STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

New features in UML syntax and semantics

Michat Wolski*, Andrzej Stasiak

! Akademia Podlaska, Instytut Informatyki,
michal@iis.ap.siedlce.pl

2 Wojskowa Akademia Techniczna, Instytut Teleinfatyki i Automatyki,
stasiak@ita.wat.edu.pl

Abstract. This paper is an overview of the most important festures introduced to version 2.0
of Unified Modeling Language. We denote the charigesxisting diagram and present four new
modeling techniques. We present the changes initiefis of syntax, semantics and pragmatics
of behavioral and static models of systems desigvigtdUML 2.0. Particular emphasis is put on
the changes to sequence and activity diagramsoacmhtponent diagrams. The newly introduced
diagrams, unknown in previous UML versions — intéicn overview diagrams, timing diagrams,
composite structure diagrams and package diagraars described with the most detail.

1 Introduction

UML (Unified Modeling Language) is a normalized dprage (supported by
OMG - Object Management Group) used to create desigdels of IT systems.
This language has been evolving for more than Hisyeand recently version 2.0
became the official new standard, providing new athanced features for
behavioral and static system modeling. In UML 2l tlanguage elements
definitions have been specified with more detads diagrams have been renamed.
Four new diagrams were introduced — there werea§rdims in the previous version
(UML 1.5), UML 2.0 has 13 diagrams.

2 UML 2.0 techniques — an overview

The main part of designed system’s model is creat®idg techniques
known from previous UML versions. Two diagrams hdeen renamed, and the
diagram set known from previous versions (1.x) bagn complemented with
package diagrams and composite structure diagrasnsgell as interaction overview
and timing diagrams used for behavioral modelinige-timing diagram is especially
important in real time systems modeling. The cllisgram below (fig. 1) presents

266 Wolski M., Stasiak A.

current (UML 2.0) diagram structure. Both the newl aenamed diagrams have been
marked.

The class diagram on figure 1 is put inside a framoeby a chance — all
UML 2.0 diagrams have to have a frame and diagran@&me and two letter
abbreviation has to be put in upper left corner.
In UML 2.0 two diagrams used in behavioral modelihgve been renamed.
Communication diagram has been previously calleiaBoration diagram, and the
State Machine diagram ha been previously name@taitt diagram. Neither those
two diagrams, nor the Object and Use Case diagteaws been otherwise changed,
so they won't be discussed any further.

cd UML 2.0 Diagrams/

A\

In UML 1.x, this

diagram was
Structure Diagram Behavior Diagram called

statechart
diagram

Class Deployment Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram

Composite Component Package Interaction State Machine
Structure Diagram Diagram Diagram Diagram
Diagram A

Timing .
D\ memmmmm el Diagram Interagtlon
Overview

Diagram

new diagrams in
UML 2.0

In UML 1.x, this diagram was [~~~ Communication Sequence
I llaboration diagram Diagram Diagram

Figure 1. UML 2.0 Diagrams
3 Changes to previously known diagrams

UML 2.0 introduces more detail to many languagemelets klown from
previous versions. Those modifications are desdribeéhe following sections.

Studia Informatica vol. 1/2(7)2006

New features in UML syntax and semantics 267

3.1 Class Diagrams

The changes in class diagrams introduced in UML &fhove some
ambiguities from notation.

First such element is the multiplicity of asso@as. UML 2.0 better details
the multiplicities by adding (in curly braces) keywds representing type of the
multiplicity [1]:

set- unordered, unique (duplicates not allowed) eletn default;
bag- unordered, non-unique (duplicates allowedmealnts;
ordered- ordered, unique elements ;

list (or sequence) ordered, non-unique elements;
Fig. 2 presents a sample class diagram using catiggpswhich shows us that
a single hotel has between 1 and 25 non-duplicattd booms.

1..258

HotelR
{ordered) otelRoom

Hotel

-

Figure 2. Multiplicity example

The same rules apply to specifying multiplicitigsatiributes and objects.
Another change is a reduction in number of depetyeslationship types. In UML
2.0 dependency relationship types <<local>>, <<petar>> and <<global>> are
not used any more [3].

3.2 Component Diagrams

Component diagrams in UML 2.0 were not changed nwitdn compared to
previous versions. The representation of some ienti{pictograms) has been
changed. The first important change is the modificaof the main element of
component diagrams — the component. This changéstbe notation and role of
a component. UML 2.0 dictates presenting componerdsclasses with the
<<component>> stereotype — optionally a class wittmall component pictogram
known from version 1.x may be used (fig 3).

UML 2.0 changes not only notation, but also thepscof component’s usage.
In previous UML versions aubsystenelement has been used to model the physical
system architecture. UML 2.0 abandons shbsystenelement and uses component
as an aggregate for subsystems on all levels tdsydesign.

Elements known from UML 1.x such as subsystem zatitin and subsystem
specification have been replaced by component ciigres <<realization>> and
<<specification>>. A new stereotype dedicated fargé scale components [6]
<<subsystem>> has been introduced.

Modeling and simulation

268 Wolski M., Stasiak A.

Interface is another component diagram element withlified notation. UML 2.0
allows utilization of pictograms known from previwersions of UML, but also
defines new notation that makes the interfacezatibon more precise (fig. 3).

purchase

TicketSeller [— ---=={—{ #components
o purchase Tickets

individualSales

Figure 3. UML 2.0 interface notation

Interface notation defined in UML 2.0 (fig. 3) uskgo interfaces called
connectors used by a “TicketSeller” component. The first cector -—
“‘individualSales” is a Provided Interface, it indtes the fact, that TicketSeller
provides individual sales operations to other congmts. The second connector is a
Required Interface — an interface required fordbmponent to function [4]. UML
2.0 allows for situations, in which a provided equired interface is not connected
to its counterpart on a component diagram.

The component connection technique presented inett@mple (fig. 3)
provides a noteworthy advantage — it allows thdghes to trace components and
interfaces required to realize and implement corept1providing essential system
functions.

3.4 Deployment Diagrams

Deployment diagrams — like in UML 1.x — are used goezent the
configuration of deployed system’s nodes and liggian locations of components.
UML 2.0 introduces new elements. The first new aamis Deployment
Specification responsible for description of parameters requir® deploy
component in a given node. Deployment specificaisoa tool used to parametrize
relations between various software and hardwarkntdogies. The next element
added in UML 2.0 idDevice representing physical computer resources whichh ma
execute deployed artifacts [1]. Anoter new elementExecution Environment
representing selected platform type (i.e. operasiyggem, database engine etc). The
last modification is a change of connection stgqe®tfrom <<implement>> to
<<manifest>>.

ApplicationServer

cdevices

[m— «amfact»i DatabaseServer
Purchase . Purchase.jar
smanifests

@\ ¢ExecutionEnvironments
. DB2

edeployment specs
PurchaseDescription. xml

Figure 4. Deployment diagram example

Studia Informatica vol. 1/2(7)2006

New features in UML syntax and semantics 269

The <<manifest>> dependency represents a physiatdrialization of one or
more model elements by an artifact. The name changaused by the fact, that the
word “implement “ is used too often [5].

3.5 Activity Diagram

Activity diagrams in UML 2.0 have undergone serichanges. The changes
apply to notation, semantics and pragmatics ofelidagrams.

Table 1. Selected New Activity diagram elements

Symbol Name Description
Activity Parametrized system'’s behavior
presented as ordered, subordinate
elements, of which the Action is most
important.
Action The basic action unit. An executable
] action node, which contains
Action a transformation or a process

of modeled system.

@ Flow Final Node | A meta state representing a stop
in activity execution before its
FlowF inal completion.
Activity Parameter Objects existing at the beginning
Node or end of an activity, that contain entry

parameters and results.
ActivityParameter

Activity Partition | A group of actions that have similar
characteristics. Replaces swimlines
from UML 1.x, may be vertical or
horizontal.

Datastore Used to store persistent data.

adatastores
Ohbject

Pin Represents flow of data to/from action.

, May be used to represent a flow of
Action l
o tokens.
ActionPin

Table 1 presents selected new elements used imitactliagram, their
notation and description [5]. Other elements haweé changed their semantics,
and due to obvious reasons can't be describedtail.de

Modeling and simulation

270 Wolski M., Stasiak A.

Changes to activity diagrams were very extensit@gés in activity diagrams
in UML 1.x were called activities or activity stateln version 2.0 they are called
actions and are not decomposed any further. Anoitapt modification
in UML 2.0 is the fact, that activity diagrams aespressed using Petri-NET
semantics. Another change is an unification in @rdand data flows. In UML 2.0
both flow types are represented by a continuowes liaserved for control flows only
in previous versions. UML allows representationdata (objects) with technique
known from UML 1.x (fig. 5), but also allows to megsent flow of data streams as
tokens. Action ports — Pins are used to represatft situations.

Customer Sales

Request
Service

Send \I ar
e J(om) =

Check
Payment

Activity break
Fill Order

Collect
Order

Figure 5. Activity diagram

Studia Informatica vol. 1/2(7)2006

New features in UML syntax and semantics 271

3.6 Sequence Diagrams

Sequence diagrams in UML 2.0 have more detailedaséos when
compared to previous versions. The most importamt feature is the possibility of
marking chosen, conceptually closed piece of diagrmhich may be further refined.
Those segments may be presented with interactemedatypes and then connected
with appropriate operators, thus allowing the desigto present variants and
extensions to a scenario. Table 2 below containsser combined fragment
stereotypes. A full specification of all stereotgman be found in [5].

Table 2. Interaction operators (combined fragment)

Keyword Description

alt Divides a segment of interaction according twoan logic rule
into two alternative scenarios. Each alternate peath to provide
a guard which has to be fulfilled to execute giadtarnative.
assert Specifies the only valid fragment to oc@iten enclosed within
a consider or ignore operand.
break Points to a segment of sequence diagram whiltibe executed i
a condition is fulfilled. The fulfillment of a cofittbn results in
execution of a sequence of messages containece isehment and
then termination of the scenario. If the guard @t fulfilled,
messages contained in the segment are omitted.
critical | Indicates a sequence that cannot be upéed by other processing
ignore Points to a segment of interaction contgnimessages that will be
omitted, as their visibility does not change thstsgn’s behavior.
The ignored messages will be listed after the igrikayword.
loop Interaction segment will be repeated specifistiner of times
and has one subfragment with guard. The guard raag minimum
and maximum count as well as a Boolean conditibrthé guard
is absent, it is treated as true and the loop dépen the repetitio

O—0

=)

count

opt Optional interaction segment, which is executéda guard
is fulfilled.

par Represents parallel execution of message flow.

strict Indicates the behaviors of the operands rbasprocessed in strict
sequence.

Another new feature is the possibility to point kraugh reference — to
external interaction diagrams. In such case thenedion between sequence
diagram and an external diagram may be realizeld aviDiagram Gate or a fragment
pointing to a reference that exists on all lifeeBn UML 2.0 allows also for messages,
which do not have a known sender or receiver @jg.

Modeling and simulation

272 Wolski M., Stasiak A.

UML 2.0 also allows to abandon underlining namesta# objects taking part
in an interaction.

sd Sales)

:ProductDB Sales
Department

create :Order

ref
get customer status

loop), : i

[get next item]reserve product

alt legm e mmemm e J—.l

[a\ailablg]< reject product

inform

Figure 6. Sequence diagram

4 New diagrams in UML 2.0

The previous part of this paper described changegento diagrams known
from previous UML versions. The rest of this papiscusses new modeling
techniques.

Studia Informatica vol. 1/2(7)2006

New features in UML syntax and semantics 273

4.1 Package Diagram

Package diagram has been used in previous UMLoressin version 2.0 it
has been approved as a standard. Notation and ¢fpgspendencies between the
packages have not been changed. A new feature ih 2IDlis a view of embedded
package contents as a specification of its elem@gty). This mechanism is called
package merge and is not intended for use by thaany modeler because this
technique is destined primarily for metamodel beritd forced to reuse the same
model for several different, divergent purpousds.[1

Sales |

Customer Order

Figure 7. Merging the contents of package
4.2 Composite Structure Diagram

Composite Structure Diagrarar Internal Structure Diagrafl] is a new
feature in UML 2.0, and is used to describe intesteucture of classifiers (e.g.
classes, components, nodes, use cases) allowingtéoaction points of a structural
classifier with other system elements.

BoxOffice

sellProducts

LT
ib:ProductDB

Figure 8. Composite structure diagram example

Composite structure diagrams allow the designer ntodel atypical
cooperation between elements of the system arthitec which extraordinary
specific was unknown during initial design phasdéru8ure diagrams present
a decomposition of classifier parts. Those partg beafurther decomposed. There is
also a possibility of encapsulation of a structurlalss and connecting its part via
a port with an external interface (fig. 8).

Modeling and simulation

274 Wolski M., Stasiak A.

Another specific type of composite structure diawgaexists — one that
represents relations between cooperating objedtsdéscribed in detail in [1] and [5].

4.3 Interaction Overview Diagram
Interaction Overview Diagram is a new element of UM his diagram is

a specialized form of activity diagram and is uskd present dependencies
and message flows between interactions.

sd Sales /

E/get customer status

sd Order)

:Customer :Sale ref)
Department check status of order
T T
! !
! order !

ref)
Buy Product

Figure 9. Interaction overview diagram — example

Studia Informatica vol. 1/2(7)2006

New features in UML syntax and semantics 275

An interaction overview diagram uses the semaraiws notation of activity
diagrams, with one exception — instead of actisitiend actions nodes, rectangular
elements symbolizing interaction diagrams or irdtéoam segments are used.

During interaction overview diagram creation twopég of interaction
elements may be used. Rectangular elements wehactton diagram name and ref
keyword in upper left corner are the first typehey represent references to those
diagrams. The second type are sequence or commnionicdiagrams embedded
directly in the interaction overview diagram (fig).

4.4 Timing Diagrams

Timing Diagrams are a new feature in UML 2.0. Tl used to present the
object’'s behavior in an environment with severeirigmconstraints [5]. Obviously
the diagrams of this type will be most useful ialréme system modeling. Timing
diagrams are perfect for presenting the changstate of objects and their influence
over other objects. An additional advantage preskfty timing diagrams is the
possibility of time constraint modeling. An exampé timing diagram with the
description of its elements is presented on fig. 10

state change

. . event

'. I k|
o _ i E waterEmpty
E off >:< ion > off

-
3 E i ,.-"'ci;:t;e
:_; On : _
E off —
S -

{=10s}
object '
timing constraint
Figure 10. Example of timing diagram

5. Conclusions

All living languages evolve to allow its users teoeate statements or
descriptions that adequately present past, premasitnew (previously unknown)

Modeling and simulation

276 Wolski M., Stasiak A.

reality. The main IT providers organized in OMGaked a conclusion that after 7
years that passed since UML 1.1 has been maddadffit is time to introduce

essential changes leading to approval of its’ nemegation — UML 2.0.

The conclusions from analysis of the changes imtmt and semantics of UML
presented in this paper are obvious. The creatbtdMlL are abandoning model
simplicity in order to make the models more preeisd formal. The future will tell,

if this direction is the correct one.

References

1. Booch G., Rumbaugh J., Jacobsoifthe Unified Modeling Language Reference
Manual Second Edition, Addison Wesley, 2005.

2. Booch G., Rumbaugh J., JacobsonThe Unified Modeling LanguageJser
Guide, Addison Wesley, 1998.

3. Fowler M.: UML Distilled: A Brief Guide to the Standard Object Modeling
Language Third Edition, Addison Wesley, 2003.

4. Kendall S.: Fast Track UML 2.0, Apress, 2004.

5. Object Management GroupJnified Modeling Language: Superstructure
Version 2.0, ptc/03-07-06.

6. Rational Unified Process ver. 2003.06.13.

7. Rosenberg D., Scott KUse Case Driven Object Modeling with UMAddison
Wesley, (1999).

8. Stasiak A. Wolski M.: Zintegrowane srodowisko wytwarzania aplikaciji
web’owych dla systeméw mobilnych na platformie NEKT Konferencja
SCR’04, Ustra 13-16 wrzénia 2004 r., 243-252.

9. Quatrani T.:Visual Modeling with Rational Rose 2000 and UMAddison
Wesley (2000).

Studia Informatica vol. 1/2(7)2006

