahayu J. W.: A Taxonomy of Indexing Schemes for Parallel Database

Systems. Distributed and Parallel Databases, Volume 12, Number 1, Kluwer

Academic Publishers, pp. 73-106, 2002

18 Barczak A., Zacharczuk D., Korzeniecka A.

Systems and information technology

3. Liebeherr J., Omiecinski E., Akyildiz I. F.: The Effect of Index Partitioning

Schemes on the Performance of Distributed Query Processing. IEEE

Transactions on Knowledge and Data Engineering archive, Volume 5, Issue 3,

1993, pp. 510-522

4. Helmer S., Moerkotte G.: A performance study of four index structures for set-

valued attributes of low cardinality. VLDB Journal, 12(3): pp. 244-261, October

2003

5. Bertino E. et al.: Indexing Techniques for Advanced Database Systems. Kluwer

Academic Publishers, Boston Dordrecht London,1997

6. Elmasri R., Wprowadzenie do systemów baz danych. Helion, Gliwice 2005.

7. Johnson E., Jones J., tł. Moch W.: Modelowanie danych w SQL Server 2005 I

2008. Przewodnik. Helion, Gliwice 2009.

8. Kuhn D., Alapati S. R., Padfield B., Expert Indexing in Oracle Database 11g:

Maximum Performance for your Database. Apress, New York 2011.

9. Majczak A.: SQL od podstaw, Translator S.C., Warszawa 2001.

10. Matthew N., Stones R.: Od podstaw Bazy danych i MySQL. Helion, Gliwice

2003.

11. Pankowski T.: Podstawy bazy danych. PWN, Warszawa 1992.

12. Szeliga M., Tablice informatyczne. SQL. Helion, Gliwice 2005.

13. Szeliga M., Transact-SQL. Czarna księga. Helion, Gliwice 2005.

14. Vieira R., SQL Server 2005. Programowanie. Od podstaw. Helion, Gliwice

2007.

15. Whitehorn M., Marklyn B.: Relacyjne bazy danych. Helion, Gliwice 2002.

