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Abstract. The work discusses mathematical models using paradigms developed for
quantum phenomena, including the vector-matrix Hilbert space and quantum gates for
linear transformations of states to build a day-ahead market model (DAM). The article
presents the most popular directions in the development of models using tools used in
the description of quantum phenomena to present the methodology of conducting this
type of calculation. Mathematical structures such as Hilbert space and operations on
this space were used to build a quantum-inspired Artificial Neural Network. The work
presents the proposition of implementation of DAM system to build a Neural Network
Model with usage quantum phenomena based on Hilbert space. The concept of quantum
processing based on quantum circuits was also noticed due to its large use and the
development of implementing tools as a supplement to the entire area of development
of building models based on quantum computing.

Keywords: Hilbert space, quantum measurement, density matrix, Bloch sphere, quan-
tum gates, quantum circuits, quantum key distribution, Quantum-inspired ANN.
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1 Introduction

Quantum computing is based on Hilbert space, which plays a fundamental role in the math-
ematical description of the structure of laws related to quantum mechanics and quantum
computing. They are the subject of many studies, both theoretical [2-4,7-9, 16, 21] and practi-
cal solutions [10]. One of the two basic mathematical structures describing the Hilbert space
is the structure related to the notion of continuity, and the other is linearity. The properties
relevant to Hilbert spaces are:

– the concept of the length of a vector (in this case, the norm of a vector),
– the existence of boundaries (and thus the completeness of space),
– orthogonality of vectors (generally, i.e., taking into account the angle between the vectors).

2 Fundamentals of quantum computing

An essential feature of a space is also its completeness, i.e. assuming that a metric space is
complete, i.e. if every convergent sequence (in the sense of Cauche convergence) reaches its
limit. In a space having such properties it is possible to describe the equations of quantum
mechanics. The description of the vector state on the Hilbert space is as follows:

𝜓 = 𝛼
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0

]
+ 𝛽
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0
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]
=

[
𝛼
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]
= 𝛼 |0 > +𝛽 |1 >, (1)

where:
𝜓 - vector state,
𝛼 - probability modulus (expressed in a set of real or imaginary numbers), indicating that

the vector state will be in the state described by the observable | 0 >,
𝛽 - probability modulus (expressed in a set of real or imaginary numbers), indicating that

the vector state will be in the state described by the observable | 1 >.
To facilitate calculations it was introduced by Dirac [4] the concepts such as bracket,

which consists of the vector bra < 𝜑, the conjugated vector ket |𝜑⟩, and the operations and
properties between them. For example of a description of quantum states in H2n dimensional
space is as follow:

Base state | 00 >, which is the state of the vector in H4 of dimensional space corresponds
to the Kronecker product 𝐻2 ⊗ 𝐻2 in this case |0 > ⊗|0 > that is:
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 . (2)

The operator acting on a Hilbert space (called observable) represents a value that can
measure the vector states and is represented by the Hermitian operator (𝐴† = 𝐴).

The quantum state is described by the direction, hence only the relations (proportions)
between 𝛼 and 𝛽 are important not their values. The system after the measurement is located on
one of the observables, and the probability of finding the state vector after the measurement on
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a given observable, can be for example represented by 𝛼, with probability |𝛼 |2. The complex
numbers 𝛼 and 𝛽 are called probability amplitudes, and the square of their modulus is the
probability of a real number.

The norm of the state vector is thus determined as follows [22]:

| |𝜓 | | =
√︁
⟨𝜓 |𝜓 > =

√︄[
𝛼 𝛽

] [𝛼
𝛽

]
=
√︁
𝛼2 + 𝛽2. (3)

2.1 Linear operators

In general, the operator A on a vector space is called the mapping of a given vector belonging
to that space to a vector belonging to the same vector space, which can be written [21]:

𝐴 : |𝜓 >→ |𝜓 >′ . (4)

A transformation by an operator is linear, and so an operator can be called linear if it
satisfies the axioms of linearity:

𝐴 ( |𝜓1 > +| 𝜓2 >) = 𝐴 |𝜓1 > +𝐴| 𝜓2 >,

𝐴(𝛼 | 𝜓 >) = 𝛼𝐴( | 𝜓 >).
(5)

From equations (4) and (5) it can be concluded that every observable is represented by a
linear operator in a Hilbert space, which is the eigenstate of a Hermitian operator representing
some measurable property. A measurement operation in a Hilbert space is an action on a state
vector with a special linear operator, which is called observable.

2.2 Density matrix

In the case of a complex system of a Hilbert space, the information about the state vector is
based on the so-called partial trace (Tr). The determination of the partial trace is based on the
density matrix or the density operator 𝜌. The density matrix is determined for a given Hilbert
space and is given by:

|𝜓 >< 𝜓 | =
[
𝛼

𝛽

] [
𝛼 𝛽

]
=

[
𝛼2 𝛼𝛽

𝛽𝛼 𝛽2

]
. (6)

At the same time, from the principle of superposition, it is known that: 𝛼2+ 𝛽2 = 1. As can
be seen from the relationship (6), such values (being the square of the probability modulus)
are located on the main diagonal of the density matrix, so the trace value Tr is determined as
the sum of the diagonal of the density matrix. The sum of the diagonal values of the density
matrix is called the trace of the density matrix and is denoted by Tr.

The concept of the density matrix is also associated with the density operator 𝜌, when we
only have a set of vector states and the probability of the system being in a given vector state
is defined as:

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖 >< 𝜓𝑖 | =
∑︁
𝑖

𝑝𝑖

[
𝛼2
𝑖
𝛼𝑖𝛽𝑖

𝛽𝑖𝛼𝑖 𝛽2
𝑖

]
, (7)
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where:
pi - the probability of a quantum state being in a given space described by the state vector

of that space.

2.3 State vector measurement

The measurement of the state vector of a quantum system is determined by the base systems at
the time of measurement and then the value of the vector will take one of the values represented
by these systems, also called observables or bases. Until the measurement, the state of the
vector is in the superposition of states representing the observables. If the state vector is in
the eigenstate of a given Hermitian operator (observables), then after measurement its value
will be equal to that of the observables, this is the so-called pure state, and the measurement
result is determined. In most cases, however, the state vector is in the so-called superposition
of states, and at the time of measurement its state is subject to the so-called collapse, i.e. it is
in one of the eigenstates of the Hermitian matrix. The probability of a state vector on a given
observable (i) can be defined as:

𝑝(𝑖) =< 𝜓
���𝑀†

𝑖
𝑀𝑖

���𝜓 >= |𝜆𝑖 |2 , (8)

where:
𝑀𝑖 - i-th Hermitian measurement operator,
𝑀

†
𝑖

- conjugate i-th Hermitian measurement operator,
𝜆𝑖− i-th observable.
The normalized value of the state vector V on the observable (i) after the measurement is

determined by the relationship [23]:

𝑉𝑖 =
𝑀𝑖 | 𝜓 >√︂���𝜓 > 𝑀†

𝑖
𝑀𝑖

���𝜓〉 . (9)

The use of the relationship (8) allows to determine of the probability of a state vector on a
given observable (i), while the dependence (9) allows to determine of its normalized quantity.

2.4 Bloch Sphere

To illustrate the transformations by quantum states performed by gates, the Bloch sphere is
used [15]. The Bloch sphere represents the quantum state of a single-qubit system. Each point
on the surface of a sphere corresponds to a certain quantum state. The sphere has a radius of
length 1, and the point (0, 0, 0) is in its center. Selected points on the sphere represent specific
quantum states.
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Figure 1. Bloch Sphere, z-axis represents the base quantum state of | 0 > and | 1 >, 𝑥 - axis represents
Hadamard state, y-axis represents the base of complex component. Source [6].

2.5 Quantum gates

An infinite number of quantum gates (operators) can be constructed, it is enough for the gate,
which is a square matrix, to satisfy the conditions of the Hermitian transformation, i.e. for a
given matrix the property of conjugation and transposition:

M = M † . (10)

However, in the construction of models based on quantum calculations, single-qubit gates
are most often used, one of the most commonly used are the Pauli gates.

X =

[
0 1
1 0

]
, which corresponds to the rotation about the x-axis on the Bloch sphere (also

called the NOT gate),

Y =

[
0 −𝑖
𝑖 0

]
, which corresponds to the rotation about the y-axis on the Bloch sphere,

Z =

[
1 0
0 −1

]
, which corresponds to the rotation about the z-axis on the Bloch sphere,

and Hadamard’s gate:

H = 1
2

[
1 1
1 −1

]
.

Two-qubit gates are usually obtained by the Kronekcker product of any two one-qubit
gates, i.e.:

𝑈1 ⊗ 𝑈2,
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where U - any single-qubit gate.
Very often, a two-qubit gate known as the controlled reversal is used, the so-called

controlled-NOT or Controlled -X.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
Examples of CNOT gate operations on two-qubit states:
CNOT|00 >= |00 >,CNOT|01 >= 01 >,CNOT|10 >= |11 >,CNOT|11 >=| 10 > .

Figure 2. Example of how a CNOT gateway works on a two-qubit state | 10 > (left side) transform on
|11> state (right down corner). Source: own elaboration on the site https://algassert.com/quirk.

Based on quantum gates, so-called quantum circuits are built, with the help of which
any mathematical formulas implementing quantum models can be implemented. Serial and
parallel connections of individual gates can be represented graphically, where each circuit
line means qubit, and each gate (representing operator) is marked on the appropriate qubit or
several qubits. The time in the circuit runs sequentially from left to right. An example of a
quantum circuit realizing an entangled state from a separated state is shown in Fig. 3.

Figure 3. An example of a circuit for obtaining an entangled state. The initial state of the system is
|00⟩. After applying the Hadamard H gate, we will get the state

√︃
1
2 ( |00⟩ + |01⟩). Then, when the

CNOT gateway is applied, the state changes to
√︃

1
2 ( |00⟩ + |11⟩) which is an entangled state (it cannot

be represented as the product of two states). Source https://algassert.com/quirk.

https://algassert.com/quirk
https://algassert.com/quirk
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3 An example of the application based on quantum models

One of the most promising areas of application of models based on quantum computing is
quantum cryptography. It allows you to create safe protocols using the properties of quantum
mechanics, such as the ban on cloning or the so-called collapse when measuring the quantum
state. One of the models based on these properties is the Quantum encryption key distribution
BB841.

3.1 Quantum key distribution

Distribution of the encryption key consists of establishing a string of characters that are the
basis for encrypting and decrypting messages transmitted by the network. One of the most
common methods of determining and distributing an encryption key based on the classical
asynchronous model is the protocol RSA 2.

3.2 Protocol BB84

The BB84 protocol is based on the properties of quantum states, combinations of two groups
of singlequbit mixed states are used to determine the key:

Mixed state for the z-axis on a Bloch sphere:

|0⟩ =
[

1
0

]
, |1⟩ =

[
0
1

]
. (11)

Mixed state for the x-axis on a Bloch sphere:

|+⟩ =
√︂

1
2
( |0⟩ + |1⟩), |−⟩ =

√︂
1
2
( |0⟩ − |1⟩). (12)

i.e. a total of four single-qubit states and on two groups of measurement operators.
Measurement on the z-axis:

𝑍 |0⟩ =
[

1 0
0 −1

]
,

[
1
0

]
= 1,

𝑍 |1⟩ =
[

1 0
0 −1

] [
0
1

]
= 0,

(13)

and on the x-axis

1It is a quantum key distribution protocol invented by Charles Bennett and Gilles Brassard in 1984.
It is the first quantum cryptography protocol.

2Algorithm Rivest-Shamira-Adleman (RSA) -one of the first and currently most popular public-
key asymmetric cryptographic algorithms, designed in 1977 by Ron Rivest, Adi Shamir and Leonard
Adleman.
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𝑋 |+⟩ =
[

0 1
1 0

] √︂
1
2
( |0⟩ + |1⟩) = |+⟩,

𝑋 |−⟩ =
[

0 1
1 0

] √︂
1
2
( |0⟩ − |1⟩) = |−⟩.

(14)

The use of two types of measuring gates allows to distinguish the measurement results of
the first and second type of quantum states. The measurement in this case will be unambiguous
for the states |0⟩, |1⟩ using operators X and for states |+⟩, |−⟩, using operator measurements
Z.

The algorithm for determining the key runs according to the following scheme:
Step 1. The sender (S) sends to the receiver (R) sequences of random qubits, from the set
{|0⟩, |1⟩,+⟩, |−⟩}.
Step 2. The receiver (R) chooses randomly and independently which measurement operator
to measure each qubit. The choice is made from a set of fixed measurement operators.
Step 3. The receiver (R) records both the choice of operator and the measurement result for
the individual qubits sent by the sender (S) and sends the results of its measurements to him
in a transparent way.
Step 4. (S) provides (R) information on which measurements are matched to the states of the
given qubits.
Step 5. (S) and (R) divide the qubits into two parts: one contains those measured using the
measurement operator appropriate for the given qubit value, and the other group for which
the measurement operators used were not valid.
Step 6. The set of quantum states measured by appropriate measurement operators is a set of
qubits, which can be an encryption key, e.g. in XOR encryption for the Vernon algorithm.

If incompatibilities were detected during protocol execution (𝑆) and (𝑅), it means that
qubits have already been measured by a third party and should not be used to create a key. In
this case, they must refrain from transmitting secret information.

Table 1. Shows the measurement results obtained by (R) depending on the type of measurement operator
used for a given state of the vector sent by(S).

Uploaded qubit measurement result
|0⟩ Z 0
|1⟩ Z 1
|+⟩ X +
|−⟩ X -
|0⟩ X 50%(+ or -)
|1⟩ X 50%(+ or -)
|+⟩ Z 50%(1 or 0)
|−⟩ Z 50%(1 or 0)
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4 Quantum-inspired research based on neural networks

The construction of models based on artificial intelligence [5, 18] and based on artificial
neural networks is the subject of many publications and research [11-14, 17-20, 22-23].

The presented methods of building a neural model based on the Day-Ahead Market
system operating at TGE S.A. are an extension of previous work [17-18,23]. All operations
performed on the Artificial Neural Network are based on mathematical structures specific to
Hilbert spaces. The main idea of quantum-inspired computation is:

1. conversion of values represented in the space of real numbers into a quantum state in a
Hilbert space, which is represented in the space of complex numbers,

2. performing learning operations for the neural model of the DAM system,
3. measuring quantum states that are represented in the space of real numbers as a result of

their "collapse".

The obtained results were compared with a model obtained traditionally, i.e. one in which
learning operations were performed only in the space of real numbers.

To implement the quantum-inspired ANN, it was assumed to replace numbers from the
decimal system with a 12-element value in the binary system. Binary values can be thought of
as one-bit pure states in a Hilbert space that can be quantized, i.e. converted into mixed states
using a developed procedure. Individual values from the binary system are therefore converted
into quantum states. Subsequently, 12 ANN were built separately for each order of magnitude
of quantum states (a value of 12 was assumed to be sufficient to ensure adequate accuracy
of calculations). In this way, 12 ANN-based models were built for individual quantum states.
Figure 4 shows the idea of building the neural networks, it shows the network for the oldest
order of magnitude, for the remaining 11 orders of magnitude, the networks are constructed
in an analogous way.

4.1 Procedure algorithm

The model was implemented in the MATLAB environment by using its own m-files. The data
used for the training model comes from DAM (first half of the 2019 year), where the volume of
electricity delivered and sold is a 24-element input vector, and the volume-weighted average
price of electricity obtained for each separate hour of the day is a 24-element output vector.
The procedure of data processing was as follows:

1. Separation of the youngest order of quantum states for input and output and base weight
matrix,

2. Determine the number of learned networks (Ls) for each order of magnitude,
3. Call a learning function for delimited sets,
4. Recording of the obtained QiANN model,
5. If the value (Ls) has been reached, go to step 6, otherwise go to the point. 3,
6. If not all orders of quantum states have been processed, isolate the next higher order

of quantum states for input and output and base weight matrix and transition to page 3
otherwise go to step 7,
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Figure 4. Example of processing mixed quantum states for the hidden layer for the first qubit for the first
neuron. Symbols: 𝑓 ( net 1,1

)
- activation function, net 1,1 - the value of the weighted sum of the input

signals of the first quantum state, w1,n−weight density matrix, | 𝜓 >n −n-th quantum mixed state.Source:
Own elaboration.

7. Calculation of average quantum states for each order,
8. Measurements of average quantum states - reduction to base 0 or 1,
9. Conversion of base states to a 12-element numeric sequence analogous to binary values,

10. Convert binary values to real numbers,
11. Calculation of mean quadratic error (MSE) as the difference between actual target values

and values obtained from QiANN models in point 10.

Markings for Fig. 5:
𝑢𝑘1

1 . . . 𝑢𝑘
1
12 - input values of quantum mixed states for consecutive artificial neural net-

works from 1 to 12,
𝑤𝑘

1,1
1 . . . 𝑤𝑘

1,1
12 - values of density matrix elements for weights of layers of consecutive

artificial neural networks from 1 to 12,
𝑏1

1 . . . 𝑏
1
12 - values of density matrix elements for biases of layers of hidden artificial neural

networks from 1 to 12 ,
𝑛𝑘1

1 . . . 𝑛𝑘
1
12 - values of quantum mixed-state adders (sum of input products and weights

and bias) for layers of hidden artificial neural networks from 1 to 12,
𝑦𝑘1

1 . . . 𝑦𝑘
1
12 - values of quantum-stored activation functions with arguments in the form of

quantum mixed-state adders for individual neurons of the hidden layer for subsequent artificial
neural networks from 1 to 12,

wk2,1
1 . . . wk2,1

12 - values of density matrix elements for output layer weights for subsequent
artificial neural networks from 1 to 12,

𝑏2
1 . . . 𝑏

2
12 - values of density matrix elements for the bias of the output layer for subsequent

artificial neural networks from 1 to 12,
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Figure 5. The idea of the architecture of neural networks. Source: own elaboration based on [1].

nk2
1 . . . nk2

12 - values of quantum mixed-state adders (sum of input products and weights
and bias) for output layers of subsequent artificial neural networks from 1 to 12,

yk2
1 . . . yk2

12 – values of quantum-stored activation functions with arguments in the form of
quantum mixed-state adders for individual neurons of the output layer of subsequent artificial
neural networks from 1 to 12.

Determination of the values of quantum mixed states denoted by nk1 boils down to
multiplying the density matrix of weights wk1 in the layer hidden layer by the quantum mixed
states which represent input quantities uk1, as a result, the obtained output is a quantum mixed
state yk1, which is also the entrance to the output layer. In a similar way, the quantum mixed
state is determined for the output layer yk2, where yk1 is processed by the output layer weights
wk2.

An important issue was the assessment of the value of the quantum adder nk, in terms
of its value, if the nk value exceeded its order of magnitude, its excess was transferred to
the next ANN representing the older magnitude of the quantum state (on the principle of the
transfer bit). This operation was designed to transfer excess values of the quantum mixed state
between the next twelve ANN’s. Due to the operations that can be performed in Hilbert space
related to the vector of quantum mixed states, the purelin() activation functions were chosen
for all layers of artificial neural networks were used as activation functions.
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5 Results

Analyzing the obtained results, which is shown on figure 6, it can be concluded that it is
possible to implement a quantum-inspired Artificial Network to teach the model of the Day-
Ahead Market System at TGE S.A. Referring to the results obtained, it can be noted that
QiANN tends to average the results, i.e. it is more resistant to interference. However, the
average error of the MSE value is greater for it than for the Perceptron neural network and
is 0.09, and for the Perceptron ANN MSE is 003. It can also be seen that quantum-inspired
neural networks, whose operation is based on mathematical models appropriate for quantum
computing, are limited to actions possible for these models, i.e., on a Hilbert space. The
obtained QiANN model, although the result of many studies and trials, is a proposal of a
certain method for implementing neural models and is the subject of further work aimed at
using the potential of neural models and the use of quantum inspirations.

Figure 6. Comparison of actual normalized price values with the Perceptron.ANN model and the
quantum-inspired model. Symbols: x-axis (number of days) - consecutive days of the examined period
(in this case 181 days) y-axis (average value of the normalized price). Blue – actual normalized price
values, yellow – Perceptron ANN output, red – quantum-inspired ANN output. Development of own
sources in the MATLAB environment [1].

6 Conclusion

The use of a mathematical apparatus based on models developed to describe quantum phenom-
ena is the subject of extensive and dynamically conducted research. It should be emphasized,
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however, that they are in the experimental phase, and their practical use is still the subject
of work that will take place in the future. The designed and implemented network based on
edge processing tends to average the results. An interesting development direction for the
construction of the Day-Ahead Market model may be the use of methods based on quantum
circuits, especially since, as indicated in this paper, interesting tools facilitating its implemen-
tation have been developed. An interesting approach that will be developed in the future is the
possibility of building hybrid networks combining the advantages of classical neural networks
with quantum-inspired networks.
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