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Abstract. Kleinberg introduced the concept of 𝑘-richness as a requirement for an algorithm to be a 
clustering algorithm. The most popular algorithm 𝑘 means dos not fit this definition because of its 
probabilistic nature. Hence Ackerman et al. proposed the notion of probabilistic 𝑘-richness claiming 
without proof that 𝑘-means has this property. It is proven in this paper, by example, that the version of 𝑘-
means with random initialization does not have the property probabilistic k-richness, just rebuking 
Ackeman's claim. 
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1. Introduction 

Kleinberg [8] proposed a new axiomatic system for clustering, initiating a long discussion 
on what kind of properties clustering algorithms should have and have not. In particular, he 
coined the term of 𝑘-richness of distance-based clustering algorithms, meaning the possibility 
to partition a set of objects into any 𝑘 non-empty (disjoint) subsets via modifying the distances 
between these objects. However, there exist non-deterministic, probabilistic algorithms which 
do not fit this characterization because of non-deterministic behaviour. Therefore Ackerman at 
el [1, Definition 3 (𝑘-Richness)] introduce the concept of probabilistic 𝑘-richness stating that 
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for any 𝜖 > 0 and any predefined partition, a distance function can be found such that the 
clustering function returns this partition with probability at least 1 − 𝜖. 

They postulate in their Fig.2 (omitting the proof) that probabilistic 𝑘-richness in 
probabilistic sense is possessed by version of the 𝑘-means1 algorithm with random 
initialization, which will be called here 𝑘-means-random, as well as by the version with 𝑘-
means++ initialization. 

The property of 𝑘-richness is a quite important one for in studying theoretical properties of 
clustering algorithms [6, 1, 2, 4, 5, 7, 12, 10, 14, 3, 11] in particular for constructing non-
contradictory axiomatic systems. The existence of probabilistic 𝑘-richness of 𝑘 means is 
assumed e.g. [15]. 

Kłopotek and Kłopotek [9, Theorem 1] have proven that 𝑘-means++ has in fact this 
property, while the issue is questionable in 𝑘-means-random case. They demonstrated that [9, 
Theorem 2]. 

Theorem 1. In one-dimensional space, for 𝑘 ≥ 3, when distances between cluster centres 
exceed 6 times the largest enclosing radius 𝑟, 𝑘-means-random is not probabilistically 𝑘-rich. 

and also [9, Theorem 3]. 

Theorem 2. For 𝑘 ≥ 𝑚𝑉ball ,,ோ/𝑉simplex ,,ோିସ where 𝑉ball ,,ோ = గమ௰ቀమ ାଵቁ 𝑅, 𝑉simplex, ,ோିସ = √ାଵ!√ଶ (𝑅 − 4𝑟), where 𝑚 is the dimension of space, 𝑆(𝑅) = ଶగ(శభ)/మ௰ቀశభమ ቁ 𝑅, 

when distances between cluster centres exceed 10 times the largest enclosing radius 𝑟, and 𝑅 = 14𝑟, 𝑘-means-random is not probabilistically 𝑘-rich. 

Note that these theorems are not quite the denial of Ackerman's claim (the distances between 
clusters can be smaller), but from the rational point of view the fact that clusters with wide gaps 
between them cannot be detected, is quite disturbing. 

In this paper, we show that also for small distances between clusters the Ackerman's et al. 
claim is not valid. The demonstration is based on a one-dimensional example. 

We claim that: 

 

1 Various versions of 𝑘-means algorithm are described e.g. in [13]. 
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Theorem 3. 𝑘-means-random algorithm is not probabilistically 𝑘-rich for 𝑘 ≥ 4. 

Proof. The Theorem follows directly from Lemma 1 and Lemma 2 mentioned below. The 
logic is as follows: There is only a limited number of distinct initializations for a given dataset 
to be clustered. They are picked randomly according to some distribution, in case of 𝑘-means-
random independent of the distances between objects. If, for each distance function between 
the objects, there exists at least one initialization for which the expected clustering cannot be 
found, then the error 𝜖 cannot take on any positive value (close to zero). 

Lemma 1. In a one-dimensional Euclidean space, given 8 points to cluster into 4 clusters 
each of two neighbouring data points, for each set of distances between data points, there exists 
a 𝑘-means-random initialization such that the desired clustering is not achieved. 

Proof. See Section 3. 

Lemma 2. In a one-dimensional Euclidean space, given 2𝑘 points to cluster into 𝑘 clusters (𝑘 > 4) each of two neighbouring data points, for each set of distances between data points, 
there exists a 𝑘-means-random initialization such that the desired clustering is not achieved. 

Proof. See Section 4. 

2. A Brief Introduction to 𝒌-means and Its Ricness Problem 

Let us define the 𝑘-means-ideal algorithm as one that produces a clustering Γ௧ attaining 
the minimum of the cost function 𝑄(Γ). 𝑄(Γ) = ∑  ୀଵ ∑  ୀଵ 𝑢∥∥𝐱 − 𝝁∥∥ଶ = ∑  ୀଵ ଵೕ ∑  𝐱,𝐱∈ೕ ∥∥𝐱 − 𝐱∥∥ଶ    (1) 

where 𝐗 is the clustered dataset, Γ is its partition into the predefined number 𝑘 of non-empty 
clusters, and 𝑢 is an indicator of the membership of data point 𝐱 in the cluster 𝐶 having the 
centre at 𝝁. As 𝑘-means-ideal is NP-hard, the following algorithm is used in practice: 

1 Initialize 𝑘 cluster centres 𝝁ଵ(), … , 𝝁(). Set 𝑡: = 0. 

2 Assign each data element 𝐱 to the cluster 𝐶(௧) identified by the closest 𝝁(௧) 
3 Update 𝑡: = 𝑡 + 1. Compute a new 𝝁(௧) of each cluster as the gravity centre of the data 

elements in 𝐶(௧ିଵ). 



 
8 M. A. Kłopotek 

4 Repeat steps 2 and 3 until reaching a stop criterion (no change of cluster membership, 
or no sufficient improvement of the objective function, or exceeding some maximum 
number of iterations, or some other criterion). 

If step 1 is performed as random uniform sampling from the set of data points (without 
replacement), then we will speak about 𝑘-means-random algorithm. 

Kleinberg [8] introduced an axiomatic system for clustering functions, including the so-
called richness axiom/property: 

Property 1. Let Range (𝑓) denote the set of all partitions 𝛤 such that 𝑓(𝑑) = 𝛤 for some 
distance function 𝑑. If Range (𝑓) is equal to the set of all partitions of 𝑿, then 𝑓 has the richness 
property. 

As Kleinberg's system is contradictory, and a number of attempts failed to produce a 
reasonable axiomatic system to which vast majority of clustering algorithms would adhere, 
publications like [1] talk about various "properties" that some clustering algorithms have and 
other do not, instead of talking about axioms. 

In this paper we are interested in the above-mentioned richness axiom of Kleinberg and its 
variants. 𝑘-means clustering algorithms does not possess this property, as it splits data in (exactly) 𝑘 
clusters. Nor other 𝑘-clustering methods do. Therefore, for the purpose of studying this and 
other so-called 𝑘-cluster algorithms, a modified property was proposed, called 𝑘-richness:  

Property 2 (see e.g. Zadeh and Ben-David [14]). If for any partition 𝛤 of the set 𝑿 
consisting of exactly 𝑘 (nonempty) clusters there exists such a distance function 𝑑 that the 
clustering function 𝑓(𝑑) returns this partition 𝛤, then 𝑓 has the 𝑘-richness property. 

Only 𝑘-means-ideal is 𝑘-rich, as shown in [9]. 𝑘-richness is problematic for randomized 
algorithms, like the 𝑘-means-random, as their output is not deterministic. Therefore Ackerman 
et al. [1, Definition 3 (k-Richness)] introduced the concept of probabilistic k-richness. 

Property 3. If for any partition 𝛤 of the set 𝑿 into exactly 𝑘 clusters and every 𝜖 > 0 there 
exists such a distance function 𝑑 that the clustering function 𝑓(𝑑) returns this partition 𝛤 with 
probability exceeding 1 − 𝜖, then 𝑓 has the probabilistic 𝑘-richness property. 

They postulated (omitting the proof) that probabilistic 𝑘-richness is possessed by 𝑘-means-
random algorithm (see their Fig.2). 
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As this property is questionable, [9] introduced another concept, that of weak probabilistic 𝑘-richness. 

Property 4. A clustering method is said to have weak probabilistic 𝑘-richness property if 
there exists a function 𝑝𝑟 (𝑘) > 0(𝑘 ∈ ℕ) independent of the sample size and distance that for 
any partition 𝛤 of the set 𝑿 consisting of exactly 𝑘 clusters, then there exists such a distance 
function 𝑑 that the clustering function returns this partition 𝛤 with probability exceeding 𝑝𝑟 (𝑘). 𝑝𝑟(𝑘) is a minimum probability that the algorithm returns the required partition. It depends 
only on 𝑘 and not on the structure of the clustered data set. 

We discuss in this paper only the property of probabilistic 𝑘-richness. 

3. Proof of Lemma 1 

Let us investigate the case when 𝑘 = 4. 

The proof will consist in investigating relations between node distances and showing that 
under some special initial seeding (step 1 of 𝑘-means) there is no chance that a clustering of 8 
nodes into 4 pairs can occur. We will consider the following mutually excluding cases: So 
consider a set of 𝑛 = 8 nodes 𝑛ଵ, … , 𝑛଼ arranged in this order on a horizontal straight line from 
left to right with distances between them denoted as follows: 𝑑(𝑛ଵ, 𝑛ଶ) = 𝑎ଵ, 𝑑(𝑛ଶ, 𝑛ଷ) = 𝑝ଵଶ, 𝑑(𝑛ଷ, 𝑛ସ) = 𝑎ଶ, 𝑑(𝑛ସ, 𝑛ହ) = 𝑝ଶଷ, 𝑑(𝑛ହ, 𝑛) = 𝑎ଷ, 𝑑(𝑛, 𝑛) = 𝑝ଷସ, 𝑑(𝑛, 𝑛଼) = 𝑎ସ. 

This is illustrated symbolically in the figure below. 

 

The clustering, that we want to show is impossible under the selected seeding, is the 
following Γ = ൛ሼ𝑛ଵ, 𝑛ଶሽ, ሼ𝑛ଷ, 𝑛ସሽ, ሼ𝑛ହ, 𝑛ሽ, ሼ𝑛, 𝑛଼ሽൟ. 
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By convention, the clusters are delimited with square brackets [] in the figures. 

It is obvious that splitting a data set into 4 clusters of two elements can be performed only 
this way. 

We will prove that whatever distances we take, there exists always the possibility of an 
initial seeding such that 𝑘-means-random will not find the clustering Γ we want. 

Note that if the clustering Γ should exist at all, the following must hold: |𝑎ଵ − 𝑎ଶ| <2𝑝ଵଶ, |𝑎ଶ − 𝑎ଷ| < 2𝑝ଶଷ, |𝑎ଷ − 𝑎ସ| < 2𝑝ଷସ, 

because otherwise the clusters will take over elements of the neighboring ones. We will 
consider sharp inequalities only because 𝑘-means makes a random choice of tiers, hence the 
probability of a failure seeding is only reduced by a fixed factor and cannot got arbitrarily close 
to 0 in case of tiers. 

So let us proceed case by case. 

3.1. Case 𝒂𝟏 < 𝒑𝟏𝟐 < 𝒂𝟐 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ < 𝑎ଶ. Let us choose the seeds (step 1 
of 𝑘-means) 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ସ, 𝑠ଷ = 𝑛ହ, 𝑠ସ = 𝑛. After step 2 , the clusters will form: either 

 

or 

 
(the asterisks illustrate the seeds). A cluster ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷሽ will form around 𝑠ଵ and the center of 
this cluster will eventually lie to the right of 𝑛ଶ. Hence the next cluster to the right of it will 
have no possibility to gain control over 𝑛ଷ because it is closer to 𝑛ଶ than to 𝑛ସ. Hence the 
relation 𝑎ଵ < 𝑝ଵଶ < 𝑎ଶ under appropriate seeding prohibits emerging of Γ, the thesis of the 
Lemma holds in this case. 

By symmetry, it holds also for 𝑎ସ < 𝑝ଷସ < 𝑎ଷ. 
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3.2. Case 𝒂𝟏 > 𝒑𝟏𝟐 > 𝒂𝟐 

Let us investigate the case when 𝑘 = 4 AND 𝑎ଵ > 𝑝ଵଶ > 𝑎ଶ. Assume the following seeding: 𝑠ଵ = 𝑛ଵ, 𝑠ଶ = 𝑛ଷ, 𝑠ଷ = 𝑛ହ, 𝑠ସ = 𝑛. After step 2, one of the following clusterings will emerge: 

 

As visible, the following clusters will form: The first cluster ሼ𝑛ଵሽ, the second containing at 
least 𝑛ଶ, 𝑛ଷ and at largest extent also 𝑛ସ, the third at least 𝑛ହ and the forth at least 𝑛, 𝑛଼. 

During subsequent iteration the following occurs: The forth cluster keeps 𝑛, 𝑛଼ forever. 
Therefore the third cluster center will be either in the middle of [𝑛ହ, 𝑛] or to the left of it and 
it will be so as long as the second cluster does not get control over 𝑛ହ. The second cluster center 
lies to the left of 𝑛ଷ. Therefore the first cluster does not get control over 𝑛ଶ. Note that the 
distance of the center of the third cluster to 𝑛ହ is less than 𝑎ଷ/2, and that of the second cluster 
more than 𝑎ଶ + 𝑝ଶଷ. Therefore in the next step the second cluster will not get 𝑛ହ and so its 
distance will remain above 𝑎ଶ + 𝑝ଶଷ and it will not change as long as it does not get control 
over 𝑛ହ, but it cannot and so this will stay forever so. Under these circumstances the distance 
of the second cluster center to 𝑛ଶ will be smaller than that of the first and so it will stay forever. 

Therefore a cluster ሼ𝑛ଵ, 𝑛ଶሽ ∈ Γ cannot form. The thesis of the Lemma holds in this case. 

By symmetry same applies to 𝑎ସ > 𝑝ଷସ > 𝑎ଷ. 

We need to check 𝑎ଵ > 𝑝ଵଶ < 𝑎ଶ and 𝑎ଵ < 𝑝ଵଶ > 𝑎ଶ 
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3.3. Case 𝒂𝟏 > 𝒑𝟏𝟐 < 𝒂𝟐 

Let us investigate the case when 𝑘 = 4 AND 𝑎ଵ > 𝑝ଵଶ < 𝑎ଶ. 

3.3.1. Case: 𝒂𝟏 < (𝟐𝒑𝟏𝟐 + 𝒂𝟐)/𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ > 𝑝ଵଶ < 𝑎ଶ AND 𝑎ଵ < (2𝑝ଵଶ + 𝑎ଶ)/3. 
Consider the seeding 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ସ, 𝑠ଷ = 𝑛ହ, 𝑠ସ = 𝑛. In step 2 one of the clusterings will 
occur.  

 

The first cluster will consist of 𝑛ଵ, 𝑛ଶ, 𝑛ଷ and the second only of 𝑛ସ. In order for the second 
cluster to gain control over 𝑛ଷ, the following condition needs to hold 𝑎ଶ < (2𝑝ଵଶ + 𝑎ଵ)/3 
because otherwise the second cluster will never get 𝑛ଷ (as its center will be at 𝑛ସ or to the right 
of it). But 𝑎ଶ < (2𝑝ଵଶ + 𝑎ଵ)/3 < 3𝑎ଵ/3 = 𝑎ଵ implying 𝑎ଶ < 𝑎ଵ. This contradicts our 
assumption that 𝑎ଵ < (2𝑝ଵଶ + 𝑎ଶ)/3 and that 𝑝ଵଶ < 𝑎ଶ because if we insert the second into the 
first we get: 𝑎ଵ < (2𝑝ଵଶ + 𝑎ଶ)/3 < (2𝑎ଶ + 𝑎ଶ)/3 = 𝑎ଶ that is 𝑎ଵ < 𝑎ଶ. The thesis of the 
Lemma holds in this case. 

3.3.2. Case: 𝒂𝟏 > (𝟐𝒑𝟏𝟐 + 𝒂𝟐)/𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ > 𝑝ଵଶ < 𝑎ଶAND𝑎ଵ > (2𝑝ଵଶ + 𝑎ଶ)/3. 
Assume the following seeding: 𝑠ଵ = 𝑛ଵ, 𝑠ଶ = 𝑛ଷ, 𝑠ଷ = 𝑛ହ, 𝑠ସ = 𝑛. Then the following clusters 
may occur in step 2 of 𝑘-means: 
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Clusters 3 and 4 will form out of at least nodes 𝑛ହ, … , 𝑛଼ The forth cluster keeps 𝑛, 𝑛଼ 
forever. Therefore the third cluster center will be either in the middle of [𝑛ହ, 𝑛] or to the left 
of it and it will be so as long as the second cluster does not get control over 𝑛ହ. 

So after centroid update, the second cluster center lies to the left of the middle of [𝑛ଷ, 𝑛ସ]. 
Note that the distance of the center of the third cluster to 𝑛ହ is less than 𝑎ଷ/2, and that of the 
second cluster more than 𝑎ଶ/2 + 𝑝ଶଷ. Therefore in the next step the second cluster will not get 𝑛ହ and so its distance will remain above 𝑎ଶ/2 + 𝑝ଶଷ and it will not change as long as it does 
not get control over 𝑛ହ, but it cannot and so this will stay forever so. 

The first cluster can capture 𝑛ଶ in the first step only if 𝑎ଵ < (2𝑝ଵଶ + 𝑎ଶ)/3. But we assumed 
the contrary, that is that 𝑎ଵ > (2𝑝ଵଶ + 𝑎ଶ)/3. So it will never capture it. The thesis of the 
Lemma holds in this case. 

Therefore, combined with the previous case, thesis of the Lemma holds for 𝑎ଵ > 𝑝ଵଶ < 𝑎ଶ 
altogether. By symmetry, it holds for 𝑎ସ > 𝑝ଷସ < 𝑎ଷ too. 

3.4. Case 𝒂𝟏 < 𝒑𝟏𝟐 > 𝒂𝟐 

Let us investigate the case when 𝑘 = 4 AND 𝑎ଵ < 𝑝ଵଶ > 𝑎ଶ. By symmetry, also 𝑎ସ <𝑝ଷସ > 𝑎ଷ, because all the other relations of these distances were already discussed and the 
Lemma held for them. 



 
14 M. A. Kłopotek 

3.4.1. Case: 𝒂𝟐 < 𝒑𝟐𝟑 < 𝒂𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶ AND 𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ <𝑝ଶଷ < 𝑎ଷ. Let us look at the seeding 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ସ, 𝑠ଷ = 𝑛, 𝑠ସ = 𝑛. One of the following 
clusterings will emerge in step 2. 

Cluster 1 gets ሼ𝑛ଵ, 𝑛ଶሽ, and cluster 2 gets ሼ𝑛ଷ, 𝑛ସ, 𝑛ହሽ or Cluster 1 gets ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷሽ, and cluster 
2 gets ሼ𝑛ସ, 𝑛ହሽ In subsequent steps Cluster 1 keeps ሼ𝑛ଵ, 𝑛ଶሽ, but cluster 2 may loose 𝑛ଷ to cluster 
1 . Hence the distance of the second cluster center to 𝑛ହ will be equal or smaller than (2𝑝ଶଷ + 𝑎ଶ)/3 < 𝑝ଶଷ hence the third cluster will never gain control over 𝑛ହ as its distance is at 
least 𝑎ଷ. The thesis of the Lemma holds in this case. 

3.4.2. Case: 𝒂𝟐 > 𝒑𝟐𝟑 > 𝒂𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ଶ > 𝑝ଶଷ > 𝑎ଷ. By a 
symmetric argument, The thesis of the Lemma holds in the case 𝑎ଶ > 𝑝ଶଷ > 𝑎ଷ 

 

3.4.3. Case: 𝒂𝟐 > 𝒑𝟐𝟑 < 𝒂𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ >𝑝ଶଷ < 𝑎ଷ. 

3.4.3.1. Case: 𝒂𝟐 > (𝟐𝒑𝟐𝟑 + 𝒂𝟑)/𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ >𝑝ଶଷ < 𝑎ଷ AND 𝑎ଶ > (2𝑝ଶଷ + 𝑎ଷ)/3. Under the seeding 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ଷ, 𝑠ଷ = 𝑛ହ, 𝑠ସ = 𝑛 
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The first cluster will form of 𝑛ଵ, 𝑛ଶ, the forth of 𝑛, 𝑛଼. They will never loose control over 
these nodes. The second cluster will not capture 𝑛ସ, because its distance to it amounts to 𝑎ଶ, 
and the distance of the third cluster center to it amounts to at most (2𝑝ଶଷ + 𝑎ଷ)/3 which is 
smaller than 𝑎ଶ by the assumption. 

The thesis of the Lemma holds. 

3.4.3.2. Case: 𝒂𝟐 < (𝟐𝒑𝟐𝟑 + 𝒂𝟑)/𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND𝑎ଶ >𝑝ଶଷ < 𝑎ଷ AND 𝑎ଶ < (2𝑝ଶଷ + 𝑎ଷ)/3. 

 

Under the seeding 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ସ, 𝑠ଷ = 𝑛, 𝑠ସ = 𝑛, the first cluster will form of 𝑛ଵ, 𝑛ଶ, 
the forth of 𝑛, 𝑛଼. They will never loose control over these nodes. The third cluster will capture 𝑛ହ only if 𝑎ଷ < (2𝑝ଶଷ + 𝑎ଶ)/3 < 𝑎ଶ. But we assumed 𝑎ଶ < (2𝑝ଶଷ + 𝑎ଷ)/3 which implies that 𝑎ଶ < (2𝑝ଶଷ + 𝑎ଷ)/3 < 𝑎ଷ. These two requirements are contradictory. The thesis of the Lemma 
holds. Combinwed with the former case, thesis of the Lemma holds already when 𝑎ଶ > 𝑝ଶଷ <𝑎ଷ. 

3.4.4. Case: 𝒂𝟐 < 𝒑𝟐𝟑 > 𝒂𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶ AND 𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ <𝑝ଶଷ > 𝑎ଷ. This case means that, informally speaking, the gap between clusters has to be bigger 
than each the distance within the cluster neighbouring with the gap. 

Consider the seeding S1: 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ହ, 𝑠ଷ = 𝑛, 𝑠ସ = 𝑛଼. One of the following 
clustering may emerge in Step 2. 
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The first cluster captures for sure 𝑛ଵ, 𝑛ଶ and never looses them. If the first cluster would 
capture 𝑛ଵ, … , 𝑛ସ, it would not lose it in further iteration. Thesis holds. So we are left with the 
clusterings Γଵ = ൛ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷሽ, ሼ𝑛ସ, 𝑛ହ, 𝑛ሽ, ሼ𝑛ሽ, ሼ𝑛଼ሽൟ, Γଷ = ൛ሼ𝑛ଵ, 𝑛ଶሽ, ሼ𝑛ଷ, 𝑛ସ, 𝑛ହ, 𝑛ሽ, ሼ𝑛ሽ, ሼ𝑛଼ሽൟ. 

By symmetric seeding S2 𝑠ଵ = 𝑛ଵ, 𝑠ଶ = 𝑛ଶ, 𝑠ଷ = 𝑛ସ, 𝑠ସ = 𝑛. we need to consider only Γଶ = ൛ሼ𝑛ଵሽ, ሼ𝑛ଶሽ, ሼ𝑛ଷ, 𝑛ସ, 𝑛ହሽ, ሼ𝑛, 𝑛, 𝑛଼ሽൟ. Γସ = ൛ሼ𝑛ଵሽ, ሼ𝑛ଶሽ, ሼ𝑛ଷ, 𝑛ସ, 𝑛ହ, 𝑛ሽ, ሼ𝑛, 𝑛଼ሽൟ after the 
initialization step. 

 

If after initialization with S2 we would obtain clustering Γସ, then this means that 𝑝ଷସ >𝑝ଶଷ + 𝑎ଷ. On the other hand, it is obvious that if under seeding S1 we obtain any of the 
clusterings Γଵ or Γଷ, the second cluster will never get node 𝑛ଶ, therefore its center will reside to 
the right of 𝑛ସ, therefore the third cluster would never capture 𝑛. So the thesis of Lemma holds 
in this case. So we do not need to consider Γସ any more. 

By symmetry, also if Γଷ occurs under the seeding S1, the Lemma holds. 

So we need to consider S1 leading ton Γଵ and S2 leading to Γଶ. 

In case of Γଵ after S1, in the step 3 can relocate in such a way that step 2 in the next iteration 
cluster 1 can take over 𝑛ସ. 
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In this case cluster 2 will never regain 𝑛ସ. The Thesis holds. 

The other possibility is that instead in the step 2 of the next iteration either cluster 2 takes 
over 𝑛ଷ or 𝑛ଷ remains in cluster 1 . 

 

By analogy in case of Γଶ after S2 in the next iteration in step 2 we need to consider only 
either cluster 3 takes over 𝑛 or 𝑛 remains in cluster 4. 

 

3.4.4.1. Case: under 𝚪𝟐 cluster 3 takes over node 𝒏𝟔 and at the same time under 𝚪𝟏 
cluster 2 takes over node 𝒏𝟑 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ <𝑝ଶଷ > 𝑎ଷ AND under Γଶ cluster 3 takes over node 𝑛 and at the same time under Γଵ cluster 2 
takes over node 𝑛ଷ. So consider the situation that under Γଶ cluster 3 takes over node 𝑛 
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This implies (2𝑝ଶଷ + 𝑎ଶ)/3 + 𝑎ଷ < (2𝑝ଷସ + 𝑎ସ)/32𝑝ଶଷ + 𝑎ଶ + 3𝑎ଷ < (2𝑝ଷସ + 𝑎ସ)(2𝑝ଶଷ + 𝑎ଶ + 3𝑎ଷ)/4 < (2𝑝ଷସ + 𝑎ସ)/4 < 3𝑝ଷସ/4 < 𝑝ଷସ 

At the same time under Γଵ let cluster 2 take over node 𝑛ଷ. 

 

This implies: (2𝑝ଶଷ + 𝑎ଷ)/3 + 𝑎ଶ < (2𝑝ଵଶ + 𝑎ଵ)/3(2𝑝ଶଷ + 𝑎ଷ + 3𝑎ଶ)/4 < 𝑝ଵଶ  

The conditions (2𝑝ଶଷ + 𝑎ଷ + 3𝑎ଶ)/4 < 𝑝ଵଶ and (2𝑝ଶଷ + 𝑎ଶ + 3𝑎ଷ)/4 < 𝑝ଷସ mean that the 
cluster consisting of nodes 𝑛ଷ, 𝑛ସ, 𝑛ହ, 𝑛 will never lose any of its members to the clusters on 
either of its sides. The thesis holds. 

3.4.4.2. Case: that under 𝚪𝟐 cluster 3 takes over node 𝒏𝟔 and at the same time under 𝚪𝟏 
clusters 1 and 2 are not taking over mutually their elements 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ <𝑝ଶଷ > 𝑎ଷ AND that under Γଶ cluster 3 takes over node 𝑛 and at the same time under Γଵ clusters 
1 and 2 are not taking over mutually their elements. 

So consider the situation that under Γଶ cluster 3 takes over node 𝑛 
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This implies (2𝑝ଶଷ + 𝑎ଶ)/3 + 𝑎ଷ < (2𝑝ଷସ + 𝑎ସ)/3(2𝑝ଶଷ + 𝑎ଶ + 3𝑎ଷ)/4 < (2𝑝ଷସ + 𝑎ସ)/4 

At the same time assume that under Γଵ clusters 1 and 2 are not taking over mutually their 
elements. 

 

But this means that (2𝑝ଶଷ + 𝑎ଶ + 3𝑎ଷ)/4 > (𝑝ଶଷ + 2𝑎ଷ)/3 

Taking into account that (2𝑝ଷସ + 𝑎ସ)/4 < 𝑝ଷସ, we obtain from the above equations that 
therefore (𝑝ଶଷ + 2𝑎ଷ)/3 < 𝑝ଷସ. This means that under Γଵ the cluster 3 cannot take over 𝑛 so 
that the clustering Γଵ remain stable. The thesis holds. 

By symmetry the situation that under Γଵ cluster 2 takes over node 𝑛ଷ and at the same time 
under Γଶ clusters 3 and 4 are not taking over mutually their elements supports the thesis also. 

3.4.4.3. Case: under 𝚪𝟏 clusters 1 and 2 are not taking over mutually their elements and 
at the same time under 𝚪𝟐 clusters 3 and 4 are not taking over mutually their elements 

Let us investigate the case when 𝑘 = 4AND𝑎ଵ < 𝑝ଵଶ > 𝑎ଶAND𝑎ସ < 𝑝ଷସ > 𝑎ଷ AND 𝑎ଶ <𝑝ଶଷ > 𝑎ଷ AND under Γଵ clusters 1 and 2 are not taking over mutually their elements and at the 
same time under Γଶ clusters 3 and 4 are not taking over mutually their elements. Consider the 
following seeding S7: 𝑠ଵ = 𝑛ସ, 𝑠ଶ = 𝑛, 𝑠ଷ = 𝑛, 𝑠ସ = 𝑛଼ 

 

We get the clustering Γ = ൛ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷ, 𝑛ସሽ, ሼ𝑛ହ, 𝑛ሽ, ሼ𝑛ሽ, ሼ𝑛଼ሽൟ. We need to prevent the 
first cluster to keep these initial elements, therefore the following must hold: 
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(𝑎ଵ + 2𝑝ଵଶ + 3𝑎ଶ)/4 > 𝑝ଶଷ + 𝑎ଷ/2 

hence (3𝑝ଵଶ + 3𝑎ଶ)/4 > 𝑝ଶଷ + 𝑎ଷ/23/4𝑝ଵଶ + 1/4𝑎ଶ > 𝑝ଶଷ + 𝑎ଷ/2 − 𝑎ଶ/2 

and by analogy under the seeding: 𝑠ଵ = 𝑛ଵ, 𝑠ଶ = 𝑛ଶ, 𝑠ଷ = 𝑛ଷ, 𝑠ସ = 𝑛ହ 

 

implying the clustering Γସ = ൛ሼ𝑛ଵሽ, ሼ𝑛ଶሽ, ሼ𝑛ଷ, 𝑛ସሽ, ሼ𝑛ହ, 𝑛, 𝑛, 𝑛଼ሽൟ. 3/4𝑝ଷସ + 1/4𝑎ଷ > 𝑝ଶଷ + 𝑎ଶ/2 − 𝑎ଷ/2 

Either 𝑎ଶ/2 − 𝑎ଷ/2 ≥ 0 or 𝑎ଷ/2 − 𝑎ଶ/2 ≥ 0. Assume the latter without restraining the 
generality Hence 3/4𝑝ଵଶ + 1/4𝑎ଶ > 𝑝ଶଷ𝑝ଵଶ > 𝑝ଶଷ  

Let us consider the clustering Γଶ. In order for the cluster 2 to capture node 𝑛ଷ the following 
needs to hold: 𝑝ଵଶ < (2𝑎ଶ + 𝑝ଶଷ)/3 < 3𝑝ଶଷ/3 = 𝑝ଶଷ 

which contradicts the previously derived condition 𝑝ଵଶ > 𝑝ଶଷ. This case supports the thesis 
either. 

Hence the violation of 𝑘-richness in the probabilistic sense for 𝑘 = 4 is proven. 

4. Proof of Lemma 2 

Let us investigate the case when 𝑘 > 4. For 𝑘 greater than 4 , consider clustering into 𝑘 two 
element clusters. The nodes shall be denoted as above 𝑛ଵ, … , 𝑛ଶ, the distance between elements 
of cluster 𝑗 shall be 𝑎 and the distance between cluster 𝑗 and 𝑗 + 1 shall be denoted by 𝑝,ାଵ. 

If the clustering should exist at all, the following must hold: ห𝑎 − 𝑎ାଵห < 2𝑝,ାଵ. 
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we will refrain from showing indexes of 𝑝 in the figures as they are selfevident. 

Let us look at the situation when 𝑝ିଵ, > 𝑎. Consider a seeding such that for 𝑗 >= 𝑖𝑠 =𝑛ଶିଵ for some 𝑖. 

 

This ensures that under no step of 𝑘-means the 𝑗௧ cluster (𝑗 ≥ 𝑖 will contain node 𝑛ଶାଵ. 
This can be shown by induction. Directly after seeding, in step 2 of 𝑘-means, the cluster 𝑘 will 
contain at least nodes 𝑛ଶିଵ and 𝑛ଶ and maybe 𝑛ଶିଶ, but it cannot contain the node 𝑛ଶାଵ as 
there is no such node. The cluster 𝑗, 𝑖 <= 𝑗 < 𝑘 contains at least the node 𝑛ଶିଵ, and maybe 𝑛ଶ if not contained in the next cluster, maybe 𝑛ଶିଶ if not contained in the previous cluster. It 
does not contain 𝑛ଶାଵ because there is the next seed. 

Now consider what happens when cluster centres of clusters emerged this way are computed 
(step 3 of 𝑘-means). Define the vector 𝑣,ଵ as one from the centre of cluster 𝑗 to 𝑛ଶାଵ. It 
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amounts to at least ൣ𝑎/2 + 𝑝,ାଵ൧ at this moment, for 𝑗 > 4. Define the vector 𝑣ାଵ,ଶ as one 

from 𝑛ଶାଵ to the centre of cluster 𝑗 + 1. It amounts after the initial step to at most ൣ 𝑎ାଵ/2൧(4 <𝑗 < 𝑘). Therefore cluster 𝑗 cannot expand in the next step to capture 𝑛ଶାଵ, because ห𝑎 − 𝑎ାଵห < 2𝑝,ାଵ implies −𝑎 + 𝑎ାଵ < 2𝑝,ାଵ, that is 𝑎ାଵ/2 < 𝑝,ାଵ + 𝑎/2. Therefore 
the vector 𝑣,ଵ will not decrease and 𝑣,ଶ will not increase because 𝑣,ଵ + 𝑣,ଶ is constant for 𝑗 
(distance between 𝑛ଶାଵ and 𝑛ଶିଵ ) - this is shown by induction on 𝑗 = 𝑘 − 1, 𝑘 − 2, … , 𝑖 under 
the condition that cluster 𝑖 − 1 would not capture 𝑛ଶିଵ. Cluster 𝑖 − 1 will not capture 𝑛ଶିଵ, 
because the cluster 𝑖 cannot capture 𝑛ଶାଵ, therefore its center will lie to the left of 𝑛ଶ, therefore 
its distance to 𝑛ଶିଵ will amount to 𝑎 at most, while the distance of cluster 𝑖 − 1 center will be 
at distance of at least 𝑝ିଵ, from 𝑛ଶିଵ, and by assumption 𝑝ିଵ, > 𝑎. We will exploit this 
partial seeding below. 

4.1. Case 𝒂𝟏 < 𝒑𝟏𝟐 < 𝒂𝟐 

Let us investigate the case when 𝑘 > 4 AND 𝑎ଵ < 𝑝ଵଶ < 𝑎ଶ. 

Let us choose the seeds 𝑠ଵ = 𝑛ଶ, 𝑠ଶ = 𝑛ସ and 𝑠ଷ, 𝑠ସ, … , 𝑠 at nodes 𝑛ଶିଵ (that is to the right 
of 𝑠ଶ. ) 

 

A cluster ሼ𝑛ଵ, 𝑛ଶ, 𝑛ଷሽ will form around 𝑠ଵ and the center of this cluster will eventually lie to 
the right of 𝑛ଶ. Hence the next cluster to the right of it will have no possibility to gain control 
over 𝑛ଷ because it is closer to 𝑛ଶ than to 𝑛ସ. Hence the relation 𝑎ଵ < 𝑝ଵଶ < 𝑎ଶ supports the 
thesis. 

4.2. Case 𝒂𝟏 > 𝒑𝟏𝟐 > 𝒂𝟐 

Let us investigate the case when 𝑘 > 4AND𝑎ଵ > 𝑝ଵଶ > 𝑎ଶ. Assume the following seeding: 𝑠ଵ = 𝑛ଵ, , 𝑠 = 𝑛ଶିଵ for 𝑗 = 2, … , 𝑘. 
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This is the case discussed above in the introduction where 𝑖 = 2. Obviously, cluster 1 cannot 
take over 𝑛ଶ, even if second cluster gets 𝑛ସ because the second cluster would not get 𝑛ହ. 
Therefore a cluster ሼ𝑛ଵ, 𝑛ଶሽ ∈ Γ cannot form. 

Therefore the relation 𝑎ଵ > 𝑝ଵଶ > 𝑎ଶ also supports the thesis. 

4.3. Case 𝒂𝒎 < 𝒑𝒎,𝒎ା𝟏 < 𝒂𝒎ା𝟏 for some 𝒎 

Let us investigate the case when 𝑘 > 4 AND 𝑎 < 𝑝,ାଵ < 𝑎ାଵ for some 𝑚. Let us 
now discuss the case 𝑎 < 𝑝,ାଵ < 𝑎ାଵ. Let us look at the seeding 𝑠 = 𝑛ଶ for 𝑗 =1, … , 𝑚 − 1, 𝑠 = 𝑛ଶ, 𝑠ାଵ = 𝑛ଶାଶ, 𝑠 = 𝑛ଶ()ିଵ for 𝑗 = 𝑚 + 2, … , 𝑘. 

 

Clusters 1, … , 𝑚 resemble clusters 𝑘, … , 𝑖 from the above case BB (but in reverse order) 
what ensures that the cluster 𝑚 + 1 will never get the node 𝑛ଶାଵ. Therefore this case has to 
be rejected. So either 𝑎 > 𝑝,ାଵ < 𝑎ାଵ for each 𝑚 or 𝑎 < 𝑝,ାଵ > 𝑎ାଵ for each 𝑚 
or 

4.4. Case 𝒂𝒎 > 𝒑𝒎,𝒎ା𝟏 < 𝒂𝒎ା𝟏 for each 𝒎 

Let us investigate the case when 𝑘 > 4 AND 𝑎 > 𝑝,ାଵ < 𝑎ାଵ for each 𝑚. Let 𝑎 be 
the longest. Make a seeding 𝑠 = 𝑛ଶିଵ for 𝑗 = 1, … , 𝑖. 𝑠 = 𝑛ଶିଶ for 𝑗 = 𝑖 + 1, 𝑘. Initially 

clusters will form: ሼ𝑛ଵሽ, ൛𝑛ଶିଶ, 𝑛ଶିଵൟ for 𝑗 = 2, … , 𝑘 − 1. and ሼ𝑛ଶିଶ, 𝑛ଶିଵ, 𝑛ଶሽ. No cluster 
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𝑗 will ever take over node 𝑛ଶାଵ, as previously stated because 𝑎ଵ > 𝑝ଵଶ. The question is if it 
can take over 𝑛ଶ. Considers clusters 𝑖 and 𝑖 + 1. with nodes ሼ𝑛ଶିଶ, 𝑛ଶିଵሽ and ሼ𝑛ଶ, 𝑛ଶାଵሽ 
resp. initially. Clusters 1, . . 𝑖 are stable until cluster 𝑖 + 1 changes. In the extreme case the 
cluster 𝑖 + 1 can take over 𝑛ଶାଶ. In this case the distance from the cluster center to 𝑛ଶ amounts 
to ൫2𝑝,ାଵ + 𝑎ାଵ൯/3൯𝑎ାଵ which means that cluster 𝑖 will not get the node 𝑛ଶ so that the 
required clustering cannot be formed. So this case needs to be rejected. 

4.5. Case 𝒂𝒎 < 𝒑𝒎,𝒎ା𝟏 > 𝒂𝒎ା𝟏 for each 𝒎 

Let us investigate the case when 𝑘 > 4 AND 𝑎 < 𝑝,ାଵ > 𝑎ାଵ for each 𝑚. Consider 
an 𝑖 = 5. As 𝑝ସହ > 𝑎ହ > 𝑎ହ/2, the 4 th cluster will never acquire 𝑛ଽ. So it is only possible for 
cluster 5 to acquire 𝑛଼ or nodes with lower indexes. If this happens, the probabilistic 𝑘-richness 
definition is violated. If it does not acquire it at any point in time, then 𝑘-richness definition is 
violated due to conditions described in the case 𝑘 = 4 above. If cluster 5 acquires 𝑛଼, then the 
argument there can repeated under the condition that 𝑎ସ is close to zero. 

This completes the proof. 

5. Concluding Remarks 

We have demonstrated in this paper, that contrary to claims of Ackerman et al. [1], the 𝑘-
means-random is not probabilistically 𝑘-rich. 

Missing probabilistic 𝑘-richness of 𝑘-means-random means that no matter how the 
distances between clusters are, there exists an upper limit on probability that the true cluster 
structure in the data will be detected. 

In order to characterize the 𝑘-richness properties of the 𝑘-means-random algorithm, the 
concept of weak probabilistic 𝑘-richness needs to be introduced, as done in [9]. The interested 
reader is advised to study that paper to see that there exists also a lower limit on probability that 
the true cluster structure in the data will be detected. 
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