
STUDIA INFORMATICA
Nr 1 (26) Systems and information technology 2022

Arkadiusz BOLESTA1
ORCID: 0000-0003-1719-1109

Jerzy TCHÓRZEWSKI1
ORCID: 0000-0003-2198-7185

1 Siedlce University of Natural Sciences and Humanities
Faculty of Exact and Natural Sciences
Institute of Computer Science
ul. 3 Maja 54, 08-110 Siedlce, Poland

Neural model of the vehicle control system in a racing game.
Part 2. Research experiments

DOI: 10.34739/si.2022.26.03

Abstract. This article, which is a continuation of the article under the same main title and subtitle: part 1
Design and its implementation, includes the obtained results of research experiments with the use of a
designed and implemented racing game. It uses a neural model of the vehicle motion control system on
the racetrack in the form of a Perceptron Artificial Neural Network (ANN). In designing the movement
of vehicles on the racetrack, the following were used, inter alia, Godot Engine and MATLAB and
Simulink programming environment. The numerical data (14 input quantities and two output quantities)
for ANN training were prepared with the use of semi-automatic measurement of the race track control
points. This article shows, among others, the results of 10 selected research experiments, testing and
simulation, confirming the correct functioning of both the computer game and the model of the neural
control system. As a result of simulation tests, it turned out that the longest lap of the track in the
conducted experiments lasted 4 minutes and 55 seconds, and the shortest - 10.47 seconds. In five minutes,
the highest number of laps was 34, while the lowest numbers of laps were 1 and 5. In the course of the
experiments it was noticed that under the same conditions the ANN learning outcomes are sometimes
different.

Keywords. Godot Engine, MATLAB and Simulink environment, Neural control system, Perceptron
Artificial Neural Networks, Video games

46 A. Bolesta, J, Tchórzewski

 Introduction

The project of a racing game with a car motion control system in the form of a neural model
was implemented using mainly the Godot Engine game environment, the CLion environment,
and the MATLAB and Simulink environment [8, 10-11, 24-25], which was described in detail
in the works [6, 29]. It was shown, among others, that the design of the experiment was preceded
by detailed research of various oriented algorithms and programming environments that can be
used in designing a racing game [1-3, 5, 7-8, 10-11, 15, 17-19, 24-25 , 38], artificial intelligence
algorithms such as expert systems [14, 34] and artificial neural networks [12-13, 16, 20-21, 23,
28, 30, 32-33, 36, 39], the detailed results of which are presented in in the works [6, 29].

A Perceptron Artificial Neural Network with one hidden layer was selected to control the
movement of vehicles on the racetrack, assuming a different number of neurons (from 20 to 40)
in the research. On the other hand, the ANN model of the neural control system was taught
using the method of back propagation of errors and the data of the training file obtained as a
result of semi-automatic registration of measurement points on two racing tracks, i.e. on the
basis of manual control of the car and automatic registration of input and output data obtained
on the racetrack [6, 29].

Cars moved on racing tracks had 14 input values, of which, in the optimal solution, 13
distance sensors directed at different angles in relation to the car's direction of travel and the
current speed of the vehicle. Moreover, two output quantities were adopted, i.e. the turn factor
and the acceleration factor. Each sensor returns the distance in pixels as a result of a collision
with another object, including a racetrack wall. The movement of the vehicle takes into account,
inter alia, friction, air resistance, length of the vehicle and at speeds higher than the prescribed
limiting speed also skid. In total, 32 research experiments were carried out, of which the most
interesting 10 experiments are presented in this paper, taking into account the conditions
described in the works [6, 29].

During the teaching of the Perceptron Artificial Neural Network, a problem of disappearing
gradients was encountered, because the derivatives were of very small values, and their multiple
multiplication led to too small numbers and too small changes in the input layer of neurons. As
a result of additional activities, including doubling the number of training pairs eliminated this
problem and the ANN learned stably. In addition, the following possibilities were considered:
the introduction of the neuron activation function on the hidden layer of the linear function, the
so-called improved (ReLU) in place of the sigmoidal function, as well as the introduction of
the so-called momentum, which usually reduces the ANN tendency to instability and avoids
rapid fluctuations (e.g. weight change in a previous epoch or two eras), and even the so-called

47 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

smoothing by introducing the coefficient β = 1-α, which on the other hand affects the
deterioration of the convergence of the learning algorithm [6, 9, 12, 16, 23, 28, 39].

 GUI of implemented racing game

The GUI of the implemented racing game is shown in Fig. 1, while on the left side there
are buttons for selecting one of two tracks or a blank map painted in a checkerboard pattern
so that it is possible to watch the vehicle's movement [6]. However, on the right side there
are buttons for selecting the game mode in the options: manual control, ANN control, player
and ANN races, and manual control with measurement recording [6].

If one of the versions of the neural networks is selected, the user goes to the settings
screen and exits the game, while the settings screen shown in Fig. 2 allows you to save the
paths to files with input data and output data used to train the ANN model of the neural
vehicle motion control system. There is also a checkbox here, thanks to which you can enable
normalization of the data used to train ANN by scaling them to the range <0; 1>. Once the
racetrack is selected, the actual game screen is visible as shown in Fig. 3. While driving, the
camera follows the car in the center of the screen. The vehicle state can be additionally
recognized by its color, which is blue when controlled by the player or red otherwise.

Figure 1. Game’s main menu. Selected designation: Tory wyścigowe - Racing tracks

(tor 1 – Track 1, Tor 2 – Track 2), Pusta mapa - A blank map, Ustawienia – Settings,
jazda manualna - manual driving, wyjście – Exit. Source: [6].

48 A. Bolesta, J, Tchórzewski

Figure 2. Game’s settings. Selected designation: Plik do zapisania danych z czujników - File for
saving sensor data, Plik do zapisania sterowania - File to save the control,

Normalizacja danych - Data normalization, Zapisz - Save, Wstecz – Return. Source: [6].

Figure 3. Game’s window. Source: [6].

 Research experiments

The analysis of the artificial neural network learning and its operation as a vehicle motion
control system in a racing game was carried out on properly prepared 32 research experiments
consisting in teaching and testing ANN with the use of appropriate training and testing files,
and then its activation and testing the correctness of its behavior.

The results of the 10 most interesting experimental studies were published in, inter alia, in
Tab. 1. A rich compendium of other interesting cases of the course of the game is included in
[6]. The research experiments consisted in running the equipped cars with a different number
of sensors and different architectures of the Perceptron Artificial Neural Network, which was a
neural model of the car motion control system on the racetrack.

49 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

The changes in the Artificial Neural Network architecture mainly concerned the number of
neurons in the hidden layer, which were changed from 20 neurons to 40 neurons. Moreover,
the ANN learning results were influenced by the learning parameters by the back propagation
error method, including the learning speed and learning inertia. The research experiments
started with the use of five distance sensors in the car. Unfortunately, it turned out that then the
effects of learning and testing ANN as a model of the neural vehicle motion control system
were unsatisfactory. Ultimately, the car was equipped with 13 sensors.

In the case of 5 sensors, a not very flexible possibility of controlling the movement of the
vehicle was observed, which repeatedly hit the wall or, on the contrary, did not even try to get
close to it. Moreover, on sharp turns (of 180o and more), the car did not receive enough
information about the surroundings, which also caused the car to hit the wall. In order to
increase the ability to control the movement of the vehicle, the number of sensors was increased
to 13, which turned out to be sufficient for its flexible control.

Initially, no attention was paid to the number of hidden layer neurons, but as the simple
possibilities of changing the flexibility of the vehicle motion exhausted, it was decided to learn
and test several artificial neural networks with a different number of neurons in the hidden layer.
Due to the relatively small number of entries and exits from the ANN, the ANN behavior for
more than one hidden layer was not investigated.

In addition, the number of measurements was also increased, i.e. more training and testing
pairs were created by measuring control points. In this way, three training files were obtained,
that is: a file with data from measurements on the first track (so-called easy track), a file with
data from measurements on the second track (so-called complex track) and a file obtained by
mixing measured data on the first and second racetracks.

Moreover, the measurement points obtained in the case of the first track were placed in
evenly marked places, i.e. at points that are often the least collision-free, which allowed for a
relatively simple construction of the experiment, including the neural model. It turned out,
however, that the measurement data obtained in this way was insufficient for the correct
teaching and testing of the ANN, which, as a neural model of the system controlling the
movement of the vehicle, led to a collision with the walls of the racetrack.

Moreover, the ANN learned to control the movement of the car on the first track could not
control the movement of the car on the second, more complex track, where the collisions
occurred more frequently and in a shorter period of time. The analysis of the conducted research
experiments, of which the results of 4 experiments are shown in Tab. 1, showed, among others,

50 A. Bolesta, J, Tchórzewski

that the initialization of the weights played an important role in the Perceptron ANN
initialization due to the randomness of their selection.

It turned out that two artificial neural networks with the same architecture and identical
parameters, learned on the same measurement data of track checkpoints, achieved different
results, which was obtained as a result of comparing the first two experiments described in
detail in [6]. Well, one of them caused the car to not move, while the other was able to circle
the entire track. Another interesting case was in experiment 6, in which cars, after lapping
several times, have different speeds, which in turn affects other possibilities of ANN control of
the vehicle movement, which takes place on a completely new, less collision trajectory.

Table 1. Results of 10 experiments on car movement control on a racetrack using a neural model in
the form of an Artificial Neural Network. Source: [6].

Experiment 1. ANN tested on easy track, vehicle start on a easy track section

Architecture: Perceptron ANN with 14
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.
Input and testing data: the data for
learning were obtained as a result of
measurements carried out on a complex
track.
Experiment results: an attempt was
made to measure the time of one lap,
which was not achieved because the car
did not go forward, but was moving
backwards at a very low speed.

Experiment 2. ANN tested on a easy track, vehicle start on a easy track section

Architecture: Perceptron ANN with 14
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.
Input and testing data: the data for
learning were obtained as a result of
measurements carried out on a complex
track.
Experiment results: one lap time was
measured, which was 11.46 s.

51 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

Experiment 3. ANN tested on a complex track, vehicle start on a easy track section

Architecture: Perceptron ANN with 14
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.

Input and testing data: the learning
data was obtained from measurements
carried out on both racetracks.

Experiment results: an attempt was
made to measure the time of one lap
which the car failed to complete by
hitting a wall at high speed.

Experiment 4. ANN tested on a complex track, vehicle start on a easy track section

Architecture: Perceptron ANN with 14
input neurons, 2 output neurons, with
one hidden layer with 40 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.

Input and testing data: the learning
data was obtained from measurements
carried out on both racetracks.

Experiment results: the time of one lap
was measured, which was 23.55 s.

Experiment 5. ANN tested on a easy track, start of the vehicle on a easy track section

Architecture: Perceptron ANN with 14
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.
Input and testing data: the learning
data was obtained from measurements
carried out on a complex racetrack.
Experiment results: The number of laps
of the race track in 5 minutes was 32
times, the car collided with the wall, and
after a few laps it changed its trajectory,
where there were fewer collisions with
the wall.

52 A. Bolesta, J, Tchórzewski

Experiment 6. ANN tested on a complex track, the start of the vehicle on the easy sections

Architecture: Perceptron ANN with 13
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.
Input and testing data: the learning
data was obtained from measurements
carried out on a complex racetrack.
Experiment results: The car circled the
track 16 times, but collided with the
walls. However, after a few laps, he
changed the trajectory to a completely
new one, on which he rode with much
less collisions with walls.

Experiment 7. ANN tested on a easy track, the start of the vehicle on the easy sections

Architecture: Perceptron ANN with 13
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.
Input and testing data: the learning
data was obtained from measurements
carried out on both racetracks.
Experiment results: the car circled the
track 33 times. During the movement, it
basically kept a constant trace of the
trajectory almost all the time.

Experiment 8. ANN tested on a complex track, vehicle start on a easy track section

Architecture: Perceptron ANN with 14
input neurons, 2 output neurons, with
one hidden layer with 30 neurons, with
tansig activation function for the first
layer and purelin for the second layer of
neurons.

Input and testing data: the learning
data was obtained from measurements
carried out on both racetracks.

Experiment results: The car circled the
track once, then picked up high speed
and did not make a sharp turn.

53 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

Experiment 9. ANN tested on a complex track, vehicle start on a easy track section

Architecture: Perceptron ANN with 13
input neurons, 2 output neurons, with one
hidden layer with 40 neurons, with tansig
activation function for the first layer and
purelin for the second layer of neurons.

Input and testing data: the learning data
was obtained from measurements carried
out on both racetracks.

Experiment results: the car circled the
track 12 times. During the movement, it
basically kept a constant trace of the
trajectory almost all the time.

Experiment 10. ANN tested on a complex track, vehicle start at a curve in the track

Architecture: Perceptron ANN with 13
input neurons, 2 output neurons, with one
hidden layer with 40 neurons, with tansig
activation function for the first layer and
purelin for the second layer of neurons.

Input and testing data: the learning data
was obtained from measurements carried
out on both racetracks.

Experiment results: The car circled the
track 13 times. Despite the conditions
similar to experiment 9, the car's
trajectory turned out to be more variable.

 Conclusions

In the ten presented research experiments, for the purpose of checking the correctness of
motion, a straight track was selected four times and a complex track six times. Nine times the
start was from the track on a relatively straight road and once around a curve. On the other
hand, in six cases, the data for the experiment was measured on both tracks and in four cases -
on a complex track (data obtained only on a straight track were not used). In seven cases, ANN
in the hidden layer had 30 neurons, and in three cases, 40 neurons.

54 A. Bolesta, J, Tchórzewski

As a result of the conducted research experiments (Ei, i - number of the next experiment),
the following results were obtained:

− time for one lap of a racetrack in an experiment: E2 – 11,46 s, E4 - 23,55 s,
− the number of complete laps of the track: E5 - 32, E9 – 12, E10 – 13, E6 – 16, E7 – 33,
− collisions with the track wall: E3 - before the first lap of the track, E8 - one lap as a result

of taking a sharp turn, E5 - continuous impacts, but driving after the impact, E6 -
collisions and then a change in the trajectory of movement along the racetrack and fewer
collisions, E9 - no collisions with the wall,

− change of trajectory on the racetrack: E5 - after three laps on the track with fewer
collisions with the wall, E6 - after five laps on the track with fewer collisions with the
wall, E9 - approximately constant driving trajectory during 12 laps of the racetrack, E10
- approximately constant trajectory of the car's driving during 13 laps of the racetrack (but
worse results than for E9, despite similar conditions of participation of the car in motion
on the track),

− backward movement: E1 - slow backward movement of the car on an easy race track,
despite the use of data obtained for learning ANN on a compound track.

Thus, as a result of the conducted design, implementation and investigated research
experiments (Tab. 2), it was shown that the Perceptron Artificial Neural Network can be used
as a neural model of vehicle motion control on the racetrack. For the purpose of obtaining a
training and testing file, a research experiment was designed to enable measurements of the
appropriate number of points on the racetrack. The learning pairs obtained were used in
teaching and testing the Artificial Neural Network of the neural model of the car control system
along a given race track.

Table 2. Summary of selected research results of 10 experiments on car motion control on a
racetrack using a neural model in the form of a Perceptron Artificial Neural Network. Denotation: ST –
Simple Track, CT – Compex Track, SS – Straight Section of Track, CS – Courve Section. Source: own

elaboration.

Condition Results

No
Type

of
track

Take-
off

place

Place of
measurement

data

Number of
hidden
layer

neurons

Time for
one lap

[s]

Number of
complete

laps

Description of a
collision with a

wall
Movement

E1 ST SS CT 30 x 0 no collisions reverse driving

E2 ST SS CT, ST 30 11.46 1 on a straight
stretch x

E3 CT SS CT, ST 30 x x before the first
lap x

E4 CT SS CT 30 23.55 1 on a straight
stretch x

E5 ST SS CT 30 300 32 many collisions,
but keep going

change of
trajectory after

several collisions

E6 CT SS CT 30 x 16 collisions, keep
going

after a few laps
change of

55 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

In order to meet the requirements resulting from the assumed conditions of research
experiments, it was necessary to design an appropriate ANN architecture and select appropriate
parameters for it, and above all the number of hidden layers. It turned out that one hidden layer
with the number of neurons from 20 to 40 is sufficient, depending on the conducted research
experiment. The tansig function for the hidden layer and the purelin function for the output
layer of neurons were used as the function of neuron activation.

In experimental studies, the key issues turned out to be, among others: the number of
training pairs, i.e. measuring points on the racetrack, the way of initiating neuron weights, the
results of the analysis of testing and simulations checking the movement on the racetrack with
the use of, as well as the interpretation of the obtained results and their translation to improve
the parameters of the experiment and the artificial neural networks used in it.

During the construction of the ANN, 14 input quantities and two output quantities were
used. The inputs were the distances returned by 13 sensors placed on the car and the current
speed of the car, and the outputs were the acceleration coefficient and the steering coefficient
of the vehicle. The development environments consisted of such components as: CLion
environment, Godot game engine and MATLAB computing environment. The aforementioned
tools made it possible to efficiently perform, that is, to design and implement research
experiments, as well as to test them later and conduct simulation studies.

As could be expected, the first experiments were burdened with certain failures, consisting
in the collisions of the car with the walls of the racetrack. As a result of testing the learned ANN
model of the neural vehicle motion control system, that the main cause of the collision and the
lack of complete influence on the car control was too small number of training and testing pairs.
It turned out that after introducing a vastly large number of training pairs, the designed and
implemented ANN met the requirements for flexible control of vehicle movement on the
racetrack.

As a result of simulation tests, it turned out that the longest lap of the track in the conducted
experiments lasted 4 minutes and 55 seconds, and the shortest - 10.47 seconds. In five minutes,

trajectory with
fewer collisions

E7 ST SS CT, ST 30 x 33 no collisions
essentially

constant trajectory
of motion

E8 CT SS CT, ST 30 x x collision in a
bend after one lap no further driving

E9 CT SS CT, ST 30 x 12 no collisions permanent trace of
trajectory

E10 CT CS CT, ST 30 x 13 no collisions
movement on a
very variable

trajectory

56 A. Bolesta, J, Tchórzewski

the highest number of laps was 34, while the lowest numbers were 1 and 5. In experiment 5,
the car circled the race track 32 times in 5 minutes. During the experiments, shortcomings of
the neural network were noticed, which consisted in the fact that under the same conditions, the
learning outcomes may be different.

In continued research, both the ANN learning method itself can be further improved, and a
way to increase the accuracy of Perceptron ANN learning by other artificial intelligence
methods, such as evolutionary algorithms [4, 14, 21, 31], or instead of the Artificial Neural
Network to vehicle traffic control, for example, use ant algorithms [22, 26, 35], firefly
algorithms [27], or a systemic immunological algorithm to increase the ANN resistance to wall
collisions [37].

In further research, it may also be worth considering how to use the obtained results in this
research in the design of a real racing vehicle on a track close to the real track.

References

1. Abdal M.: Artificial Intelligence in Racing Games. University of Birmingham.
https://www.cs.bham.ac.uk/~ddp/AIP/RacingGames.pdf [access: 2021-04-16].

2. Algorytm BFS. https://eduinf.waw.pl/inf/alg/001_search/0126.php [access: 2021-04-
16].

3. Algorytm Dijkstry. http://www.algorytm.org/algorytmy-grafowe/algorytm-
dijkstry.html [access: 2021-04-16].

4. Arabas J.: Wykłady z algorytmów ewolucyjnych (Eng. Lectures on evolutionary
algorithms). WNT. Warszawa 2003, pages 303.

5. Barczak A. and Woźniak H.: Comparative Study on Game Engines. Studia Informatica.
Systems and Information Technology 1-2(23)2019.

6. Bolesta A.: Artificial Neural Networks as vehicle control systems in racing games.
Master's thesis written under the supervision of dr hab. inż. Jerzy Tchórzewski, prof.
uczelni w Instytucie Informatyki, na kierunku informatyka na Wydziale Nauk Ścisłych
i Przyrodniczych, UPH w Siedlcach, Siedlce 2021, pages 82.

7. Cui X. and Shi H.: Direction Oriented Pathfinding In Video Games, International
Journal of Artificial Intelligence & Applications, 2 Oct. 2011.

8. Dokumentacja silnika Godot (Eng. Documentation of the Godot engine),
https://docs.godotengine.org/pl/latest/ [access: 2021-04-16].

57 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

9. Flasiński M.: Wstęp do sztucznej inteligencji (Eng. Introduction to Artificial
Intelligence). WN PWN, Warszawa 2011.

10. Godot na platformie Steam. URL: https://store.steampowered.com/app/404790/
Godot%5C_Engine/ [access: 2021-04-16].

11. Graham R., McCabe H., and Sheridan S.: Neural Networks for Real-time Pathfinding
in Computer Games. Jan. 2004. Środowisko CLion. https://www.jetbrains.com
/clion/?gclid=CjwKCAjw8cCGBhB6EiwAgOReyyEyTBD5gq4mvxeo4vMWqwDXjk
0wpBxnIIVewVGuPop667dqTgDLRoC3P4QAvD_BwE&gclsrc=aw.ds. [access:
2021-04-16].

12. Horzyk A.: Metody Inżynierii Wiedzy – Uczenie głębokie i głębokie sieci neuronowe
(Eng. Knowledge Engineering Methods - Deep learning and deep neural networks),
AGH w Krakowie, Warszawa 2019, http://home.agh.edu.pl/~horzyk/lectures/miw/
MIW-DL.pdf [access: 2021-04-16].

13. Kłopotek M., Tchórzewski J.: The concept of discoveries in evolving neural net,
Advances in Soft Computing, IPI PAN, No. 17, Warszawa 2002, pp. 165-174.

14. Mulawka J.: Systemy ekspertowe (Eng. Expert systems), WNT, Warszawa 1996, pages
235.

15. Oliveira M. M., Chan M. T., Chan C. W., and Gelowitz C.: Development of a Car
Racing Simulator Game Using Artificial Intelligence Techniques, International Journal
of Computer Games Technology (Nov.), p. 839721, 2015 [access: 2021-04-16].

16. Osowski S.: Sieci neuronowe do przetwarzania informacji (Eng. Neural networks for
information processing). OW PW, Warszawa, pages 422, 2013.

17. Patel A.: Introduction to A*, http://theory.stanford.edu/~amitp/Game Programming/
AStarComparison.html [access: 2021-04-16].

18. Przychodzki M: Neuro-evolution of artificial neural networks based on the NEAT
algorithm. Master's thesis written under the supervision of dr Artur Niewiadomski,
kierunek informatyka, Wydział Nauk Ścisłych i Przyrodniczych, Uniwersytet
Przyrodniczo-Humanistyczny w Siedlcach, Siedlce 2021.

19. Robbins M.: Neural Networks in Supreme Commander 2, https://ubm- twvideo01s3.
amazonaws.com/o1/vault/gdc2012/slides/Summit_AI/Robbins_Michael_Off%20the%
20Beaten.pdf. [access: 2021-04-16].

58 A. Bolesta, J, Tchórzewski

20. Ruciński D.: The Influence of the Artificial Neural Network type on the quality of
learning on the Day-Ahead Market model at Polish Electricity Exchange join-stock
company. Studia Informatica. Systems and Information Technology. Vol. 1-2(23)2019,
pp.77-94.

21. Rutkowski L.: Metody i techniki sztucznej inteligencji (Eng. Methods and techniques
of artificial intelligence). WN PWN, Warszawa 2017.

22. Sitkiewicz T., Tchórzewski J.: Wykorzystanie algorytmów mrówkowych do poprawy
funkcjonowania algorytmu ewolucyjnego dla zagadnień transportowych (Eng. The use
of ant algorithms to improve the functioning of the evolutionary algorithm for transport
issues), Zeszyty Naukowe AMW, Nr 169 K/1, pp. 349-362, 2007.

23. Tadeusiewicz R. and Szaleniec M.: Leksykon sieci neuronowych (Eng. Lexicon on
Neural Networks), Wydawca Projekt Nauka, pages 134, Jan. 2015.

24. Strona główna silnika Godot (Eng. The home of the Godot engine),
https://godotengine.org/ [access: 2021-04-16].

25. Strona główna MATLAB & Simulink, https://www.mathworks.com/products/matlab.
html [access: 2021-04-16].

26. Szewczak M., and Trojanowski K.: Wirtualne laboratoria optymalizacji heurystycznej:
wykorzystanie algorytmów mrówkowych (Eng. Virtual heuristic optimization
laboratories: the use of ant algorithms). Studia Informatica. Systems and Information
Technology 1-2(11)2003, pp. 87–100.

27. Świtalski P., Bolesta A.: Firefly algorithm applied to the job-shop scheduling problem.
Studia Informatica. Systems and Information Technology. Vol. 1-2(25)2021, pp.87-
100.

28. Tadeusiewicz R.: Elementarne wprowadzenie do techniki sieci neuronowych z
przykładowymi programami (Eng. Elementary introduction to the technique of neural
networks with sample programs). Problemy Współczesnej Nauki: Informatyka. AOW,
1998, https://books.google. pl /books?id=SjgzygAACAAJ [access: 2021-04-16].

29. Tchórzewski J.: Metody sztucznej inteligencji i informatyki kwantowej w ujęciu teorii
sterowania i systemów (Eng. Methods of artificial intelligence and quantum computing
in terms of control theory and systems), Wydawnictwo UPH w Siedlcach, Siedlce 2021,
pages 343.

30. Tchórzewski J.: Systemowy Algorytm Ewolucyjny SAE (Eng. Systemic Evolutionary
Algorithm), Bio-Algorithms and Med-Systems, Vol. 1, No. 1/2, 2005, pp. 61-64.

59 Neural model of the vehicle control system in a racing game. Part 2. Research experiments

31. Tchórzewski J., Kłopotek M.: A Case Study in Neural Network Evolution, Prace
Naukowe Instytutu Podstaw Informatyki PAN, Nr. 943, IPI PAN, Warszawa 2002.

32. Tchórzewski J., Kłopotek M.: The Concept of Making Discoveries in Evolving Neural
Net, Intelligent Information Systems 2002, Physica-Verlag HD, pp. 165-174.

33. Tchórzewski J.: Systemy ekspertowe (Eng. Expert Systems), [w:] Użytkowanie
mikrokomputerów IBM PC. Część II. Podstawowe oprogramowanie, [pod red.
Tchórzewski J., Barczak A., Barański M., Rozwadowski L.], Wydawnictwo WSR-P w
Siedlcach, Siedlce 1993, pp. 131-177.

34. Trojanowski K.: Metaheurystki. Materiały pomocnicze do przedmiotu “Metaheurystyki
– laboratorium” (Eng. Metaheurists. Auxiliary materials for the subject "Metaheuristics
- laboratory"). Wyd. WSISiZ, Warszawa 2003, pages 80.

35. Wardziński K.: Przegląd algorytmów sztucznej inteligencji stosowanych w grach
komputerowych (Eng. Review of artificial intelligence algorithms used in computer
games), Homo communicativus. Filozofia – komunikacja– język – kultura (3 May):
Kulturotwórcza funkcja gier. Cywilizacja zabawy czy zabawy cywilizacji? Rola gier we
współczesności, pp. 249–263, 2008.

36. Wierzchoń S.: Sztuczne systemy immunologiczne. Teoria i zastosowania (Eng.
Artificial immune systems. Theory and Applications). AOW EXIT, Warszawa 2001,
pages 282.

37. Yannakakis G. N. and Togelius J.: Artificial Intelligence and Games. Springer, 2018.

38. Żurada J., Barski M., and Jędruch W.: Sztuczne sieci neuronowe: podstawy teorii i
zastosowania (Eng. Artificial neural networks: basic theory and applications). WN
PWN, Warszawa 1996, pages 375.

