
 1

GPU-based MULTI-LAYER PERCEPTRON
AS EFFICIENT METHOD FOR APPROXIMATION
COMPLEX LIGHT MODELS IN PER-VERTEX
LIGHTING

Konrad Pietras1, Marek Rudnicki2

This paper describes a display method of the sky color on GeForce FX
hardware. Lighting model used here is taken from “Display of the Earth
taking into account atmospheric scattering” by Tomoyuki Nishita et.al.,
however this model is not the only suitable one in the proposed method.

A model of lighting used here is described by the following expression:

I = I0 dvttF vvvvv
V

)))θ,ρ(),ρ((β)exp(-(ρ +α∫ bb

which describes a dependence of observed light color of position and
orientation of observer.

t(ρ,α) - Optical length, amount of air along viewing direction.

dsρ),(t ∫
∞

=αρ
5

5

F (α) - Phase function, amount of light scattered in

α - angle between viewing direction V and vertical direction U.

β - angle between V and sun direction L.

θ - angle between U and L.

ρ - relative density (surface = 1). Real density is contained in coefficient b.









=

0

 exp ρ
H

-h

1 None
2 Institute of Computer Science, Technical University of Lodz, ul. Wolczanska 215, 93-005 Lodz,
Poland

 2

h – altitude of observer.

h = r – R0

r – distance between observer and planet center.

H0 - scale factor

R0 - planet radius

I. Optical length

Attenuation of a light beam depends exponentially on optical length. In this
implementation optical length is calculated only for acute angles between
viewing direction and zenith.

∫ ∑
∞

≈=α
5

5 ρρ) ρ,(
n

i
ii sdst

In order to improve speed of calculations of optical length, values of ρi si are
calculated, and used as lookup table S[ρ,c]. Because ρdepends exponentially
on h, light-air interactions primarily depends on density, all calculations are
made on ρ. This allows a constant interval in the above integral. Therefore

function S[ρ,c] is sampled on
n

i
i =ρ .

α ?

β

b

a

s

α

 3

A single sample si is evaluated as follows:

)cos()sin(222 α−α−= bbas

where:

a = R0 – H0 ln (ρi) and b = R0 – H0 ln (ρi+ 1)

Function S[ρ,c] is nearly constant at small angles, but it grows rapidly, when
α is close to right angle. In order to improve precision, and speed, the
second dimension of S[ρ,c] is sampled at constant intervals of c = cos(α).

After lookup table S[ρ,c] is calculated, optical length is sampled using the
same intervals as with function S:

∑
ρ=ρ

=
0

1

],ρ[]ρ,[ii cScL

While ρi decreases during summation in interval-length steps, ci must be
calculated as follows:

a

cba

a

ba
c i

i

2
1

22222 1())cos(1(
)βcos(−−−

=
α−−

==

Lookup table L[ρ,c] is used directly for angles, where c ≤ 0. For angles, where
c ∈ (0, –1], value of optical length may be obtained by the following property:

L[ρ,c] = 2L[ρx,0] – L[ρ,–c]

where:




















 α−= 1,
)sin(

expmin ρ
0

0

H

rR
x

II. Color of atmosphere

β

θ α
V L

U

?

 4

The color of atmosphere is calculated alike as linear mass of atmosphere.
Increased complexity is caused by the fact that treated directions lie in three-
dimensional space, summed samples depend on four parameters (α,β,θ,ρ),
which depend in different manner on integration step v.

Step v moves along direction V. If four coordinates of point of observation are
marked as (α0, β0, θ0,ρ0), then a point moved a distance v in direction V has
coordinates calculated as follows:

Let us mark a distance from planet center to point of observation as r0

r0 = R0 – H0 ln(ρ0)

Distance from planet center to point v is:

)cos(2 00
22

0 α++= vrvrrv

Density in point v equals:








 −=
0

0expρ
H

rR v
v

As point v moves, direction U changes due to planet curvature. Angle α
changes accordingly:

v
v r

r)sin(
)sin(00 α=α

v

v
v r

vvr 222
0)sin()sin()cos(

)cos(
α+α−α

=α

Angle β is constant because light beams are considered parallel.

Angle θ changes as follows:

cos(θv) = cos(αv)cos(β0) + sin(αv)sin(β0) + cos(Λ)

2)θcos(1)θsin(vv −=

Angle Λ is measured between surface spanned by U-V vertices and L-V
surface. During translation of point v along direction V only direction U is

 5

changing, and only in surface U-V, so angle between surfaces U-V and L-V is
constant.

)βsin()αsin(

))cos(βcos(α-)θcos(
)cos(

00

000=Λ

Finally, color of atmosphere is equal:

vL

LL

vv

vvv

∆+

+−−=∑

)]))θcos(,ρ[

)]αcos(,ρ[)]αcos(,ρ[(exp()ρF(β),ρ,θ,βI(α 0
v

000000 bb

Additionally, when cos(θv) < 0 and sin(θv)rv – R0 < 0, then point v is in planet’s
shadow, and the sample is not summed.

I and b consist of three coordinates: red, green and blue. This gives three
expressions used in application for obtaining the color of atmosphere:

vL

LLbFbI

vv

vv
v

RvRR

∆+

+−−=∑

)]))θcos(,ρ[

)]αcos(,ρ[)]αcos(,ρ[(exp()ρ(β),ρ,θ,β(α 0000000

vL

LLbFbI

vv

vv
v

GvGG

∆+

+−−=∑

)]))θcos(,ρ[

)]αcos(,ρ[)]αcos(,ρ[(exp()ρ(β),ρ,θ,β(α 0000000

vL

LLbFbI

vv

vv
v

BvBB

∆+

+−−=∑

)]))θcos(,ρ[

)]αcos(,ρ[)]αcos(,ρ[(exp()ρ(β),ρ,θ,β(α 0000000

III. Approximation

In previous points implementation of lighting model was described.

The color of atmosphere I = [IR,IG,IB] is a function dependent of four
parameters. Its complexity causes impossibility of using it directly in real-time
working applications. Dobashi, Yamamoto and Nishita in “Interactive
Rendering of Atmospheric Scattering Effects Using Graphic Hardware”
proposed using many sampling layers, and exploiting blending for
integration.

In order to avoid rendering multiple layers, the light model was approximated.
Additionally approximation is performed directly on GPU’s vertex processor.

 6

Precisely, function of color of
atmosphere I is approximated by
function N(α0,β0,θ0,ρ0), which is a
multi-layer percepron.

Neural network used here has a
simple topology. It consists of four
independent and identical
perceptrons, each one for
calculating a single output.

Each sub-network shares the same
input, which is four-dimensional
vector (α0,β0,θ0,ρ0).

Single sub-network consists of two
hidden layers, with eight neurons in
first layer, and four in second. Whole
network uses 324 weights. Each
neuron is biased, and has a
following activation function:

x
xf

221

1
)(

+
=

The form of this approximator is
deeply influenced by graphic

processor architecture, and exploits its speed in calculating dot products.

Network is learned of the light model by separate program, and after learning
process, it is used in GPU for coloring the sky and surface.

Three first outputs are learned of scaled color values:

N

I
B

N

I
G

N

I
R bgr === ,

where N = max{Ir,Ig,Ib} . Fourth output is learned of value:

05.0
}max{

9.0 +×=
N

N
M ,

where max{N} is calculated from 100 thousands of random samples
(α0,β0,θ0,ρ0).

ρ

R

G

B

M

α

β

θ

 7

This “normalization” of color values, and separate calculation by independent
sub-networks was necessary to achieve low-error results. As inputs, values
of (cos(α0),cos(β0),cos(θ0),ρ0) from ranges ([–1,1],[–1,1],[–1,1],[0,1]) are used.
During learning process, these values are taken in a random fashion with
uniform distribution.

In case of night, when N = 0, network is learned of value:

M = 0

This case caused multiplication by 0.9, and addition of 0.05 for coefficient M,
for better recognition between night and day.

In order to reduce error, and to exploit extrapolation property of perceptron,
in case of night R,G and B outputs are not learned.

IV. Color of surface

Method presented above, gives only the color of atmosphere, when
observed from inside into space. It is necessary to modify this method, in
order to obtain surface color, or color of atmosphere between observer and
surface.

This situation is presented on picture below. Direction L is constant, due to
infinite light source. An incoming light beam to observer looking into direction
V may be divided into two parts: Light reflected from surface, and light
scattered in atmosphere along direction V.

UE

V

L
UV

L

 8

Scattered light part is obtained from approximator by using it twice.

Observer I sees the same atmosphere as observer II, plus light scattered
between both observers. Thus color of the light scattered between observer
and surface can be obtained as a difference between neural network’s output
for observer, and output received for probe positioned on watched point on
surface.

Reflected light part is obtained by using the model of atmosphere directly:

)]))θcos(,ρ[

)]αcos(,ρ[)]αcos(,ρ[(exp(ρ),θ,β(α

IIII

IIIIIIIIIIIIII

L

LLCF

+
+−−= bbI

,

where angles and densities are taken for observers I and II, C means color
of surface with no atmosphere in point II, function F is in most general case
a BDRF for surface in point II. This calculation is performed on GPU’s
fragment processor.

V. Multiple atmospheres

Atmosphere of earth is a multi-component atmosphere. It consists of
gaseous part, and aerosols. Each of components scatters incident light
differently, and thus must be treated separately. All above mechanisms are
described for single atmosphere. In order to obtain proper color of
atmosphere for multi-component atmospheres, a small addition is needed.

This addition is correct, if a single component differs only by phase function
F, coefficient b, and scaling factor H0.

UE

V

L
UV

L

I

II

 9

Because all the above calculations are based on densities, rather than on
heights, it is necessary to scale all densities to density of the highest
atmospheric component:

1H
2H

12 ρρ =

The light model becomes:

∑ ∆−−+=
v

vFF (...))(...)exp()ρρ(21222111 bbbbI

By this method, model can be expanded to any number of components.

VI. Neural network on GPU

This implementation of perceptron depends on NV_vertex_program2_option
extension. It uses both address registers for weights access, and branching
and subroutines to make program fit into 256 instruction limit. It uses 9
temporaries and 86 local parameters, and only first vertex attribute. Weights
used for matrix multiplication are separated from weights used as bias. One
address register is used for access to matrix multiplication weights and it
moves by 4 during address addition, while the other is used for access to
bias weights and it moves by 1.

There are two versions of vertex program used, one for observer, and one
for probe positioned on watched point on surface. They differ by method of U
vector calculation.

!!ARBvp1.0
OPTION NV_vertex_program2;

ATTRIB iPos = vertex.attrib[0];

PARAM mvinv[4] = {
state.matrix.modelview.invtrans };
PARAM mv[4] = {
state.matrix.modelview };
PARAM mvp[4] = { state.matrix.mvp
};
PARAM lightDir =
state.light[0].position;
PARAM const1 = { 1.0, -2.0, 10.0,
0.0 };
PARAM a1const = { 0.0, 0.0, 0.0,
4.0 };

PARAM a2const = { 0.0, 0.0, 0.0,
1.0 };
PARAM xxx = { 1.1111, 0.2, 0.05, -
0.05 };
PARAM nn[83] = {
program.local[4..86] };
PARAM nndat = program.local[0];
PARAM pdat = program.local[1];
PARAM pdot = program.local[2];
TEMP t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10;

ADDRESS addr1, addr2;

OUTPUT oPos = result.position;

ALIAS up = t3;

 10

ALIAS lPos = t4;
ALIAS eye = t5;

#nndat.y is the number of weights
used
#in matrix multiplication.
MOV t1, a2const;
ADD t1.y, t1, nndat.y;
ARL addr1, a1const;
ARL addr2, t1;

#vector U:
MOV t1, mvinv[3];
DP3 up.x, mvinv[0], t1;
DP3 up.y, mvinv[1], t1;
DP3 up.z, mvinv[2], t1;
DP3 t1.w, up, up;
RSQ t1.w, t1.w;
MUL up.xyz, t1.w, up;

#vector L
DP3 lPos.x, mvinv[0], lightDir;
DP3 lPos.y, mvinv[1], lightDir;
DP3 lPos.z, mvinv[2], lightDir;
DP3 t1.w, lPos, lPos;
RSQ t1.w, t1.w;
MUL lPos.xyz, t1.w, lPos;

#this is used for drawing
atmosphere layer
#when planet sphere is scaled by
small factor
MOV t2, iPos;
MUL t2.xyz, t2, pdat.x;
MOV t2.w, const1.x;

#vector V
DPH eye.x, t2, mv[0];
DPH eye.y, t2, mv[1];
DPH eye.z, t2, mv[2];
DP3 t1.w, eye, eye;
RSQ t1.w, t1.w;
MUL eye.xyz, t1.w, eye;

DP4 oPos.x, t2, mvp[0];
DP4 oPos.y, t2, mvp[1];

DP4 oPos.z, t2, mvp[2];
DP4 oPos.w, t2, mvp[3];

ALIAS nnIn = t7;
#this is calculation of input of neural
network
DP3 nnIn.x, eye, up;
DP3 nnIn.y, eye, lPos;
DP3 nnIn.z, lPos, up;
MOV nnIn.w, pdat.y;
MUL nnIn, nnIn, pdot;

ALIAS arg = t5;
ALIAS res = t6;
ALIAS arg2 = t8;
ALIAS res2 = t9;

#Neural network:
CAL nnSubNet;
MOV t1, res;
CAL nnSubNet;
MOV t2, res;
CAL nnSubNet;
MOV t3, res;
CAL nnSubNet;
MOV t4, res;
DP4 res.x, nn[addr1.y + 0], t1;
DP4 res.y, nn[addr1.y + 1], t2;
DP4 res.z, nn[addr1.y + 2], t3;
DP4 res.w, nn[addr1.y + 3], t4;
#ARA addr1.xy, addr1;
CAL nnBiasFunc (TR);

#final transformation
SGE arg, res, xxx.z;
MUL arg, arg, xxx.x;
ADD res, res, xxx.w;
MUL res, res, arg;
MUL res.w, res.w, nndat.x;
MUL arg.xyz, res, res.w;
MUL arg.xyz, arg, const1.z;
MOV arg.w, const1.x;
MOV result.color.front, arg;

BRA endProg (TR);

 11

#a single subnetwork
nnSubNet:
MOV arg, nnIn;
CAL nnLayer4_8 (TR);
MOV arg, res;
MOV arg2, res2;
CAL nnLayer8_4 (TR);
RET;

#transformation from 4-dim nn-layer
to 4-dim nn-layer (unused)
nnLayer4_4:
DP4 res.x, nn[addr1.y + 0], arg;
DP4 res.y, nn[addr1.y + 1], arg;
DP4 res.z, nn[addr1.y + 2], arg;
DP4 res.w, nn[addr1.y + 3], arg;
ARA addr1.xy, addr1;
CAL nnBiasFunc (TR);
RET;

#transformation from 4-dim nn-layer
to 8-dim nn-layer
arg => res, res2
nnLayer4_8:
DP4 res.x, nn[addr1.y + 0], arg;
DP4 res.y, nn[addr1.y + 1], arg;
DP4 res.z, nn[addr1.y + 2], arg;
DP4 res.w, nn[addr1.y + 3], arg;
ARA addr1.xy, addr1;
DP4 res2.x, nn[addr1.y + 0], arg;
DP4 res2.y, nn[addr1.y + 1], arg;
DP4 res2.z, nn[addr1.y + 2], arg;
DP4 res2.w, nn[addr1.y + 3], arg;
ARA addr1.xy, addr1;
CAL nnBiasFunc (TR);
MOV arg2, res;
MOV res, res2;
CAL nnBiasFunc (TR);
MOV res2, res;
MOV res, arg2;
RET;

#transformation from 8-dim nn-layer
to 4-dim nn-layer
arg, arg2 => res
nnLayer8_4:

DP4 res.x, nn[addr1.y + 0], arg;
DP4 res2.x, nn[addr1.y + 1], arg2;
DP4 res.y, nn[addr1.y + 2], arg;
DP4 res2.y, nn[addr1.y + 3], arg2;
ARA addr1.xy, addr1;
DP4 res.z, nn[addr1.y + 0], arg;
DP4 res2.z, nn[addr1.y + 1], arg2;
DP4 res.w, nn[addr1.y + 2], arg;
DP4 res2.w, nn[addr1.y + 3], arg2;
ARA addr1.xy, addr1;
ADD res, res, res2;
CAL nnBiasFunc (TR);
RET;

#transformation from 8-dim nn-layer
to
8-dim nn-layer (10th temporary is
needed)
arg, arg2 => res, res2
nnLayer8_8:
DP4 res.x, nn[addr1.y + 0], arg;
DP4 res2.x, nn[addr1.y + 1], arg2;
DP4 res.y, nn[addr1.y + 2], arg;
DP4 res2.y, nn[addr1.y + 3], arg2;
ARA addr1.xy, addr1;
DP4 res.z, nn[addr1.y + 0], arg;
DP4 res2.z, nn[addr1.y + 1], arg2;
DP4 res.w, nn[addr1.y + 2], arg;
DP4 res2.w, nn[addr1.y + 3], arg2;
ARA addr1.xy, addr1;
ADD res, res, res2;
MOV t10, res;
DP4 res.x, nn[addr1.y + 0], arg;
DP4 res2.x, nn[addr1.y + 1], arg2;
DP4 res.y, nn[addr1.y + 2], arg;
DP4 res2.y, nn[addr1.y + 3], arg2;
ARA addr1.xy, addr1;
DP4 res.z, nn[addr1.y + 0], arg;
DP4 res2.z, nn[addr1.y + 1], arg2;
DP4 res.w, nn[addr1.y + 2], arg;
DP4 res2.w, nn[addr1.y + 3], arg2;
ARA addr1.xy, addr1;
ADD res, res, res2;
MOV arg, res;
MOV res, t10;
CAL nnBiasFunc (TR);

 12

MOV t10, res;
MOV res, arg;
CAL nnBiasFunc (TR);
MOV res2, res;
MOV res, t10;
RET;

#Bias addition and perceptron
activation function.
nnBiasFunc:
ADD res, nn[addr2.y + 0], res;
MUL res, res, const1.y;
EX2 res.x, res.x;

EX2 res.y, res.y;
EX2 res.z, res.z;
EX2 res.w, res.w;
ADD res, res, const1.xxxx;
RCP res.x, res.x;
RCP res.y, res.y;
RCP res.z, res.z;
RCP res.w, res.w;
ARA addr2.xy, addr2;
RET;

endProg:
END

VII. Results

Images below depict atmosphere and planet form different heights. This
atmosphere consists of two components, one with following parameters:

3.8

))α(cos1(
π16

3

0

2

=

+=

H

F

r/

700

700

700

546

700

475

4

4

4






















































=b

and second:

6.1

))αcos(21(π16

1

0

2

2

2
3

=
−+

−=

H

gg

g
F

 13

m/

700

475

700

475

700

475

4

4

4






















































=b

Color of surface is constant (RGB = [0.5, 0.5, 0.5]), and any variation from
this value is due to atmosphere. Surface and atmosphere is
a triangular mesh, and aplication uses a slightly modified
CLOD algoritm described by Henri Hakl in “Diamond
Algorithm” Mesh is based on sides of icosahedron (on left).

On Athlon 1700+, GeForce FX 5500, in 1280x1024x32
resolution, when surface mesh consists of 2000 triangles, the program
runs with speed of 9 frames per second.

Sea level (r=10000, m=10000)

 14

A bit higher (r=10000, m=10000)

 15

...higher (r=10000, m=10000)

 16

..and higher (r=10000, m=10000)

 17

Sun is low. Observer at sea level. (r=10000, m=10000)

 18

Very high. (r=10000, m=10000)

 19

Dense atmosphere, sea level (r=100, m=100)

 20

Dense atmosphere, space (r=100, m=100)

Neural network used here during learning uses 800.000 random samples
of function I.

It is presented below how error was changing during learning in case of
800.000 samples, and in case of 8.000.000 samples. As this charts show,
in first case, the network is not fully learned, but this case is much faster,
and it yields good results.

 21

Fewer samples

Less samples

 22

VIII. References

[1] Nishita T., Shirai T., Tadamura K., Nakamae E.: Display of The Earth

Taking into account Atmospheric Scattering. Proc. SIGGRAPH’93,
175-182, 1993.

[2] Dobashi Y., Yamamoto T., Nishita T.: Interactive rendering of
atmospheric scattering effects using graphics hardware. Proceedings
of the conference on Graphics hardware, 2002.

[3] Hakl H.: http://www.cs.sun.ac.za/~henri/terrain.html
[4] Nishita T., Dobashi Y., Kaneda K., Yamashita H.: Display Method of

the Sky Color Taking into Account Multiple Scattering, Proc. Pacific
Graphics’96, 117-132, 1996.

