STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

Basic solutionsfor a program system
for dynamic systems simulation

Timofeev Alexander O.
Institute of Computer Science,
University of Podlasie, Siedice,
Poland, professor,
a.timofiejew@imm.org.pl

Abstract. The article presents basic solutions of theethyst program system. The system
generates interactive applications for simulatimgnplex dynamic systems. The method of
presenting the information about the state of theited objects and method of calculating the
component state are proposed. Method of decemtdafirocessing the signal delays and filtering
is discussed. Method of analog objects simulatngroposed.

The article presents examples of projects prodfme@++ Builder, Visual C++ andVisual
Basic 2005 environment projects. The executable times of Etan are compared for the above
mentioned environment applications.

Key words: dynamic system simulation, creating interactiveliapfions, theAmethyst program
system, calculating the component state, decergthlprocessing the signal delays and filtering,
analog objects simulating.

1 Introduction

This article deals with some of the problems, agsduring the computer
generation of interactive applications for simuigticomplex dynamic systems, and
solutions to them. Autonomously working interactig@plications that simulate
complex dynamic systems are a good way to teacthéygame experiment with
a system model.

The advantages of interactive teaching programsaele known, but their
development is very time-consuming. There is arenirgeed for a program quickly
generating autonomously working interactive proggdmbe developed.

Creating projects of the interactive applicationthvwhe help of a computer to
simulate the complex dynamic systems helps to we&hié dynamic system models.
As the whole program text is created, each pathefalgorithm can be tested and
improved. For example, one can add to any progrixckbnstructions to measure

256 Timofiejew A.

the execution time, in order to search the weaktpoand replace or modify the
corresponding blocks.

An algorithm for generating interactive applicatigmmojects modeling the
complex dynamic systems was implementedrimethyst program system, designed for
Windows. Amethyst generates application projects tfe following environments:
Borland C++ Builder v. 3, 5 or 6, Microsoft Visual C++ or Basic 2005.

StandardAmethyst libraries are designed to simulate electrical desic

2 Basic solutions of Amethyst program system

Most of the known systems simulating technical otgeare designed for
gathering the information in the form of the datmat the state of the nodes, that
connect the structural parts of the object. Thisspntation causes trouble during
complex objects simulation, for example in the casenicroprocessor simulation
a functional scheme is required.

The Amethyst system involves a new method to present the olgeate
information. The state of the component is showra iapecial format (template).
Besides the data fields, this format can hold meafetext and graphics. The data
format fields contain the initial values of the iadnles or the parameter values. That
is why the data format looks like an image. Thehaubf the model can customize
this format to his taste, the hypertext data foraikws all the 256 extended ASCII
characters (or the “Terminal” font).

An autonomously working interactive application idesed to simulate
complex dynamic systems must have a simulation toonio reduce the size of the
monitoring application, a new method was creatdd:suggests decentralized
processing of time delays and filtering immediatelythe basic element models.
This method is discussed later.

In order to eliminate the influence of the orderttod component calculation
on the simulation result, the existing systems supfreshing of the node values in
the adding phase. To reduce the time losses oopthiation in casedmethyst offers
a new, two-phase method of calculation of the camepo state: in the first phase the
output values are calculated on the basis of thiatefnal variables, in the second
phase the values of the internal variables areutzkd on the basis of the input
variables.

The Amethyst system contains a new method of analog objectslation by
means of interaction of the analog component autmus models. The advantages
and the details of implementing this method areudised below.

3 Method of decentralized processing of signal delays and filtering

Most of the known simulation systems process th@adi delays and short
signal filtering in the central monitoring applizat. The monitor holds event lists

Sudia Informatica vol. 1/2(7)2006

Base solutions to program system for simulation of dynamic systems 257

and selects the component state to be calculatee. ifonitor's complexity cuts
down the complexity of the models and impedes tredyction of autonomous
simulating applications.

Amethyst uses a decentralized method of processing thealsiglays and
filtering immediately in the basic elements.

The decentralization helps save the resources ef simulating system
monitor. It allows to building models of highest naplexity (for example,
microprocessor models), counting upon the fact thatarrangement normally has
only one component of this complexity, and the ltotamplexity of the component
and the monitor does not exceed the limit.

The system in question introduces into the bas@meht models time
variablest,, to hold the time of the next event in the elemmantlel or its structural
component.

The value of the time variablésis changed by operator of the tyipeT + d
, whereT stands for system simulation tinge; time parameter, usually delay.

The simulation monitor of application, uses fouolgl variables: present
time T, starting timeT,, highest possible tim&,, and next event timé..

The Object simulation algorithm, realized in theplagation monitor, is
shown on fig. 1

In the beginning of the algorithm the next evemtil, is ascribed the value
of the simulation start tim&,. In the simulation cycle the present tiffiés first set
as the next event ting, - that is equal to the “step in the simulationdf. Then the
next event timd is ascribed the value of the highest possible fime

The procedure of calculating new state of each armapt of simulated object
is divided into two procedures Type_of componef}t.fhnd Type_of com-
ponent.f2(). The Type_of component.fl() proceduaécidates the values of the
output variables on the basis of the internal \dei® The
Type_of _component.f2()procedure calculates theesbf internal variables on the
basis of the input variables.

The f1() procedure, shown on fig.1 calls all theogadures of
Type_of component.f1() type (this is phase 1), pduce f2() calls all the
procedures of Type_of component.f2() type (thishase 2).

Phasze Z.

Call £2()

[Te<Tu] Fhasze 1.
Call £1()

[Te>=Tn]

Figure 1. Object simulation monitor algorithm

Modeling and simulation

258 Timofiejew A.

If the component is a dynamic one, it has tthégme of the next event in the
component. The f1() or f2() procedure of each comemb compares the system time
T, of the next event with, time of next event in the componentTlLfis more thart,,
operatorT, =t, is executed.

In the end of phase 2 the system tilds equal to the minimal df in the
components, i.e. is equal to the model next evaa.t

The other side of the considerable decrease in toronbmplexity is the
necessity to call the component models continuouSkmilarly to working in
Windows after the simulated application calls acedure, none of the variables
might be changed in this procedure, for exampleait happen in phase 1, if the
predicate T =t,) is not true.

The advantage of the algorithm proposed for objgotulation is the
possibility of setting zero delays. In this case thodel sets its next event time and
system next event time equal to the present fimealue and makes the system
repeat the calculation with the same present (mdoheé. This also happens during
the analog model state calculation.

4 Analog elements simulation method

Most of the known analog object simulation systameate a general model
of the object and process the overall system démdiftial equations. The model of
each component sends its parameters to the mamitbawaits the result.

The Amethyst system uses an unusual method foograijects simulation
by means of active autonomous models of the araogponents. The model of each
component takes an active part in solving the icitpiystem of differential equations,
describing the device. Each component model corapgaaies of adjacent values of its
output equivalent current sources and conductsvaied in the case of unequal values
asks for one more calculation of the componeng stipresent time.

The implicit system of differential equations idwea by Euler method using
integration with variable step. The step is cal®dan each component model on the
basis of the current state and the forecast of ancbutput voltage change, that will
not exceed the desired mistake.

The advantage of the autonomous model is that whemodel participates
in solving the system of equations, there arispessibility of efficient correction of
the model parameters, to increase the speed awtsipre of the calculation. The
user can access the parameters of each elementlsl,namd change them even
during simulation.

The model of an analog or complex scheme is madeoupseparate element
models by simple indication of their being partlué global model and usual linking
them to each other. Nothing prevents joining togetthe models of analog and
digital components, since the behavior model ohlaotalog and digital element has
on inputs and outputs equivalent current sourcdsinted by equivalent

Sudia Informatica vol. 1/2(7)2006

Base solutions to program system for simulation of dynamic systems 259

conductivities. Through these inputs / outputs, ivant current sources and
conductivities the model interacts with other madel

The advantage of the proposed method of simuladimgog and complex
units is a considerable simplification of simulatimonitor; the monitor needs not
keep the events list, since the event data is fdrinside each component model,
while the monitor gets ready-made value of the ee®rnt time.

This method of simulating analog elements is basedhe node potential
method. It uses a well-known equation — the vol@ige circuit node equals the total
of the input currents divided by the total of thedrresponding conductivities:

U=33/2G,i=1, ...K

wherer - the node indexyJ, - the node voltages;, J; - the sum of node currents;G;
— the sum of node conductivitids,- number of joints.

Each model of the analog element is based on #eeptation of this element
in the form of N - polar unit (fig. 2), poles of wih are connected to the scheme
nodes. Each component is replaced by an aggredateri@nt sourcedy, with
conductivityGey, Where k1,...,n. That is a Norton equivalent circuit. The k - pofe
the element is subject to the external equivalentent sourcey with conductivity
G« representing the total all node currents minusJtheurrent of the element in
guestion. Likewise, the conductivi@y is the total of all the node conductivities
minusGg conductivity of the element in question.

n -polar elemert
Gsl Gel
1
GE:I'I GS:I'I
‘Jsl Jel
Gs]: ek L
k
JE:I'l Jm
Js}: Je}:

Figure 2. Equivalent scheme of a component with environment

The component model passes the external curreaisgcted to its poles and
the respective conductivities to its own poles wvdtie regard to its internal current
sources and conductivities.

The calculation of currents and conductivities $rarssion is carried out
according to the scheme of simulated componenttisufien. The substitution

Modeling and simulation

260 Timofiejew A.

scheme is to contain simpler elements than thelatedicomponent and reflect with
desired precision the processes in the component.

The substitution scheme gives base for writingftitenulas for the external
currents and conductivities passed through thisnete. On this step it is most
convenient to use the superposition method and 8riels theorem. The number of
formula pairs for the passed currents and conditietvis equal to the number of
external nodes.

The idea of model autonomy is based on the fadt dfter reiteration of
equivalent current sourcelg, and conductivitie$sg calculation the model and the
other (“adjacent”) models come to balance.

The node potential method can be applied only fingecuits. A linear
approximation is required to use substitution sahemith nonlinear constituents,
such as analog and digital-analog elements.

For the substitution schemes with nonlinear elemé¢hé used method of
scheme calculation - approaching to balance - ¢aa @ divergence of calculating
process. The matter is that if the inclination &iogfnts of linearly approximated
model parameter change from one calculating tohempit can lead to oscillatory
process, i.e. a divergence process.

For the process convergence it is necessary, lleaintline coefficients of
linearly approximated parameter of the model do obange during balance
reiterations. It means that the linear approxinmatb parameters must be done once
only time before the reiteration at present time.

To solve the problem of iteration convergence wggsst:

- using section overlapping during piecewise appratiom, in order to use the
parameters of current section of approximatioroag ks possible;

- shunting of nonlinear elements by capacitor;

- limitation of iterations number.

As a result of the linear approximation of nonlinetements the simulated
component is replaced with an equivalent schemé witrrent sources, voltage
sources, resistors, conductivities, capacitorgjétahces.

Equivalent schemes of analog components frequévalye capacitors, and
there is a need to integrate the capacitor's chasghe simulation time advances.

Integration with variable step involves piecewis@p@ximation of
capacitor’'s change depending on time. In the beéginof model state calculation
the capacitor tension is modified on the value ofagcumulated increment, and
during the calculation the voltage on the capad#t@onsidered invariable.

It is worthwhile to link the simulation step to th@stake of simulation set in
the system. In case of linear approximation thengb&U, of capacitor’s voltage is
determined by its capacity, currenti.through capacitor and time incremét

AU.= (ic/C) * At

Sudia Informatica vol. 1/2(7)2006

Base solutions to program system for simulation of dynamic systems 261

If the determined mistakéU of simulation equals the chang®l, of
capacitor’s voltage, the formulas for “local” stefssimulation go as follows:
[To—T if|ic] <C*AU)/(Tn—T),
At =
L(C*Aau)/lic| otherwise.

The first formula is the case of such a small aurthrough the capacitor, that
the change of capacitor’s voltage does not exdeedetermined mistake till the end
of simulation.

5 Creation of application

The project of application is created on the badig functional diagram
(scheme) of the device. The minuteness of the sehemould correspond to the
existing library of components, which means that sbheme component must be a
library component.

Let us consider application projects in C++ Builderd Visual Basic 2005
environments.

The directory structures, produced by Amethyst acheenvironment, have
a similar structure. On the top of the hierarcheréhis a directory called
.Project. APR”, where ,Project” is the name, seleicby the user.

.Project APR” is a subdirectory of root Amethystatitory. ,Project APR”
directory contains main files of the project antdditectory named ,Project.MOD".
This subdirectory contains files with standard dipsion of the scheme, similar to
,Projectt MOD” subdirectories with component destidp. The ,Project. MOD”
contains subdirectories of the,Component.MOD” typeeach kind of components.
The ,Component.MOD” subdirectories in directory Qfrct. MOD” are copies of
~,Ccomponent.MOD” subdirectories from the main Amethglirectory.

The main Amethyst directory is used to hold alidity components. A simple
library component — atom — occupies a “Component¥Qlirectory, but a
compound library component — scheme model — ocsup@mponent.MOD”
directory inside the “Project.APR” directory. Themathyst application shows
directory hierarchy of library components in theetrform. The main Amethyst's
directory contains “_amethyst” subdirectory witts®m libraries and files.

A standard description of a component includesdlewing elements:

- text file with parameters and a template of prest@ont window (hypertext
form),
- program files in a high-level language, for exam@e+ or Visual Basic

2005, for simulating the component'’s function.

Component’s functions are described in the forma ofass. A class contains
not only functions for the calculation of the compat’s new state, but also methods
for showing in the corresponding windows the congrstate, model properties,
setting parameters, values of the variables to lhews. The windows with

Modeling and simulation

262 Timofiejew A.

information on the model state are called presemtawindows. For showing the
actual values mainly files with extension “.ameé aised.

An application project, produced in Borland C++ Har environment,
contains the following files and directories: Buwitdproject file (,Project.bpr”),
resource file (,Project.rc”), implementation file,Pfoject.cpp”), header file
(,Project.h”), file with Amethyst’ settings (,Proptpra”), implementation and
header files of the unit, which joins the universiahulation monitor with the model
(,unitMod.cpp” and ,unitMod.h”), and the directorwith the scheme model
(,Project.MOD").

The project uses also files and libraries from esystthe system library
._amesyst”. The units ,_amemain” (application mawndows), , ameimit”
(simulation thread), ,amestat” (procedures to sh@emponent states) and
.baseUnit” (base class for library components)iaptuded in the uncompiled form
for the program debugging. The project also usegersdibraries with system
procedures (service, fonts, etc.).

The structure of the files and directories in VisBasic 2005 environment is
similar. The ,Project. APR” directory contains: V@uBasic 2005's project file
(,_Project.vbproj”), file with Amethyst’'s setting§,_Project.pra”), unit file, which
joins universal simulation monitor with model (,_itNMod.vb”), and the directory
with the scheme model (,Project.MOD").

The following items are added from system direct@myesyst” to the project
files: resource file (,Forml.resx”), main formanief(,Forml.Designer.vb”), main
implementation file (,Forml.vb”), system procedurgamesyst.vb”), simulation
thread (,_ameinit.vb”), procedures to show the comgnt states
(,amestat.vb”), system fonts (,amefont.vb”), baskss for library components
(,base Unit.vb").

The ,_unitMod” unit plays a significant part in daenvironment. It connects
universal simulation monitor with the produced modée ,_unitMod” unit adds
a buffer component, which translates simulation w@amds from the main
application window to the model procedures. Theuitipn monitor uses a constant
name for this buffer component, and the latter usase of the model, given by the
user. So there is no need to produce a new siraalatonitor for each project.

File fragment edition method is used for the pradiducof project files. Each
of the project file fragment is converted into anfiat, which is the base for writing
in the actual component or scheme parameters. &iteslivided into parts, because
there is a limit on the buffer size in the formadtiprocedures.

The procedures for creating project files are gattheén DLL (Dynamic
Linking Library) to increase Amethyst's flexibility

If there is a need to create a project for a newirenment, the following
method can be used. The first step is to create-twhree projects with different
level of complexity. The second - to analyze adl fiies produced by system on the
“text” level and mark out the “variable” parts,.igarts, depending on the input data.

The applications, produced in Borland C++ Buildewieonment, work
considerably slower than those, produced in Vi®edic 2005 environment. The

Sudia Informatica vol. 1/2(7)2006

Base solutions to program system for simulation of dynamic systems 263

test showed, that the factor of slowing in Borla&@wt+ Builder environment was 4.5.
The test process with 200 000 events took 93 onteBd C++ Builder environment
and 21 s in Visual Basic 2005 environment (PC Ri5i8 GHz processor). However,
the parallel simulation thread was not working iisial Basic 2005, due to a simple
reason — th&hread class required in this cabkas insufficient functional capabilities
in this environment.

6 Conclusion

The computer program for quick production of theéoaomously working
interactive applications simulating complicated ayric systems allows to building
and testing models of different systems. The “Amsthprogram system, using the
described above base solutions, has following adgas:

- wide range of component complexity (from capaditomicroprocessor),

- independence of models and, consequently, no limits on the complexity
and “intellectuality” of component models,

- absence of limitations on component type (digitadimalog) and on the running
order of digital and analog components,

- convenient form of the component state output,uidiclg contents of internal
registers and memories,

- possibility to change registers and memories castguickly,

- possibility to control the time parameters betwaey signals,

- possibility to set the time parameters quickly,

- possibility to simulate using real blocks, whicloals half-location experiment.

References

[1] Timofeev A.O. (2004): Computer production ofograms for simulation of
dynamic systems. Proceedings of the 15th IntematiGonference on Systems
Design (7-10 September 2004, Wroclaw, Poland). YolWroctaw, Oficyna
wydawnicza Politechniki Wroctawskiej, 2004. pp. 93-

[2] Dropia R., Czeberkus P., Timofiejew A. (2008oncepcja programowego
systemu do tworzenia interaktywnych symulacyjnycplikacji ,Studia
informatica”, N1(5), 2005. pp. 49-57.

Modeling and simulation

