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Abstract. The paper focuses on problems which arise when two different types of AI 
methods are combined in one design. The first type is rule based, rough set 
methodology operating is highly discretized attribute space. The discretization is a 
consequence of the granular nature of knowledge representation in the theory of 
rough sets. The second type is neural network working in continuous space. Problems 
of combining these different types of knowledge processing are illustrated in a system 
used for recognition of diffraction patterns. The feature extraction  is performed with 
the use of holographic ring wedge detector, generating the continuous feature space. 
No doubt, this is a feature space natural  for application of the neural network. 
However, the criterion of optimization of the feature extractor uses rough set based 
knowledge representation. This latter, requires the discretization of conditional 
attributes generating the feature space. The novel enhanced method of optimization 
of holographic ring wedge detector is proposed, as a result of modification of 
indiscernibility relation in the theory of rough sets. 
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1 Introduction 

 The paper presents two types of artificial intelligence (AI) methods 
applied to the design of a hybrid opto-electronic pattern recognition system. 
Such systems have many advantages  compared to pure optical or pure 
electronic solutions.  They perform heavy computations (like transforming 
into frequency domain or feature extraction) in optical mode, practically 
contributing no time delays. The post-processing of optical results is 
performed by computers, remarkably often with the use of AI methods. 
Presented in the paper system is an example of such hybrid pattern 
recognizer, working in spatial frequency domain obtained by means of 
Fraunhofer diffraction [1]. 
 The main element in optical part of the system is the computer 
generated hologram (CGH), proposed by Casasent and Song [2]. CGH is 
essentially the holographic version of commercially available ring wedge 
detector (RWD). The application of RWD elements into image recognizers 
were pioneered by George et al. [3, 4]. Combining Casasent’s idea of 
holographic RWD (HRWD) with results of preliminary studies of George 
and Wang, who applied RWD as a feature extractor to neural network 
based classifier, gave theoretical basis for building the complete and useful 
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image recognition system. Despite this completeness, the system was 
lacking possibility of adaptation. These problems were caused by the lack 
of optimization methods.  
 The issue of how to find a good objective function for the 
optimization of HRWD was discussed by Cyran and Mrózek in [5]. 
Proposed by them methodology was based on the theory of rough sets 
founded by Pawlak [6] and developed further by (among others) Mrózek [7, 
8], Ziarko [9] and Skowron and Grzymała-Busse [10]. Rough set based 
methodology of optimization of the HRWD element was applied for 
diffraction image recognition problems by Jaroszewicz et al. [11]. 
 The method of optimization of HRWD was applied to artificial neural 
network (ANN) based system used for recognition of the type of subsurface 
stress in materials with embedded optical fiber [12-14]. Another examples 
include the systems designed  for the monitoring of the engine condition 
[15, 16]. The purely optical version of this recognition system was 
considered by Cyran and Jaroszewicz [17]. This fully concurrent system is 
yet limited by the development of technology of optically implemented 
artificial neural networks. The critical issue is the obtaining of  nonlinear 
activation function applied to process data from Stanford optical matrix-
vector multiplayer. 
 In above works the ANN based classifiers were applied, however the 
optimization procedure in fact favored the rough set based classifiers, due 
to the same, discrete nature of knowledge representation used both for the 
definition of the objective function and in a classifier. The application of 
rough set based classifiers is presented in [18, 19]. 
 Now, the purpose of this paper, being the extended version of a 
conference paper [20] is to discuss some important issues appearing when 
combining rough sets and neural network based information processing 
types. These issues result from inherent incompatibility of the knowledge 
representation in rough set theory and neural network studies. 
 The comparison of advantages and drawbacks of these two types of 
AI methodologies led the author to the idea of enhancement in the HRWD 
optimization. Postulated new method works in continuous feature space 
and yet does not  resign from rough set based formal apparatus. To 
address properly these issues, all what is needed, is an appropriate 
modification of the  notion of indiscernibility in the theory of rough sets. It is 
discussed in the next section. 
 
2 Modification of indiscernibility relation 

 The indiscernibility relation plays crucial role in methodology of 
knowledge processing described by rough set formalism. In its classical 
form it requires the discretization of real valued attributes, performed 
independently of each other.  However, an analysis of notions present in 
the theory of rough sets proves that vast majority of them do not require 
this specific, classical form. The only actual (from theoretical point of view) 
demand is that this relation should be an equivalence relation, i.e. it should 
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be reflexive, symmetric and transitive. From practical perspective, this 
relation should make indiscernible such objects which belong to the same 
cluster in ℜn. However clustering in ℜn cannot be done separately for each 
attribute belonging to ℜ. 
 In particular classical form of indiscernibility relation is not required 
by consistency measure of a decision table. This coefficient is of special 
interest here because it has been used as the objective function in 
evolutionary optimization of HRWD dedicated for multimodal distribution of 
classes in a feature space. 
 The reasons supporting the choice of such criterion have been 
considered in [5]. Despite they seem to be reasonable, application of 
classical definition of indiscernibility relation, makes the result always sub-
optimal. With this motivation, let us introduce the modified version of 
indiscernibility relation in a formal way. 
 Let S = <U, Q, v, f > be the information system composed of universe 
U, set of attributes Q, information function f, and a mapping v. This latter 
mapping associates each attribute q ∈ Q with its domain Vq. The 
information function f : U × Q → V is defined in such a way, that f (x, q) 
denotes the value of attribute q for the element x ∈ U, and V is a domain of 
all attributes q ∈ Q, defined as a union of all domains of single attributes, 
i.e. V = Uq ∈Q, Vq. Then each nonempty set of attributes C ⊆ Q defines the 
classical version of indiscernibility relation I0(C) ⊆ U × U of discrete 
attributes q ∈ C, as  

 

( )
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 (1) 

 
where x, y ∈ U. If attributes are discrete this is very natural way of defining 
this relation. However if we originally deal with real valued attributes, then 
some kind of clustering and discretization of continuous attributes has to be 
performed before application of rough set theory. Let this process be 
denoted as a vector function ΛΛΛΛ: ℜcard (C) → {1, 2, …, ξ} card (C), where ξ is the 
discretization factor being the number of clusters covering the domain of 
the individual attributes q ∈ C. Analogously, let discretized value of any 
individual attribute q ∈ C be the result of a scalar function 
Λ: ℜ → {1, 2, …, ξ} . Then, the classical form of indiscernibility relation is 
defined as: 
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 However, the above form of the indiscernibility relation, proposed by 
classical theory of rough sets, as well as by its generalization named 
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variable precision model defined in [9], is not actually required for rough set 
based knowledge processing.  
Let generalized version of the indiscernibility relation be dependent on a 
family (set) of sets of attributes. This allows us to introduce hierarchy of 
sets into originally unstructured set of attributes that the relation depends 
on.  
 Let C = { C1, C2, …, CN } be such a family of disjoint sets of attributes 
Cn ⊆ Q, that unstructured set of attributes C ⊆ Q is equal to the union of 
elements of the family C. This means that C  =  UCn∈C, Cn. Observe that both 
C and C contain the same collection of single attributes, however C 
includes additional information about the structure of attributed. If this 
structure is irrelevant for the problem considered, it can be simply ignored 
and then we obtain, as a special case, the classical version of 
indiscernibility relation I0. However it is possible to obtain also other 
versions of this modified relation for which the introduced structure is 
meaningful.  
 To satisfy practical requirement of proximity in a real valued space of 
indiscernible (in a rough set sense) objects, it is natural to define the 
modified indiscernibility relation Igen(C) ∈ U×U as  
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⇔
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where x, y ∈ U, and Clus (x, Cn) denotes the number of the cluster, that the 
element x belongs to. The two extreme cases of this relation are obtained 
when: (i) family C is composed of exactly one set of conditional attributes 
C, and (ii) when family C is composed of card (C) sets, each containing 
exactly one conditional attribute q ∈ C.  
 The classical form I0 of the indiscernibility relation is obtained as the 
second extreme special case of modified version Igen, because then 
clustering and discretization are performed separately for each continuous 
attribute. Therefore, it follows, that 

I0(ΛΛΛΛ[C])  ≡  Igen(C) ⇔  

C = {{ qn}: C =  Uqn ∈C, {qn}}  (4) 
∧ Clus (x, {q}) = f (x, Λ[q]) .  

 
3 Application to hybrid pattern recognizer 

Image recognition is the process opposite to image generation. Objects 
belonging to some classes Ci produce their images Ii (Fig. 1). 
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Figure 1. Mappings present in image generation and recognition 
 

 The indirect approach, through the feature space, is favored due to 
the huge amount of information describing objects in image space. The 
feature space with reduced dimensionality describes images in more 
compact way, yet it should preserve all information required for the 
classification, being the mapping from feature space to space of classes. 
Hybrid opto-electronic solutions are systems composed of optical feature 
extractor and computer in the role of the classifier (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Opto-electronic image recognition system 
 

 One of the example is the system in which the optical feature 
extractor uses HRWD element for integration of Fourier power spectrum 
over rings and wedges (Fig. 3). 
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Figure 3. RWD illuminated by Fourier power spectrum of the input image 

 
 The Fourier spectrum is obtained by the Fraunhofer diffraction 
pattern brought by the spherical lens from infinity to back focal plane. The 
picture of optical setup is presented in Fig. 4. 

 

 
 

Figure 4. Picture of the optical setup.  
The RWD is placed in back focal plane of the lens 

 
 The Fourier spectrum is obtained by the Fraunhofer diffraction 
pattern brought by the spherical lens from infinity to back focal plane. The 
picture of optical setup is presented in Fig. 4. HRWD is a circular elements 
composed of rings and wedges, covered with the tiny grating (not visible in 
Fig. 3). Each region generates one feature, equal to the integral of the light 
intensity illuminating such region. Therefore the feature space is the N-
dimensional space ℜN, if N denotes the number of regions, i.e. when N is 
the sum of number of rings and wedges in HRWD. 
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 What is very important, is that features generated by rings are 
rotation and translation invariant, and features generated by wedges are 
size and translation invariant. These properties make possible to obtain the 
recognition system invariant with any of these transformation of input 
images. 
 The optimization of HRWD is a search for such  sizes of rings and 
wedges, as well as their number, that the recognition abilities are 
maximized. For the measure of these abilities we used rough set based 
consistency measure of decision table γC (D*)  with conditional attributes 
corresponding to rings and wedges, and decision attribute being the 
recognized class of the image. We argue that application of indiscernibility 
relation modified in (3) gives enhanced criterion as compared to criterion 
obtained with classical form of this relation (2) applied to real valued 
attributes. We demonstrate this by presenting optimization procedure and 
results of an experiment. 
 Since the defined above enhanced objective function is not 
differentiable, gradient-based search methods must be excluded. Therefore 
we optimize HRWD in a framework of evolutionary algorithm as presented 
in pseudo-code below:  

t ← 1;  
POPULATION ← Initialize;  
Evaluate (Q);  
ξ ← 2Q;  
do for x in POPULATION  
  do for i = 1 to card (U)   
    Cx[i] ← χ (imagei );  
    dx[i] ← Cj ;  
  od;  
  Fx ← Evaluate (γC (D*)); 
od;  
do while (ξ ≥ NumOfClasses) and (t < MaxGenNum)  
  FOUND ← FALSE;  
  Select (POPULATION);  
  Crossover (POPULATION);  
  Mutate (POPULATION);  
  Repair (POPULATION);  
  do for x in POPULATION  
    do for i = 1 to card (U)  
      Cx[i] ← χ (image i );  
      dx[i] ← Cj ;  
    od;  
    Fx ← Evaluate (γC (D*)); 
    if Fx = MaxValue then 

      FOUND ← TRUE;  
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      xopt  ← x;  
    fi;  
  od;  
  if FOUND then 
    ξ ← ξ / 2;  
  fi;  
  t ←  t + 1;  
od; 

 In the above algorithm t is the generation number, x is the 
chromosome (representing the HRWD) in the POPULATION and xopt is the 
chromosome representing genotype of the optimum HRWD. Cx[i] are 
discrete conditions of decision rule i generated by HRWD for image imagei. 
Similarly dx[i] denotes the decision attribute of mentioned decision rule and 
Cj is the abstract class the image imagei belongs to.  
 The algorithm has two flow control parameters: MaxGenNum 
(specifying maximum number of epochs for evolution) and MaxValue, 
indicating the maximum required value of the objective function.  Normally 
MaxValue should be set to 1 – to obtain fully consistent decision table but 
sometimes this could be to strong demand – then one should reduce this 
parameter.  
 This algorithm resembles that applied for criterion calculated based 
on classical definition of indiscernibility relation. The difference is in the 
meaning of ξ parameter. Previously it was the discretization factor required 
by rough set theory, now it is the number of clusters in clustering 
procedure. This change influences the initial value of ξ and the termination 
of presented program. The initial value of ξ now is calculated as 2Q for such 
minimum Q for which ξ ≥ Card (U). The program is stopped after achieving 
the maximum value of γC (D*) = MaxValue for the value of parameter 
ξ = NumOfClasses (where NumOfClasses denotes the number of classes 
to be recognized), as opposed to previous version, terminating when 
γC (D*)  = MaxValue, for ξ = 2. As genetic operators, the proportional 
selection in elitist model, one point cross-over and uniform mutation were 
used. The repair algorithm was used to handle the constraints given by the 
possible structures of HRWD. As the result of operation of the algorithm the 
parameters describing optimized HRWD are obtained (they are phenotypic 
features encoded in chromosome xopt)  
 The system considered we applied to recognition of the class of 
intermodal interference visible as the speckle structures (Fig 5). 
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Figure 5. Intermodal interference image taken from the output of optical fiber,  
and 3D plot of its power spectrum 

 
 The layout and intensity of the speckle strucures are dependent on 
the type of subsurface stress in the optical fiber illuminated by the coherent 
light from the laser. 
 The experiments were conducted for a set of 128 images of speckle 
patterns resulting from intermodal interference occurring in optical fiber. 
The images taken from the outpu of the fiber belonged to 8 classes taken in 
16 sessions. The training set was composed of 120 images taken out in 15 
sessions. The testing set contained 8 images belonging to different 
classes, representing one session. The process of training and testing was 
repeated 16 times, according to jack-knife method, i.e. for each iteration 
another session was used for testing set, and all but one sessions were 
used for training set. This procedure gave good basis for reliable cross-
validation with reasonably large number of images used for training.  
 The results of testing with probabilistic neural network (PNN) 
classifying images in feature space obtained from standard, optimized, and 
optimized with modified indiscernibility relation HRWDs, are presented in 
Table 1. One can observe that the normalized decision error (NDE) is small 
even for system with standard HRWD, indicating good overall properties of 
the presented diffraction pattern recognizer. However, NDE is further 
reduced when optimization is included, reaching its minimal value for 
optimization with proposed in (3) modification of indiscernibility relation. 
 The percentage of improvement with respect to system with standard 
HRWD, indicated by the coefficient k in Table 1 is 20% for optimization with 
classical definition of indiscernibility relation, and 25% for the modified 
version.  

 
Table 1. Results of testing the classification abilities of the system. The 

classifier is a probabilistic neural network having Gaussian radial 
function with standard deviation s = 0.125.  NDE and k stands for 
normalized decision error, and for percentage of decrease of 
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normalized decision error (with respect to results for standard 
HRWD), respectively. 

 

System with: 
NDE  
[%] 

k 
[%] 

Standard  
HRWD 
element 

 
2.0 

 
0 

HRWD optimized with 
standard indiscernibility 

relation 

 
1.6 

 
20 

HRWD optimized with 
modified indiscernibility 

relation 

 
1.5 

 
25 

 
 The increase of k from 20% to 25% does not look very impressive, 
however its proper interpretation requires referring to Fig. 6. 
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Figure 6. Evolutionary optimization presented in a horizontal log scale for number  
of generations t, reveals that (on average) the objective function increase is proportional 

to the exponent of t 
 

 Mentioned above figure presents the course of objective function in 
evolutionary optimization. What is striking, is the fact, that when the 
horizontal axis (denoting the number of generations) is drawn in a log 
scale, then the average increase of the objective is remarkably well 
mimicked by a straight line. This means that the objective grows like a 
logarithm of t, due to intuitively understandable fact, that optimization of 
already optimized solution becomes harder and harder.  



 11

 The difficulty of finding better solution than solution already 
optimized, gives some flavor of the corresponding difficulty concerning the 
decrease of NDE, represented by the increase of k. In this light, the 
increase of k from 20 to 25% reflects the effect of significant improvement 
of the HRWD generated feature space. The computer generated mask of 
optimized HRWD element (Fig. 7) is obtained from its representing 
chromosome xopt by the  application of decoding function and formulas 
defining gratings of HRWD regions. 

 

 
 

Figure 7. Mask of optimized HRWD 
 

  
4 Discussion 

 It is a well known drawback of rough set theory, that it deals with 
continuous attributes not in a natural way. To overcome this disadvantage, 
the modified form of indiscernibility relation can be used (3). It introduces 
the structure into unstructured collection of attributes that the relation 
depends on. Since the classical relation is a special case of the modified 
version, therefore this modification can be considered as a step towards 
generalization. Remarkably, the generalization is equally valid both for 
classical theory of rough sets, and for the variable precision model, most 
often used in processing of knowledge obtained from huge data sets. In the 
case of real-valued attributes, the modified relation allows for performing 
multidimensional cluster analysis, contrary to multiple one-dimensional 
analyses required by classical form.  
 In the experimental study we used a family C = {CR, CW}  composed 
of two sets CR (representing feature space generated by rings) and CW 
(representing feature space generated by wedges), each of them 
containing 8 features (treated as real valued conditional attributes). It 
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allowed us to enhance the recognition abilities by reducing the normalized 
decision error by 5% compared to system optimized with classical 
indiscernibility relation. One should notice that this improvement is 
achieved on already optimized solution, which made any further 
improvement extremely difficult.  
 Despite the fact, that proposed here enhanced optimization uses 
modified version of indiscernibility relation, the classical form is also useful 
(see for example [5]). Therefore, in order to maximize even more the 
recognition abilities of the system one can propose a system in which the 
two types of optimization procedures are used. The optimized HRWD 
structures (say HRWD_discrete and HRWD_continuous), obtained from 
these procedures, can be combined in one image recognition system as 
presented in Fig. 8. Such system (described also in [21]) is in fact 
composed of two separate feature extractors, however the speed of 
recognition remains the same, due to parallel processing of optical signals. 
The spatial light modulators (SLM1 and SLM2, Fig. 8) present the same 
transparent image of speckle structures, recorded on CCD camera and 
transmitted from the host computer. The coherent laser beam is divided to 
two beams, each illuminating one transparency. Due to separate 
optimization procedures, each optical path produces optimal feature space 
for given classifier. The final decision is based on two local classifications in 
any known data fusion algorithms.  
 The advantage of the system presented in the paper compared to 
similar systems described in earlier works is two-fold.  
 First, it uses HRWD optimization methods dedicated for the given 
type of classifier subsequently used in a system. For rough set based 
classifier the optimization procedure works in a discrete feature space 
searching for the optimal structure of HRWD fitted for work with discrete 
type of classification. Similarly, for artificial neural network based 
classification working with continuous valued feature vectors, the procedure 
of HRWD optimization is also able to work in real valued attribute space. 
This has been made possible by the author’s modification of discernibility 
relation defined in rough set theory. 
 Secondly, the application of both subsystems in a one two-way 
solution should result in further improvements in recognition abilities. 
However further studies are necessary to obtain numerically the 
improvement. Obvious limitation of presented system is its cost. Even if 
holographic version of RWD is much cheaper than commercially available 
RWD, the need of usage of two HRWD in a two-way system, as compared 
to only one such element in a traditional one-way system, makes presented 
solution not extremely cost effective, and sometimes the trade-off between 
cost and efficiency could favour one-way solution. However, when the 
speed is not crucial, the hybrid system can be simulated by a computer 
program, and then the expenses do not increase with introduction of the 
second way of image processing. 
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Figure 8. Integration of neural network and rough classifier in combined system composed  
of two-way optical feature extractor. 
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