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GPU-based MULTI-LAYER PERCEPTRON  
AS EFFICIENT METHOD FOR APPROXIMATION 
COMPLEX LIGHT MODELS IN PER-VERTEX 
LIGHTING 
 
Konrad Pietras1, Marek Rudnicki2 
 

 

This paper describes a display method of the sky color on GeForce FX 
hardware. Lighting model used here is taken from “Display of the Earth 
taking into account atmospheric scattering” by Tomoyuki Nishita et.al., 
however this model is not the only suitable one in the proposed method. 

A model of lighting used here is described by the following expression: 
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which describes a dependence of observed light color of position and 
orientation of observer. 

t(ρ,α) - Optical length, amount of air along viewing direction. 
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F (α) - Phase function, amount of light scattered in  

α - angle between viewing direction V and vertical direction U. 

β - angle between V and sun direction L. 

θ - angle between U and L. 

ρ - relative density (surface = 1). Real density is contained in coefficient b. 
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h – altitude of observer. 

h = r – R0 

r – distance between observer and planet center. 

H0 - scale factor 

R0 - planet radius 

I.  Optical length 

Attenuation of a light beam depends exponentially on optical length. In this 
implementation optical length is calculated only for acute angles between 
viewing direction and zenith. 
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In order to improve speed of calculations of optical length, values of ρi si are 
calculated, and used as lookup table S[ρ,c]. Because ρdepends exponentially 
on h, light-air interactions primarily depends on density, all calculations are 
made on ρ. This allows a constant interval in the above integral. Therefore 

function S[ρ,c] is sampled on 
n

i
i =ρ . 
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A single sample si is evaluated as follows: 
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where: 

a = R0 – H0 ln (ρi)  and  b = R0 – H0 ln (ρi+ 1) 

Function S[ρ,c] is nearly constant at small angles, but it grows rapidly, when 
α is close to right angle. In order to improve precision, and speed, the 
second dimension of S[ρ,c] is sampled at constant intervals of c = cos(α). 

After lookup table S[ρ,c] is calculated, optical length is sampled using the 
same intervals as with function S: 
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While ρi decreases during summation in interval-length steps, ci must be 
calculated as follows: 
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Lookup table L[ρ,c] is used directly for angles, where c ≤ 0. For angles, where 
c ∈ (0, –1], value of optical length may be obtained by the following property: 

L[ρ,c] = 2L[ρx,0] – L[ρ,–c] 

where: 
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II. Color of atmosphere 
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The color of atmosphere is calculated alike as linear mass of atmosphere. 
Increased complexity is caused by the fact that treated directions lie in three-
dimensional space, summed samples depend on four parameters (α,β,θ,ρ), 
which depend in different manner on integration step v. 

Step v moves along direction V. If four coordinates of point of observation are 
marked as (α0, β0, θ0,ρ0), then a point moved a distance v in direction V has 
coordinates calculated as follows:  

Let us mark a distance from planet center to point of observation as r0 

r0 = R0 – H0 ln(ρ0) 

Distance from planet center to point v is: 
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Density in point v equals: 
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As point v moves, direction U changes due to planet curvature. Angle α 
changes accordingly:  
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Angle β is constant because light beams are considered parallel.  

Angle θ changes as follows: 

cos(θv) = cos(αv)cos(β0) + sin(αv)sin(β0) + cos(Λ) 

2)θcos(1)θsin( vv −=  

Angle Λ is measured between surface spanned by U-V vertices and L-V 
surface. During translation of point v along direction V only direction U is 
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changing, and only in surface U-V, so angle between surfaces U-V and L-V is 
constant. 
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Finally, color of atmosphere is equal:  
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Additionally, when cos(θv) < 0 and sin(θv)rv – R0 < 0, then point v is in planet’s 
shadow, and the sample is not summed. 

I and b consist of three coordinates: red, green and blue. This gives three 
expressions used in application for obtaining the color of atmosphere: 
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III.  Approximation 

In previous points implementation of lighting model was described. 

The color of atmosphere I = [IR,IG,IB] is a function dependent of four 
parameters. Its complexity causes impossibility of using it directly in real-time 
working applications. Dobashi, Yamamoto and Nishita in “Interactive 
Rendering of Atmospheric Scattering Effects Using Graphic Hardware” 
proposed using many sampling layers, and exploiting blending for 
integration. 

In order to avoid rendering multiple layers, the light model was approximated. 
Additionally approximation is performed directly on GPU’s vertex processor. 
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Precisely, function of color of 
atmosphere I is approximated by 
function N(α0,β0,θ0,ρ0), which is a 
multi-layer percepron. 

Neural network used here has a 
simple topology. It consists of four 
independent and identical 
perceptrons, each one for 
calculating a single output. 

Each sub-network shares the same 
input, which is four-dimensional 
vector (α0,β0,θ0,ρ0). 

Single sub-network consists of two 
hidden layers, with eight neurons in 
first layer, and four in second. Whole 
network uses 324 weights. Each 
neuron is biased, and has a 
following activation function: 
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The form of this approximator is 
deeply influenced by graphic 

processor architecture, and exploits its speed in calculating dot products. 

Network is learned of the light model by separate program, and after learning 
process, it is used in GPU for coloring the sky and surface. 

Three first outputs are learned of scaled color values: 
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where N = max{Ir,Ig,Ib} . Fourth output is learned of value: 
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where max{N}  is calculated from 100 thousands of random samples 
(α0,β0,θ0,ρ0). 
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This “normalization” of color values, and separate calculation by independent 
sub-networks was necessary to achieve low-error results. As inputs, values 
of (cos(α0),cos(β0),cos(θ0),ρ0) from ranges ([–1,1],[–1,1],[–1,1],[0,1]) are used. 
During learning process, these values are taken in a random fashion with 
uniform distribution. 

In case of night, when N = 0, network is learned of value: 

M = 0 

This case caused multiplication by 0.9, and addition of 0.05 for coefficient M, 
for better recognition between night and day. 

In order to reduce error, and to exploit extrapolation property of perceptron, 
in case of night R,G and B outputs are not learned.  

IV.  Color of surface 

Method presented above, gives only the color of atmosphere, when 
observed from inside into space. It is necessary to modify this method, in 
order to obtain surface color, or color of atmosphere between observer and 
surface. 

 

 

 

 

 

 

 

 

This situation is presented on picture below. Direction L is constant, due to 
infinite light source. An incoming light beam to observer looking into direction 
V may be divided into two parts: Light reflected from surface, and light 
scattered in atmosphere along direction V. 
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Scattered light part is obtained from approximator by using it twice. 

Observer I sees the same atmosphere as observer II, plus light scattered 
between both observers. Thus color of the light scattered between observer 
and surface can be obtained as a difference between neural network’s output 
for observer, and output received for probe positioned on watched point on 
surface. 

Reflected light part is obtained by using the model of atmosphere directly: 

)]))θcos(,ρ[

)]αcos(,ρ[)]αcos(,ρ[(exp(ρ),θ,β(α

IIII

IIIIIIIIIIIIII

L

LLCF

+
+−−= bbI

, 

where angles and densities are taken for observers I and II, C means color 
of surface with no atmosphere in point II, function F is in most general case 
a BDRF for surface in point II. This calculation is performed on GPU’s 
fragment processor.  

V. Multiple atmospheres 

Atmosphere of earth is a multi-component atmosphere. It consists of 
gaseous part, and aerosols. Each of components scatters incident light 
differently, and thus must be treated separately. All above mechanisms are 
described for single atmosphere. In order to obtain proper color of 
atmosphere for multi-component atmospheres, a small addition is needed. 

This addition is correct, if a single component differs only by phase function 
F, coefficient b, and scaling factor H0. 
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Because all the above calculations are based on densities, rather than on 
heights, it is necessary to scale all densities to density of the highest 
atmospheric component: 
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The light model becomes: 
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By this method, model can be expanded to any number of components. 

VI. Neural network on GPU 

This implementation of perceptron depends on NV_vertex_program2_option 
extension. It uses both address registers for weights access, and branching 
and subroutines to make program fit into 256 instruction limit. It uses 9 
temporaries and 86 local parameters, and only first vertex attribute. Weights 
used for matrix multiplication are separated from weights used as bias. One 
address register is used for access to matrix multiplication weights and it 
moves by 4 during address addition, while the other is used for access to 
bias weights and it moves by 1. 

There are two versions of vertex program used, one for observer, and one 
for probe positioned on watched point on surface. They differ by method of U 
vector calculation. 

!!ARBvp1.0 
OPTION NV_vertex_program2; 
 
ATTRIB iPos = vertex.attrib[0]; 
 
PARAM mvinv[4] = { 
state.matrix.modelview.invtrans }; 
PARAM mv[4] = { 
state.matrix.modelview }; 
PARAM mvp[4] = { state.matrix.mvp 
}; 
PARAM lightDir = 
state.light[0].position; 
PARAM const1 = { 1.0, -2.0, 10.0, 
0.0 }; 
PARAM a1const = { 0.0, 0.0, 0.0, 
4.0 }; 

PARAM a2const = { 0.0, 0.0, 0.0, 
1.0 }; 
PARAM xxx = { 1.1111, 0.2, 0.05, -
0.05 }; 
PARAM nn[83] = { 
program.local[4..86] }; 
PARAM nndat = program.local[0]; 
PARAM pdat = program.local[1]; 
PARAM pdot = program.local[2]; 
TEMP t1, t2, t3, t4, t5, t6, t7, t8, t9, 
t10; 
 
ADDRESS addr1, addr2; 
 
OUTPUT oPos = result.position; 
 
ALIAS up = t3; 
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ALIAS lPos = t4; 
ALIAS eye = t5; 
 
#nndat.y is the number of weights 
used 
#in matrix multiplication. 
MOV t1, a2const; 
ADD t1.y, t1, nndat.y; 
ARL addr1, a1const; 
ARL addr2, t1; 
 
#vector U: 
MOV t1, mvinv[3]; 
DP3 up.x, mvinv[0], t1; 
DP3 up.y, mvinv[1], t1; 
DP3 up.z, mvinv[2], t1; 
DP3 t1.w, up, up; 
RSQ t1.w, t1.w; 
MUL up.xyz, t1.w, up; 
 
#vector L 
DP3 lPos.x, mvinv[0], lightDir; 
DP3 lPos.y, mvinv[1], lightDir; 
DP3 lPos.z, mvinv[2], lightDir; 
DP3 t1.w, lPos, lPos; 
RSQ t1.w, t1.w; 
MUL lPos.xyz, t1.w, lPos; 
 
#this is used for drawing 
atmosphere layer 
#when planet sphere is scaled by 
small factor 
MOV t2, iPos; 
MUL t2.xyz, t2, pdat.x; 
MOV t2.w, const1.x; 
 
#vector V 
DPH eye.x, t2, mv[0]; 
DPH eye.y, t2, mv[1]; 
DPH eye.z, t2, mv[2]; 
DP3 t1.w, eye, eye; 
RSQ t1.w, t1.w; 
MUL eye.xyz, t1.w, eye; 
 
DP4 oPos.x, t2, mvp[0]; 
DP4 oPos.y, t2, mvp[1]; 

DP4 oPos.z, t2, mvp[2]; 
DP4 oPos.w, t2, mvp[3]; 
 
ALIAS nnIn = t7; 
#this is calculation of input of neural 
network 
DP3 nnIn.x, eye, up; 
DP3 nnIn.y, eye, lPos; 
DP3 nnIn.z, lPos, up; 
MOV nnIn.w, pdat.y; 
MUL nnIn, nnIn, pdot; 
 
ALIAS arg = t5; 
ALIAS res = t6; 
ALIAS arg2 = t8; 
ALIAS res2 = t9; 
 
#Neural network: 
CAL nnSubNet; 
MOV t1, res; 
CAL nnSubNet; 
MOV t2, res; 
CAL nnSubNet; 
MOV t3, res; 
CAL nnSubNet; 
MOV t4, res; 
DP4 res.x, nn[addr1.y + 0], t1; 
DP4 res.y, nn[addr1.y + 1], t2; 
DP4 res.z, nn[addr1.y + 2], t3; 
DP4 res.w, nn[addr1.y + 3], t4; 
#ARA addr1.xy, addr1; 
CAL nnBiasFunc (TR); 
 
#final transformation  
SGE arg, res, xxx.z; 
MUL arg, arg, xxx.x; 
ADD res, res, xxx.w; 
MUL res, res, arg; 
MUL res.w, res.w, nndat.x; 
MUL arg.xyz, res, res.w; 
MUL arg.xyz, arg, const1.z; 
MOV arg.w, const1.x; 
MOV result.color.front, arg; 
 
BRA endProg (TR); 
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#a single subnetwork 
nnSubNet: 
MOV arg, nnIn; 
CAL nnLayer4_8 (TR); 
MOV arg, res; 
MOV arg2, res2; 
CAL nnLayer8_4 (TR); 
RET; 
 
#transformation from 4-dim nn-layer 
to 4-dim nn-layer (unused) 
nnLayer4_4: 
DP4 res.x, nn[addr1.y + 0], arg; 
DP4 res.y, nn[addr1.y + 1], arg; 
DP4 res.z, nn[addr1.y + 2], arg; 
DP4 res.w, nn[addr1.y + 3], arg; 
ARA addr1.xy, addr1; 
CAL nnBiasFunc (TR); 
RET; 
 
#transformation from 4-dim nn-layer 
to 8-dim nn-layer 
# arg => res, res2 
nnLayer4_8: 
DP4 res.x, nn[addr1.y + 0], arg; 
DP4 res.y, nn[addr1.y + 1], arg; 
DP4 res.z, nn[addr1.y + 2], arg; 
DP4 res.w, nn[addr1.y + 3], arg; 
ARA addr1.xy, addr1; 
DP4 res2.x, nn[addr1.y + 0], arg; 
DP4 res2.y, nn[addr1.y + 1], arg; 
DP4 res2.z, nn[addr1.y + 2], arg; 
DP4 res2.w, nn[addr1.y + 3], arg; 
ARA addr1.xy, addr1; 
CAL nnBiasFunc (TR); 
MOV arg2, res; 
MOV res, res2; 
CAL nnBiasFunc (TR); 
MOV res2, res; 
MOV res, arg2; 
RET; 
 
#transformation from 8-dim nn-layer 
to 4-dim nn-layer 
# arg, arg2 => res 
nnLayer8_4: 

DP4 res.x, nn[addr1.y + 0], arg; 
DP4 res2.x, nn[addr1.y + 1], arg2; 
DP4 res.y, nn[addr1.y + 2], arg; 
DP4 res2.y, nn[addr1.y + 3], arg2; 
ARA addr1.xy, addr1; 
DP4 res.z, nn[addr1.y + 0], arg; 
DP4 res2.z, nn[addr1.y + 1], arg2; 
DP4 res.w, nn[addr1.y + 2], arg; 
DP4 res2.w, nn[addr1.y + 3], arg2; 
ARA addr1.xy, addr1; 
ADD res, res, res2; 
CAL nnBiasFunc (TR); 
RET; 
 
#transformation from 8-dim nn-layer 
to 
# 8-dim nn-layer (10th temporary is 
needed) 
# arg, arg2 => res, res2 
nnLayer8_8: 
DP4 res.x, nn[addr1.y + 0], arg; 
DP4 res2.x, nn[addr1.y + 1], arg2; 
DP4 res.y, nn[addr1.y + 2], arg; 
DP4 res2.y, nn[addr1.y + 3], arg2; 
ARA addr1.xy, addr1; 
DP4 res.z, nn[addr1.y + 0], arg; 
DP4 res2.z, nn[addr1.y + 1], arg2; 
DP4 res.w, nn[addr1.y + 2], arg; 
DP4 res2.w, nn[addr1.y + 3], arg2; 
ARA addr1.xy, addr1; 
ADD res, res, res2; 
MOV t10, res; 
DP4 res.x, nn[addr1.y + 0], arg; 
DP4 res2.x, nn[addr1.y + 1], arg2; 
DP4 res.y, nn[addr1.y + 2], arg; 
DP4 res2.y, nn[addr1.y + 3], arg2; 
ARA addr1.xy, addr1; 
DP4 res.z, nn[addr1.y + 0], arg; 
DP4 res2.z, nn[addr1.y + 1], arg2; 
DP4 res.w, nn[addr1.y + 2], arg; 
DP4 res2.w, nn[addr1.y + 3], arg2; 
ARA addr1.xy, addr1; 
ADD res, res, res2; 
MOV arg, res; 
MOV res, t10; 
CAL nnBiasFunc (TR); 
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MOV t10, res; 
MOV res, arg; 
CAL nnBiasFunc (TR); 
MOV res2, res; 
MOV res, t10; 
RET; 
 
#Bias addition and perceptron 
activation function. 
nnBiasFunc: 
ADD res, nn[addr2.y + 0], res; 
MUL res, res, const1.y; 
EX2 res.x, res.x; 

EX2 res.y, res.y; 
EX2 res.z, res.z; 
EX2 res.w, res.w; 
ADD res, res, const1.xxxx; 
RCP res.x, res.x; 
RCP res.y, res.y; 
RCP res.z, res.z; 
RCP res.w, res.w; 
ARA addr2.xy, addr2; 
RET; 
 
endProg: 
END 

 

VII. Results 

Images below depict atmosphere and planet form different heights. This 
atmosphere consists of two components, one with following parameters: 
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Color of surface is constant (RGB = [0.5, 0.5, 0.5]), and any variation from 
this value is due to atmosphere. Surface and atmosphere is 
a triangular mesh, and aplication uses a slightly modified 
CLOD algoritm described by Henri Hakl in “Diamond 
Algorithm” Mesh is based on sides of icosahedron (on left).  

On Athlon 1700+, GeForce FX 5500, in 1280x1024x32 
resolution, when surface mesh consists of 2000 triangles, the program 
runs with speed of 9 frames per second. 

 

Sea level (r=10000, m=10000) 
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A bit higher (r=10000, m=10000) 
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...higher (r=10000, m=10000) 
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..and higher (r=10000, m=10000) 
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Sun is low. Observer at sea level. (r=10000, m=10000) 
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Very high. (r=10000, m=10000) 
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Dense atmosphere, sea level (r=100, m=100) 
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Dense atmosphere, space (r=100, m=100) 

Neural network used here during learning uses 800.000 random samples 
of function I. 

It is presented below how error was changing during learning in case of 
800.000 samples, and in case of 8.000.000 samples. As this charts show, 
in first case, the network is not fully learned, but this case is much faster, 
and it yields good results. 
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Fewer samples 

 
Less samples 
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