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Abstract. This article, which is a continuation of the article under the same main title and subtitle: part 1 
Design and its implementation, includes the obtained results of research experiments with the use of a 
designed and implemented racing game. It uses a neural model of the vehicle motion control system on 
the racetrack in the form of a Perceptron Artificial Neural Network (ANN). In designing the movement 
of vehicles on the racetrack, the following were used, inter alia, Godot Engine and MATLAB and 
Simulink programming environment. The numerical data (14 input quantities and two output quantities) 
for ANN training were prepared with the use of semi-automatic measurement of the race track control 
points. This article shows, among others, the results of 10 selected research experiments, testing and 
simulation, confirming the correct functioning of both the computer game and the model of the neural 
control system. As a result of simulation tests, it turned out that the longest lap of the track in the 
conducted experiments lasted 4 minutes and 55 seconds, and the shortest - 10.47 seconds. In five minutes, 
the highest number of laps was 34, while the lowest numbers of laps were 1 and 5. In the course of the 
experiments it was noticed that under the same conditions the ANN learning outcomes are sometimes 
different. 

Keywords. Godot Engine, MATLAB and Simulink environment, Neural control system, Perceptron 
Artificial Neural Networks, Video games 
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 Introduction 

The project of a racing game with a car motion control system in the form of a neural model 
was implemented using mainly the Godot Engine game environment, the CLion environment, 
and the MATLAB and Simulink environment [8, 10-11, 24-25], which was described in detail 
in the works [6, 29]. It was shown, among others, that the design of the experiment was preceded 
by detailed research of various oriented algorithms and programming environments that can be 
used in designing a racing game [1-3, 5, 7-8, 10-11, 15, 17-19, 24-25 , 38], artificial intelligence 
algorithms such as expert systems [14, 34] and artificial neural networks [12-13, 16, 20-21, 23, 
28, 30, 32-33, 36, 39], the detailed results of which are presented in in the works [6, 29]. 

A Perceptron Artificial Neural Network with one hidden layer was selected to control the 
movement of vehicles on the racetrack, assuming a different number of neurons (from 20 to 40) 
in the research. On the other hand, the ANN model of the neural control system was taught 
using the method of back propagation of errors and the data of the training file obtained as a 
result of semi-automatic registration of measurement points on two racing tracks, i.e. on the 
basis of manual control of the car and automatic registration of input and output data obtained 
on the racetrack [6, 29].  

Cars moved on racing tracks had 14 input values, of which, in the optimal solution, 13 
distance sensors directed at different angles in relation to the car's direction of travel and the 
current speed of the vehicle. Moreover, two output quantities were adopted, i.e. the turn factor 
and the acceleration factor. Each sensor returns the distance in pixels as a result of a collision 
with another object, including a racetrack wall. The movement of the vehicle takes into account, 
inter alia, friction, air resistance, length of the vehicle and at speeds higher than the prescribed 
limiting speed also skid. In total, 32 research experiments were carried out, of which the most 
interesting 10 experiments are presented in this paper, taking into account the conditions 
described in the works [6, 29].  

During the teaching of the Perceptron Artificial Neural Network, a problem of disappearing 
gradients was encountered, because the derivatives were of very small values, and their multiple 
multiplication led to too small numbers and too small changes in the input layer of neurons. As 
a result of additional activities, including doubling the number of training pairs eliminated this 
problem and the ANN learned stably. In addition, the following possibilities were considered: 
the introduction of the neuron activation function on the hidden layer of the linear function, the 
so-called improved (ReLU) in place of the sigmoidal function, as well as the introduction of 
the so-called momentum, which usually reduces the ANN tendency to instability and avoids 
rapid fluctuations (e.g. weight change in a previous epoch or two eras), and even the so-called 
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smoothing by introducing the coefficient β = 1-α, which on the other hand affects the 
deterioration of the convergence of the learning algorithm [6, 9, 12, 16, 23, 28, 39]. 

 GUI of implemented racing game 

The GUI of the implemented racing game is shown in Fig. 1, while on the left side there 
are buttons for selecting one of two tracks or a blank map painted in a checkerboard pattern 
so that it is possible to watch the vehicle's movement [6]. However, on the right side there 
are buttons for selecting the game mode in the options: manual control, ANN control, player 
and ANN races, and manual control with measurement recording [6]. 

If one of the versions of the neural networks is selected, the user goes to the settings 
screen and exits the game, while the settings screen shown in Fig. 2 allows you to save the 
paths to files with input data and output data used to train the ANN model of the neural 
vehicle motion control system. There is also a checkbox here, thanks to which you can enable 
normalization of the data used to train ANN by scaling them to the range <0; 1>. Once the 
racetrack is selected, the actual game screen is visible as shown in Fig. 3. While driving, the 
camera follows the car in the center of the screen. The vehicle state can be additionally 
recognized by its color, which is blue when controlled by the player or red otherwise. 

 
Figure 1. Game’s main menu. Selected designation:  Tory wyścigowe - Racing tracks  

(tor 1 – Track 1, Tor 2 – Track 2), Pusta mapa - A blank map, Ustawienia – Settings,  
jazda manualna - manual driving, wyjście – Exit. Source: [6]. 
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Figure 2. Game’s settings. Selected designation:  Plik do zapisania danych z czujników - File for 
saving sensor data, Plik do zapisania sterowania - File to save the control,  

Normalizacja danych - Data normalization, Zapisz - Save, Wstecz – Return. Source: [6]. 

 

Figure 3. Game’s window. Source: [6]. 

 Research experiments 

The analysis of the artificial neural network learning and its operation as a vehicle motion 
control system in a racing game was carried out on properly prepared 32 research experiments 
consisting in teaching and testing ANN with the use of appropriate training and testing files, 
and then its activation and testing the correctness of its behavior.  

The results of the 10 most interesting experimental studies were published in, inter alia, in 
Tab. 1. A rich compendium of other interesting cases of the course of the game is included in 
[6]. The research experiments consisted in running the equipped cars with a different number 
of sensors and different architectures of the Perceptron Artificial Neural Network, which was a 
neural model of the car motion control system on the racetrack.  
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The changes in the Artificial Neural Network architecture mainly concerned the number of 
neurons in the hidden layer, which were changed from 20 neurons to 40 neurons. Moreover, 
the ANN learning results were influenced by the learning parameters by the back propagation 
error method, including the learning speed and learning inertia. The research experiments 
started with the use of five distance sensors in the car. Unfortunately, it turned out that then the 
effects of learning and testing ANN as a model of the neural vehicle motion control system 
were unsatisfactory. Ultimately, the car was equipped with 13 sensors. 

In the case of 5 sensors, a not very flexible possibility of controlling the movement of the 
vehicle was observed, which repeatedly hit the wall or, on the contrary, did not even try to get 
close to it. Moreover, on sharp turns (of 180o and more), the car did not receive enough 
information about the surroundings, which also caused the car to hit the wall. In order to 
increase the ability to control the movement of the vehicle, the number of sensors was increased 
to 13, which turned out to be sufficient for its flexible control. 

Initially, no attention was paid to the number of hidden layer neurons, but as the simple 
possibilities of changing the flexibility of the vehicle motion exhausted, it was decided to learn 
and test several artificial neural networks with a different number of neurons in the hidden layer. 
Due to the relatively small number of entries and exits from the ANN, the ANN behavior for 
more than one hidden layer was not investigated. 

In addition, the number of measurements was also increased, i.e. more training and testing 
pairs were created by measuring control points. In this way, three training files were obtained, 
that is: a file with data from measurements on the first track (so-called easy track), a file with 
data from measurements on the second track (so-called complex track) and a file obtained by 
mixing measured data on the first and second racetracks.  

Moreover, the measurement points obtained in the case of the first track were placed in 
evenly marked places, i.e. at points that are often the least collision-free, which allowed for a 
relatively simple construction of the experiment, including the neural model. It turned out, 
however, that the measurement data obtained in this way was insufficient for the correct 
teaching and testing of the ANN, which, as a neural model of the system controlling the 
movement of the vehicle, led to a collision with the walls of the racetrack. 

Moreover, the ANN learned to control the movement of the car on the first track could not 
control the movement of the car on the second, more complex track, where the collisions 
occurred more frequently and in a shorter period of time.  The analysis of the conducted research 
experiments, of which the results of 4 experiments are shown in Tab. 1, showed, among others, 
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that the initialization of the weights played an important role in the Perceptron ANN 
initialization due to the randomness of their selection.  

It turned out that two artificial neural networks with the same architecture and identical 
parameters, learned on the same measurement data of track checkpoints, achieved different 
results, which was obtained as a result of comparing the first two experiments described in 
detail in [6].  Well, one of them caused the car to not move, while the other was able to circle 
the entire track. Another interesting case was in experiment 6, in which cars, after lapping 
several times, have different speeds, which in turn affects other possibilities of ANN control of 
the vehicle movement, which takes place on a completely new, less collision trajectory. 

Table 1. Results of 10 experiments on car movement control on a racetrack using a neural model in 
the form of an Artificial Neural Network. Source: [6]. 

Experiment 1. ANN tested on easy track, vehicle start on a easy track section 

Architecture: Perceptron ANN with 14 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 
Input and testing data: the data for 
learning were obtained as a result of 
measurements carried out on a complex 
track. 
Experiment results: an attempt was 
made to measure the time of one lap, 
which was not achieved because the car 
did not go forward, but was moving 
backwards at a very low speed. 

 

Experiment 2. ANN tested on a easy track, vehicle start on a easy track section 

Architecture: Perceptron ANN with 14 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 
Input and testing data: the data for 
learning were obtained as a result of 
measurements carried out on a complex 
track. 
Experiment results: one lap time was 
measured, which was 11.46 s.  
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Experiment 3. ANN tested on a complex track, vehicle start on a easy track section 

Architecture: Perceptron ANN with 14 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 

Input and testing data: the learning 
data was obtained from measurements 
carried out on both racetracks. 

Experiment results: an attempt was 
made to measure the time of one lap 
which the car failed to complete by 
hitting a wall at high speed.  

Experiment 4. ANN tested on a complex track, vehicle start on a easy track section 

Architecture: Perceptron ANN with 14 
input neurons, 2 output neurons, with 
one hidden layer with 40 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 

Input and testing data: the learning 
data was obtained from measurements 
carried out on both racetracks. 

Experiment results: the time of one lap 
was measured, which was 23.55 s. 

 

Experiment 5. ANN tested on a easy track, start of the vehicle on a easy track section 

Architecture: Perceptron ANN with 14 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 
Input and testing data: the learning 
data was obtained from measurements 
carried out on a complex racetrack. 
Experiment results: The number of laps 
of the race track in 5 minutes was 32 
times, the car collided with the wall, and 
after a few laps it changed its trajectory, 
where there were fewer collisions with 
the wall.  



 
52 A. Bolesta, J, Tchórzewski 

Experiment 6. ANN tested on a complex track, the start of the vehicle on the easy sections 

Architecture: Perceptron ANN with 13 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 
Input and testing data: the learning 
data was obtained from measurements 
carried out on a complex racetrack. 
Experiment results: The car circled the 
track 16 times, but collided with the 
walls. However, after a few laps, he 
changed the trajectory to a completely 
new one, on which he rode with much 
less collisions with walls. 

 

Experiment 7. ANN tested on a easy track, the start of the vehicle on the easy sections 

Architecture: Perceptron ANN with 13 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 
Input and testing data: the learning 
data was obtained from measurements 
carried out on both racetracks. 
Experiment results: the car circled the 
track 33 times. During the movement, it 
basically kept a constant trace of the 
trajectory almost all the time. 

 

Experiment 8. ANN tested on a complex track, vehicle start on a easy track section 

Architecture: Perceptron ANN with 14 
input neurons, 2 output neurons, with 
one hidden layer with 30 neurons, with 
tansig activation function for the first 
layer and purelin for the second layer of 
neurons. 

Input and testing data: the learning 
data was obtained from measurements 
carried out on both racetracks. 

Experiment results: The car circled the 
track once, then picked up high speed 
and did not make a sharp turn. 
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Experiment 9. ANN tested on a complex track, vehicle start on a easy track section 

Architecture: Perceptron ANN with 13 
input neurons, 2 output neurons, with one 
hidden layer with 40 neurons, with tansig 
activation function for the first layer and 
purelin for the second layer of neurons. 

Input and testing data: the learning data 
was obtained from measurements carried 
out on both racetracks. 

Experiment results: the car circled the 
track 12 times. During the movement, it 
basically kept a constant trace of the 
trajectory almost all the time. 

 

Experiment 10. ANN tested on a complex track, vehicle start at a curve in the track 

Architecture: Perceptron ANN with 13 
input neurons, 2 output neurons, with one 
hidden layer with 40 neurons, with tansig 
activation function for the first layer and 
purelin for the second layer of neurons. 

Input and testing data: the learning data 
was obtained from measurements carried 
out on both racetracks. 

Experiment results: The car circled the 
track 13 times. Despite the conditions 
similar to experiment 9, the car's 
trajectory turned out to be more variable. 

 

 Conclusions 

In the ten presented research experiments, for the purpose of checking the correctness of 
motion, a straight track was selected four times and a complex track six times. Nine times the 
start was from the track on a relatively straight road and once around a curve. On the other 
hand, in six cases, the data for the experiment was measured on both tracks and in four cases - 
on a complex track (data obtained only on a straight track were not used). In seven cases, ANN 
in the hidden layer had 30 neurons, and in three cases, 40 neurons. 
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As a result of the conducted research experiments (Ei, i - number of the next experiment), 
the following results were obtained: 

− time for one lap of a racetrack in an experiment: E2 – 11,46 s, E4 - 23,55 s,  
− the number of complete laps of the track: E5 - 32, E9 – 12, E10 – 13, E6 – 16, E7 – 33, 
− collisions with the track wall: E3 - before the first lap of the track, E8 - one lap as a result 

of taking a sharp turn, E5 - continuous impacts, but driving after the impact, E6 - 
collisions and then a change in the trajectory of movement along the racetrack and fewer 
collisions, E9 - no collisions with the wall, 

− change of trajectory on the racetrack: E5 - after three laps on the track with fewer 
collisions with the wall, E6 - after five laps on the track with fewer collisions with the 
wall, E9 - approximately constant driving trajectory during 12 laps of the racetrack, E10 
- approximately constant trajectory of the car's driving during 13 laps of the racetrack (but 
worse results than for E9, despite similar conditions of participation of the car in motion 
on the track), 

− backward movement: E1 - slow backward movement of the car on an easy race track, 
despite the use of data obtained for learning ANN on a compound track. 

Thus, as a result of the conducted design, implementation and investigated research 
experiments (Tab. 2), it was shown that the Perceptron Artificial Neural Network can be used 
as a neural model of vehicle motion control on the racetrack. For the purpose of obtaining a 
training and testing file, a research experiment was designed to enable measurements of the 
appropriate number of points on the racetrack. The learning pairs obtained were used in 
teaching and testing the Artificial Neural Network of the neural model of the car control system 
along a given race track. 

Table 2. Summary of selected research results of 10 experiments on car motion control on a 
racetrack using a neural model in the form of a Perceptron Artificial Neural Network. Denotation: ST – 
Simple Track, CT – Compex Track, SS – Straight Section of Track, CS – Courve Section. Source: own 

elaboration. 

Condition Results 

No  
Type 

of 
track 

Take-
off 

place 

Place of 
measurement 

data 

Number of 
hidden 
layer 

neurons 

Time for 
one lap 

[s] 

Number of 
complete 

laps 

Description of a 
collision with a 

wall 
Movement   

E1 ST SS CT 30 x 0 no collisions reverse driving

E2 ST SS CT, ST 30 11.46 1 on a straight 
stretch x 

E3 CT SS CT, ST 30 x x before the first 
lap x 

E4 CT SS CT 30 23.55 1 on a straight 
stretch x 

E5 ST SS CT 30 300 32 many collisions, 
but keep going 

change of 
trajectory after 

several collisions

E6 CT SS CT 30 x 16 collisions, keep 
going 

after a few laps 
change of 
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In order to meet the requirements resulting from the assumed conditions of research 
experiments, it was necessary to design an appropriate ANN architecture and select appropriate 
parameters for it, and above all the number of hidden layers. It turned out that one hidden layer 
with the number of neurons from 20 to 40 is sufficient, depending on the conducted research 
experiment. The tansig function for the hidden layer and the purelin function for the output 
layer of neurons were used as the function of neuron activation. 

In experimental studies, the key issues turned out to be, among others: the number of 
training pairs, i.e. measuring points on the racetrack, the way of initiating neuron weights, the 
results of the analysis of testing and simulations checking the movement on the racetrack with 
the use of, as well as the interpretation of the obtained results and their translation to improve 
the parameters of the experiment and the artificial neural networks used in it. 

During the construction of the ANN, 14 input quantities and two output quantities were 
used. The inputs were the distances returned by 13 sensors placed on the car and the current 
speed of the car, and the outputs were the acceleration coefficient and the steering coefficient 
of the vehicle. The development environments consisted of such components as: CLion 
environment, Godot game engine and MATLAB computing environment. The aforementioned 
tools made it possible to efficiently perform, that is, to design and implement research 
experiments, as well as to test them later and conduct simulation studies. 

As could be expected, the first experiments were burdened with certain failures, consisting 
in the collisions of the car with the walls of the racetrack. As a result of testing the learned ANN 
model of the neural vehicle motion control system, that the main cause of the collision and the 
lack of complete influence on the car control was too small number of training and testing pairs. 
It turned out that after introducing a vastly large number of training pairs, the designed and 
implemented ANN met the requirements for flexible control of vehicle movement on the 
racetrack. 

As a result of simulation tests, it turned out that the longest lap of the track in the conducted 
experiments lasted 4 minutes and 55 seconds, and the shortest - 10.47 seconds. In five minutes, 

trajectory with 
fewer collisions

E7 ST SS CT, ST 30 x 33 no collisions 
essentially 

constant trajectory 
of motion

E8 CT SS CT, ST 30 x x collision in a 
bend after one lap no further driving 

E9 CT SS CT, ST 30 x 12 no collisions permanent trace of 
trajectory

E10 CT CS CT, ST 30 x 13 no collisions 
movement on a 
very variable 

trajectory
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the highest number of laps was 34, while the lowest numbers were 1 and 5. In experiment 5, 
the car circled the race track 32 times in 5 minutes. During the experiments, shortcomings of 
the neural network were noticed, which consisted in the fact that under the same conditions, the 
learning outcomes may be different. 

In continued research, both the ANN learning method itself can be further improved, and a 
way to increase the accuracy of Perceptron ANN learning by other artificial intelligence 
methods, such as evolutionary algorithms [4, 14, 21, 31], or instead of the Artificial Neural 
Network to vehicle traffic control, for example, use ant algorithms [22, 26, 35], firefly 
algorithms [27], or a systemic immunological algorithm to increase the ANN resistance to wall 
collisions [37]. 

In further research, it may also be worth considering how to use the obtained results in this 
research in the design of a real racing vehicle on a track close to the real track. 
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