
STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

New features in UML syntax and semantics

Michał Wolski 1, Andrzej Stasiak2
1 Akademia Podlaska, Instytut Informatyki,

michal@iis.ap.siedlce.pl
2 Wojskowa Akademia Techniczna, Instytut Teleinformatyki i Automatyki,

stasiak@ita.wat.edu.pl

Abstract. This paper is an overview of the most important new features introduced to version 2.0
of Unified Modeling Language. We denote the changes to existing diagram and present four new
modeling techniques. We present the changes in definitions of syntax, semantics and pragmatics
of behavioral and static models of systems designed with UML 2.0. Particular emphasis is put on
the changes to sequence and activity diagrams and to component diagrams. The newly introduced
diagrams, unknown in previous UML versions – interaction overview diagrams, timing diagrams,
composite structure diagrams and package diagrams – are described with the most detail.

1 Introduction

UML (Unified Modeling Language) is a normalized language (supported by
OMG – Object Management Group) used to create design models of IT systems.
This language has been evolving for more than 10 years, and recently version 2.0
became the official new standard, providing new and enhanced features for
behavioral and static system modeling. In UML 2.0 the language elements
definitions have been specified with more details, two diagrams have been renamed.
Four new diagrams were introduced – there were 9 diagrams in the previous version
(UML 1.5), UML 2.0 has 13 diagrams.

2 UML 2.0 techniques – an overview

The main part of designed system’s model is created using techniques

known from previous UML versions. Two diagrams have been renamed, and the
diagram set known from previous versions (1.x) has been complemented with
package diagrams and composite structure diagrams, as well as interaction overview
and timing diagrams used for behavioral modeling – the timing diagram is especially
important in real time systems modeling. The class diagram below (fig. 1) presents

266 Wolski M., Stasiak A.

Studia Informatica vol. 1/2(7)2006

current (UML 2.0) diagram structure. Both the new and renamed diagrams have been
marked.

The class diagram on figure 1 is put inside a frame not by a chance – all
UML 2.0 diagrams have to have a frame and diagram’s name and two letter
abbreviation has to be put in upper left corner.
In UML 2.0 two diagrams used in behavioral modeling have been renamed.
Communication diagram has been previously called Collaboration diagram, and the
State Machine diagram ha been previously named Statechart diagram. Neither those
two diagrams, nor the Object and Use Case diagrams have been otherwise changed,
so they won’t be discussed any further.

cd UML 2.0 Diagrams

Diagram

Structure Diagram Behavior Diagram

Class
Diagram

Object
Diagram

Component
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

State Machine
Diagram

Use Case
Diagram

Activity
Diagram

Interaction
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram

new diagrams in
UML 2.0

In UML 1.x, this diagram was
called collaboration diagram

In UML 1.x, this
diagram was
called
statechart
diagram

Figure 1. UML 2.0 Diagrams

3 Changes to previously known diagrams

UML 2.0 introduces more detail to many language elements klown from

previous versions. Those modifications are described in the following sections.

 New features in UML syntax and semantics 267

Modeling and simulation

3.1 Class Diagrams

The changes in class diagrams introduced in UML 2.0 remove some
ambiguities from notation.

First such element is the multiplicity of associations. UML 2.0 better details
the multiplicities by adding (in curly braces) keywords representing type of the
multiplicity [1]:
set - unordered, unique (duplicates not allowed) elements default;
bag - unordered, non-unique (duplicates allowed) elements;
ordered- ordered, unique elements ;
list (or sequence) ordered, non-unique elements;
Fig. 2 presents a sample class diagram using composition, which shows us that
a single hotel has between 1 and 25 non-duplicate hotel rooms.

Figure 2. Multiplicity example

The same rules apply to specifying multiplicities of attributes and objects.

Another change is a reduction in number of dependency relationship types. In UML
2.0 dependency relationship types <<local>>, <<parameter>> and <<global>> are
not used any more [3].

3.2 Component Diagrams

Component diagrams in UML 2.0 were not changed much when compared to
previous versions. The representation of some entities (pictograms) has been
changed. The first important change is the modification of the main element of
component diagrams – the component. This changes both the notation and role of
a component. UML 2.0 dictates presenting components as classes with the
<<component>> stereotype – optionally a class with a small component pictogram
known from version 1.x may be used (fig 3).

UML 2.0 changes not only notation, but also the scope of component’s usage.
In previous UML versions a subsystem element has been used to model the physical
system architecture. UML 2.0 abandons the subsystem element and uses component
as an aggregate for subsystems on all levels of system design.

Elements known from UML 1.x such as subsystem realization and subsystem
specification have been replaced by component stereotypes <<realization>> and
<<specification>>. A new stereotype dedicated for large scale components [6]
<<subsystem>> has been introduced.

268 Wolski M., Stasiak A.

Studia Informatica vol. 1/2(7)2006

Interface is another component diagram element with modified notation. UML 2.0
allows utilization of pictograms known from previous versions of UML, but also
defines new notation that makes the interface utilization more precise (fig. 3).

Figure 3. UML 2.0 interface notation

Interface notation defined in UML 2.0 (fig. 3) uses two interfaces called

connectors used by a “TicketSeller” component. The first connector –
“individualSales” is a Provided Interface, it indicates the fact, that TicketSeller
provides individual sales operations to other components. The second connector is a
Required Interface – an interface required for the component to function [4]. UML
2.0 allows for situations, in which a provided or required interface is not connected
to its counterpart on a component diagram.

The component connection technique presented in the example (fig. 3)
provides a noteworthy advantage – it allows the designer to trace components and
interfaces required to realize and implement components providing essential system
functions.

3.4 Deployment Diagrams

Deployment diagrams – like in UML 1.x – are used to prezent the
configuration of deployed system’s nodes and installation locations of components.
UML 2.0 introduces new elements. The first new element is Deployment
Specification, responsible for description of parameters required to deploy
component in a given node. Deployment specification is a tool used to parametrize
relations between various software and hardware technologies. The next element
added in UML 2.0 is Device, representing physical computer resources which may
execute deployed artifacts [1]. Anoter new element is Execution Environment,
representing selected platform type (i.e. operating system, database engine etc). The
last modification is a change of connection stereotype from <<implement>> to
<<manifest>>.

Figure 4. Deployment diagram example

 New features in UML syntax and semantics 269

Modeling and simulation

The <<manifest>> dependency represents a physical materialization of one or
more model elements by an artifact. The name change is caused by the fact, that the
word “implement “ is used too often [5].

3.5 Activity Diagram

Activity diagrams in UML 2.0 have undergone serious changes. The changes
apply to notation, semantics and pragmatics of those diagrams.

Table 1. Selected New Activity diagram elements

Symbol Name Description

Activity Parametrized system’s behavior
presented as ordered, subordinate
elements, of which the Action is most
important.

Action The basic action unit. An executable
action node, which contains
a transformation or a process
of modeled system.

Flow Final Node A meta state representing a stop
in activity execution before its
completion.

Activity Parameter
Node

Objects existing at the beginning
or end of an activity, that contain entry
parameters and results.

Activity Partition A group of actions that have similar
characteristics. Replaces swimlines
from UML 1.x, may be vertical or
horizontal.

Datastore Used to store persistent data.

Pin Represents flow of data to/from action.
May be used to represent a flow of
tokens.

Table 1 presents selected new elements used in activity diagram, their

notation and description [5]. Other elements have not changed their semantics,
and due to obvious reasons can’t be described in detail.

270 Wolski M., Stasiak A.

Studia Informatica vol. 1/2(7)2006

Changes to activity diagrams were very extensive. Stages in activity diagrams
in UML 1.x were called activities or activity states. In version 2.0 they are called
actions and are not decomposed any further. An important modification
in UML 2.0 is the fact, that activity diagrams are expressed using Petri-NET
semantics. Another change is an unification in control and data flows. In UML 2.0
both flow types are represented by a continuous line, reserved for control flows only
in previous versions. UML allows representation of data (objects) with technique
known from UML 1.x (fig. 5), but also allows to represent flow of data streams as
tokens. Action ports – Pins are used to represent such situations.

Figure 5. Activity diagram

 New features in UML syntax and semantics 271

Modeling and simulation

3.6 Sequence Diagrams

Sequence diagrams in UML 2.0 have more detailed semantics when
compared to previous versions. The most important new feature is the possibility of
marking chosen, conceptually closed piece of diagram, which may be further refined.
Those segments may be presented with interaction stereotypes and then connected
with appropriate operators, thus allowing the designer to present variants and
extensions to a scenario. Table 2 below contains chosen combined fragment
stereotypes. A full specification of all stereotypes can be found in [5].

Table 2. Interaction operators (combined fragment)

Keyword Description

alt Divides a segment of interaction according to Boolean logic rules
into two alternative scenarios. Each alternate path has to provide
a guard which has to be fulfilled to execute given alternative.

assert Specifies the only valid fragment to occur. Often enclosed within
a consider or ignore operand.

break Points to a segment of sequence diagram which will be executed if
a condition is fulfilled. The fulfillment of a condition results in
execution of a sequence of messages contained in the segment and
then termination of the scenario. If the guard is not fulfilled,
messages contained in the segment are omitted.

critical Indicates a sequence that cannot be interrupted by other processing
ignore Points to a segment of interaction containing messages that will be

omitted, as their visibility does not change the system’s behavior.
The ignored messages will be listed after the ignore keyword.

loop Interaction segment will be repeated specified numer of times
and has one subfragment with guard. The guard may have minimum
and maximum count as well as a Boolean condition. If the guard
is absent, it is treated as true and the loop depends on the repetition
count

opt Optional interaction segment, which is executed if a guard
is fulfilled.

par Represents parallel execution of message flow.
strict Indicates the behaviors of the operands must be processed in strict

sequence.

Another new feature is the possibility to point – through reference – to
external interaction diagrams. In such case the connection between sequence
diagram and an external diagram may be realized with a Diagram Gate or a fragment
pointing to a reference that exists on all life lines. UML 2.0 allows also for messages,
which do not have a known sender or receiver (fig. 6).

272 Wolski M., Stasiak A.

Studia Informatica vol. 1/2(7)2006

UML 2.0 also allows to abandon underlining names of the objects taking part
in an interaction.

sd Sales

:Order

:ProductDB

loop

[get next item]

Sales
Department

alt

[unavailable]

[available]

ref
get customer status

create

reserve product

add product

reject product

inform

Figure 6. Sequence diagram

4 New diagrams in UML 2.0

The previous part of this paper described changes made to diagrams known

from previous UML versions. The rest of this paper discusses new modeling
techniques.

 New features in UML syntax and semantics 273

Modeling and simulation

4.1 Package Diagram

Package diagram has been used in previous UML versions, in version 2.0 it
has been approved as a standard. Notation and types of dependencies between the
packages have not been changed. A new feature in UML 2.0 is a view of embedded
package contents as a specification of its elements (fig 7). This mechanism is called
package merge and is not intended for use by the ordinary modeler because this
technique is destined primarily for metamodel builders forced to reuse the same
model for several different, divergent purpouses.[1]

Figure 7. Merging the contents of package

4.2 Composite Structure Diagram

Composite Structure Diagram or Internal Structure Diagram[1] is a new
feature in UML 2.0, and is used to describe internal structure of classifiers (e.g.
classes, components, nodes, use cases) allowing for interaction points of a structural
classifier with other system elements.

Figure 8. Composite structure diagram example

Composite structure diagrams allow the designer to model atypical

cooperation between elements of the system architecture, which extraordinary
specific was unknown during initial design phase. Structure diagrams present
a decomposition of classifier parts. Those parts may be further decomposed. There is
also a possibility of encapsulation of a structural class and connecting its part via
a port with an external interface (fig. 8).

274 Wolski M., Stasiak A.

Studia Informatica vol. 1/2(7)2006

Another specific type of composite structure diagrams exists – one that
represents relations between cooperating objects. It is described in detail in [1] and [5].

4.3 Interaction Overview Diagram

Interaction Overview Diagram is a new element of UML. This diagram is
a specialized form of activity diagram and is used to present dependencies
and message flows between interactions.

sd Sales

ref get customer status

sd Order

:Customer :Sale
Department

order

ref
check status of order

ref
Buy Product

Figure 9. Interaction overview diagram – example

 New features in UML syntax and semantics 275

Modeling and simulation

An interaction overview diagram uses the semantics and notation of activity
diagrams, with one exception – instead of activities and actions nodes, rectangular
elements symbolizing interaction diagrams or interaction segments are used.

During interaction overview diagram creation two types of interaction
elements may be used. Rectangular elements with interaction diagram name and ref
keyword in upper left corner are the first type – they represent references to those
diagrams. The second type are sequence or communication diagrams embedded
directly in the interaction overview diagram (fig. 9).

4.4 Timing Diagrams

Timing Diagrams are a new feature in UML 2.0. They are used to present the
object’s behavior in an environment with severe timing constraints [5]. Obviously
the diagrams of this type will be most useful in real time system modeling. Timing
diagrams are perfect for presenting the changes in state of objects and their influence
over other objects. An additional advantage presented by timing diagrams is the
possibility of time constraint modeling. An example of timing diagram with the
description of its elements is presented on fig. 10.

Figure 10. Example of timing diagram

5. Conclusions

All living languages evolve to allow its users to create statements or
descriptions that adequately present past, present and new (previously unknown)

276 Wolski M., Stasiak A.

Studia Informatica vol. 1/2(7)2006

reality. The main IT providers organized in OMG reached a conclusion that after 7
years that passed since UML 1.1 has been made official, it is time to introduce
essential changes leading to approval of its’ new generation – UML 2.0.
The conclusions from analysis of the changes in notation and semantics of UML
presented in this paper are obvious. The creators of UML are abandoning model
simplicity in order to make the models more precise and formal. The future will tell,
if this direction is the correct one.

References

1. Booch G., Rumbaugh J., Jacobson I.: The Unified Modeling Language Reference

Manual, Second Edition, Addison Wesley, 2005.
2. Booch G., Rumbaugh J., Jacobson I.: The Unified Modeling Language, User

Guide, Addison Wesley, 1998.
3. Fowler M.: UML Distilled: A Brief Guide to the Standard Object Modeling

Language, Third Edition, Addison Wesley, 2003.
4. Kendall S.: Fast Track UML 2.0, Apress, 2004.
5. Object Management Group: Unified Modeling Language: Superstructure,

Version 2.0, ptc/03-07-06.
6. Rational Unified Process ver. 2003.06.13.
7. Rosenberg D., Scott K.: Use Case Driven Object Modeling with UML, Addison

Wesley, (1999).
8. Stasiak A. Wolski M.: Zintegrowane środowisko wytwarzania aplikacji

web’owych dla systemów mobilnych na platformie .NET, XI Konferencja
SCR’04, Ustroń 13-16 września 2004 r., 243-252.

9. Quatrani T.: Visual Modeling with Rational Rose 2000 and UML, Addison
Wesley (2000).

