Method of Logical Synthesis of Integrated Circuits in basis K-PLA

Sergey Novikov

Institute of Computer Science, University of Podlasie
Sienkiewicz Str. 51, 08-110 Siedlce

Abstract

Modern Computer-Aided Design systems of Very Large Scale Integration allow to use the chips with thousands of components as element's modules of electronic circuits. For example, ULSI - chip has complexity more than 20000 transistors. One of perspective chips (Programmable Logic Chip) has the architecture of a Programmable Logic Array (PLA). PLA can be programmed in a laboratory to perform complex functions with the help of a special equipment called by programmer (similar as PROM blower).

There are different methods of the logical synthesis of circuits in PLA [1,2,3]. These integrated circuits have many advantages (simplicity of layout design, testing and modification), because the circuits are regular.

Let's consider a task of designing of a digital circuit described by the system of partial many-valued logical functions in basis $\boldsymbol{K}-\boldsymbol{P L A}$, which is one from modern generalizations of PLA [4].

It is well known, that the mathematical model of functioning of the each code translator ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) of binary words is a system of partial Boolean functions. If a translator has \boldsymbol{m} inputs, \boldsymbol{r} outputs and reforms \boldsymbol{q} binary input words with length \boldsymbol{m} to \boldsymbol{q} binary output words with length \boldsymbol{r}, and $\boldsymbol{q}<2^{m}$, then we have a system ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) of the partial Boolean functions $\boldsymbol{G}=\left\{\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{\boldsymbol{\gamma}}\right.$, defined on \boldsymbol{q} binary words, where $g_{j}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in\{0,1\}, \alpha_{i} \in\{0,1\}, \quad i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, r\}$.

The translator $(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ can be realized by a circuit with one $\boldsymbol{P L A}\left(\boldsymbol{m}^{\prime}, \boldsymbol{r}^{\prime}, \boldsymbol{q}^{\prime}\right)$, which has not less than \boldsymbol{m} input pins ($\boldsymbol{m}, \geq \boldsymbol{m}), \boldsymbol{r}$ output pins $\left(\boldsymbol{r}^{\prime} \geq \boldsymbol{r}\right)$ and \boldsymbol{q} intermediate lines $(\boldsymbol{q} \boldsymbol{\geq} \geq \boldsymbol{q})$. The elementary products (implicants) are realized on the intermediate lines of matrix AND of PLA, sum-of-products are realized in matrix OR of PLA.

Otherwise circuits have more chips and the difficulty of the synthesis grows. Modern PLA have $\boldsymbol{m}^{\prime}<\mathbf{2 0}, \boldsymbol{r}^{\mathbf{\prime}}<\mathbf{1 6}, \boldsymbol{q}^{\prime}<\mathbf{1 0 0}$, as here exist tasks designing of translators for long binary words with $\boldsymbol{m} \geq \mathbf{6 4}$.

The problem of increase of the main parameters of $\boldsymbol{P L A}$ reduces to the problem of $\boldsymbol{P L A}$-area minimization [3]. It is known, that the large chip's area contains 10% the active elements and 90% commutation lines. Inculcation of modern gates and chips with many internal states ($\boldsymbol{K}-\boldsymbol{P L A}$) allows to reduce the PLA-area. However, the corresponding theory and new methods of the synthesis are necessary for reaching of this aim.

The skill to minimize the systems of partial many-valued logical functions [5,6$]$ allows to suggest the new method for circuit's realization of systems of partial many-valued logical functions in new basis $\boldsymbol{K}-\boldsymbol{P L A}$, where all gates have \boldsymbol{K} internal states.

In this paper we propose the new gates with $\boldsymbol{K} \boldsymbol{>} \mathbf{2}$ internal states and the new method of the synthesis of circuits with the help of that gates.

We propose the gates:

The gate $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{K}, \boldsymbol{j})$ has one input pin and one output pin, where $\boldsymbol{y}=\boldsymbol{K} \mathbf{- 1}$ for $\boldsymbol{x}=\boldsymbol{j}$ and $\boldsymbol{y}=\mathbf{0}$ for $\boldsymbol{x} \neq \boldsymbol{y}$. We must be able to modify the main parameters \boldsymbol{K} and \boldsymbol{j} for $\boldsymbol{\operatorname { A A T E }}(\boldsymbol{K}, \boldsymbol{j}) \quad$ with the help of the special programmer.

The gates MIN and MAX realize the generalizations on case $\boldsymbol{K}>2$ of operations "conjunction" and "alternation".

Our method of the synthesis of circuits with the help of our gates allows to reduce a task of the realization of the system ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) partial Boolean functions by integrated circuits to the realization's task of the system (n, s, \boldsymbol{q}) of the partial \boldsymbol{K}-valued logical functions, with $\boldsymbol{n}<\boldsymbol{m}, \boldsymbol{s}<r$.

The input information for the synthesis is the system of partial Boolean functions ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) and the basis (specific parameters of many-valued gates), which we can use.

First of all, we must choose the value \boldsymbol{K} (without calculation of difficulty of solution of the technical tasks of realization \boldsymbol{K}-valued elements).

Let's take for instance the system $(\mathbf{1 8 , 6 , 2 0})$ of partial Boolean functions (Fig.1), which are reduced to the system $(6,2,20)$ of partial 8 -valued logical functions (Fig.2).

Let our translator ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) has $\boldsymbol{r}<\boldsymbol{m}$.
Then we must code the binary entrance words with length \boldsymbol{m} and the binary output words with length \boldsymbol{r} by \boldsymbol{K}-valued words.

In order to code we shall divide the binary entrance words with length \boldsymbol{m} on blocks with length \boldsymbol{a}, where $\boldsymbol{a}=\boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{K}$. We can code the each block (binary word with length a) by the corresponding word with length 1 in alphabet $\{0,1,2, \ldots, K-1\}$. Hence we can replace the each binary entrance word with length \boldsymbol{m} by the
corresponding word with length $\boldsymbol{n}=] \boldsymbol{m} / \boldsymbol{l o g}_{2} \boldsymbol{K}[$. We can replace the each binary output word of the translator ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) with length \boldsymbol{r} by the corresponding word with length $\quad s=] r / \log _{2} K[$ in alphabet $\{0,1,2, \ldots, K-1\}$. In this way we get the system $(\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q})$ of partial \boldsymbol{K}-valued logical functions in place of the system ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) of the partial Boolean functions. The values K, where $\boldsymbol{\operatorname { l o g }}_{2} K=\left[\boldsymbol{\operatorname { l o g }}_{2} K\right]$, are very interesting. For example, we can reduce the length of entrance and output words in time out of two, if $\boldsymbol{K}=4$, and reduce in time out of three, if $\boldsymbol{K}=\boldsymbol{8}$.

For circuit's realization of ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) we propose a circuit \boldsymbol{S} with \boldsymbol{K} - $\boldsymbol{P L A}$, translator of binary words in K-valued words ($\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$) and translator of \boldsymbol{K}-valued words in binary words ($\boldsymbol{T}(\boldsymbol{K} / 2)$) (Fig.3).

It's easy to explain structures of all blocs showed on Fig. 3 with the help of the concrete examples.

Fig. 4 shows the structure of the translator $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ for three input pins and $K=8$, where
\bigcirc is the gate NOT, is the gate AND, $\boldsymbol{\nabla}$) is the gate for realization of the operation Min (Max), \square is the gate $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{K}, \boldsymbol{j})$. The second row from below includes gates: $\operatorname{MIN}(\mathbf{0}, \boldsymbol{x})$ for generation of signal $0, \operatorname{MIN}(\mathbf{1}, \boldsymbol{x})$ for generation of signal 1, $\boldsymbol{\operatorname { A A T E }}(\mathbf{3}, 1)$ for generation of signal 2, $\boldsymbol{\operatorname { A A T E }}(\mathbf{4}, 1)$ for generation of signal 3, $\boldsymbol{\operatorname { A A T E }}(\mathbf{5}, 1)$ for generation of signal 4, $\boldsymbol{\operatorname { G A T E }}(\mathbf{6}, 1)$ for generation of signal $5, \operatorname{GATE}(7,1)$ for generation of signal $6, \operatorname{GATE}(8,1)$ for generation of signal 7 .

If input signals of $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ are equal to $\boldsymbol{x i l}=\mathbf{1}, \boldsymbol{x i 2}=\mathbf{0}, \boldsymbol{x i 3}=1$, to the input signal of $\operatorname{GATE}(6,1)$ is equal to 1 and it's output signal is equal to 5 . Then the output signal of $\boldsymbol{T}(2 / K)$ is equal to 5 also.

Fig. 5 shows the structure of the translator $\boldsymbol{T}(\boldsymbol{K} / 2)$ for three input pins and $K=8$, where
is the gate OR, is the gate for realization of the operation $\operatorname{Min}(1, x)$, is the gate $\operatorname{GATE}(\boldsymbol{K}, \boldsymbol{j})$. The first row from top of gates includes next gates: two gates at the left $\operatorname{GATE}(\mathbf{1 , 0})$ and $\boldsymbol{\operatorname { G A T E }}(\mathbf{2}, 1)$ for generation of signals 0 and 1, $\boldsymbol{\operatorname { G A T E }}(\mathbf{3}, 2)$ for generation of signal 2, $\boldsymbol{\operatorname { G A T E }}(\mathbf{4}, 3)$ for generation of signal 3, $\operatorname{GATE}(5,4)$ for generation of signal $4, \boldsymbol{\operatorname { G A T E }}(6,5)$ for generation of signal 5, $\boldsymbol{G A T E}(7,6)$ for generation of signal $6, \boldsymbol{\operatorname { G A T E }}(8,7)$ for generation of signal 7.

For example, if the input signal of $\boldsymbol{T}(\boldsymbol{K} / 2)$ is equal to $\boldsymbol{f i}=\mathbf{4}$, the output signal on the fifth at the left gate $\operatorname{GATE}(5,4)$ is equal to 4 so and the output signal on the corresponding gate MIN is equal to 1 . Here we have gil $=\mathbf{1 , g i 2}=\mathbf{0}, g i 3=0$.

Figure 6 shows the structure of $\boldsymbol{K}-\boldsymbol{P L A}(6,2,21)$ for $\boldsymbol{K}=\boldsymbol{8}$ with 6 input pins, 2 output pins and 20 intermediate lines. This block includes gates MIN, MAX, $\boldsymbol{G A T E}(\boldsymbol{8}, \boldsymbol{j}), \operatorname{MIN}(\boldsymbol{C}, \boldsymbol{x})$, which are described as $\boldsymbol{\Delta}, \nabla, \square$ and \triangle.

The gates \square and \triangle can turn for realization of the concrete parameters with the help of the special addition equipment for K-PLA, which was called programmer [2]. The programmer function under control of the matrix for turning of the gates of K-PLA, which in our case (for realization of the system $(\mathbf{6 , 2 , 2 0})$ on

Fig.2) is shown on Fig.7. This matrix for turning of the gates also allows to describe the structure of \boldsymbol{K}-PLA. The commutation points between input pins and intermediate lines in $\boldsymbol{A N D}$ matrix of $\boldsymbol{K} \mathbf{- P L A}$ correspond to fixed elements from $\{0,1, \ldots, \boldsymbol{K}-1, K\}$ of the matrix for turning $\boldsymbol{M}(\mathbf{A N D})$, where the number \boldsymbol{K} signifies the absence of the corresponding gait, and commutation points between output pins and intermediate lines in $\boldsymbol{O R}$ matrix of $\boldsymbol{K} \boldsymbol{- P L A}$ correspond to elements from $\{\mathbf{0}, \mathbf{1}, \ldots$, $\boldsymbol{K}-\mathbf{1 , K} \boldsymbol{K}$ of the matrix for turning $\mathbf{M (O R})$.

The $\boldsymbol{K} \boldsymbol{- P L A}$ - programmer can remove unnecessary gates if in correspomding positions of the matrix for turning are numbers \boldsymbol{K}.

With the help of translators $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K}), \boldsymbol{K}-\boldsymbol{P L A}$ and $\boldsymbol{T}(\boldsymbol{K} / \mathbf{2})$ we can realize ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) by the circuit with blocs showed on Fig.3.

There are the main stages of our method of the logical synthesis of integrated circuits.

1. The choice of the quantity of \boldsymbol{K} for gates in a circuit's realization of the system of partial Boolean functions ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$). We take that \boldsymbol{K}, where $\boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{K}=$ $\left[\log _{2} K\right]$.
2. The coding the binary input and output words of ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) by \boldsymbol{K}-valued words with length $\boldsymbol{n}=] \boldsymbol{m} / \boldsymbol{l o g} \boldsymbol{g}_{2} K[$ and $\boldsymbol{s}=] r / \boldsymbol{l o g}{ }_{2} K[$.

In this stage we construct the system of partial many-valued logical functions $(\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q})$, which corresponds to ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$).
3. The construction of the circuit with $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K}), \boldsymbol{K}-\boldsymbol{P L A}$ and $\boldsymbol{T}(\boldsymbol{K} / \mathbf{2})$ showed on Fig. 3 for realization of ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$).
4. The minimization of the system of partial \boldsymbol{K}-valued logical functions ($\boldsymbol{n}, \mathbf{s}, \boldsymbol{q}$).

With that aim we generate system-intervals, which realize by implicants, and construct SOP-system in the basis $\left\{v, \Lambda, v_{i}^{j}, \mathbf{1 , 2}, \ldots, \boldsymbol{K}-2\right\}[5,6]$.
5. The creation the special matrixes $M(A N D)$ and $M(O R)$ for turning of the concrete parameters of gates for $\boldsymbol{K} \mathbf{- P L A}$ with the help of the $\boldsymbol{K} \mathbf{- P L A}$ - programmer.
6. The completion of the synthesis with the help of the $\boldsymbol{K} \boldsymbol{- P L A}$ - programmer.

We continue description of our method with the help of the example.
Let we have $K=8$ for the system $(\mathbf{1 8 , 6 , 2 0})$ on Fig. 1 and the system $(\mathbf{6 , 2 , 2 0})$ on Fig. 2.

In our example we have for minimization two 8 -valued functions $(6,2,20)$ on Fig. 2.

For the effective synthesis of $\mathbf{8 - P L A}$ we can minimize the obtained 8 -valued logical functions by our method [5,6].

Creating intervals we must follow that the interval covering row β, where $f(\beta)=\boldsymbol{j}$ can't to cover row $\boldsymbol{\gamma}$, where $\boldsymbol{f}(\boldsymbol{\gamma})=\boldsymbol{i}<\boldsymbol{j}$. Then we create implicants and the SOP-system in basis $\left\{v, \Omega, \boldsymbol{v}_{i}^{j}, \mathbf{1 , 2}, \ldots, \boldsymbol{K}-\mathbf{2}\right\}$, which was proposed in [5].

Using the tools from [5,6], we have results of the minimization - system's intervals for the system $(\mathbf{6 , 2 , 2 0})$:
$R 1=\{(4----\{2\})\} ;$
R2=\{(--4-2-\{1\}),(---7-\{1\}),(---7-\{2\})\};
$R 3=\{(----4\{1\}),(7----\{2\}),(--6--\{2\}),(---0-\{1\})\} ;$
R4=\{(--0-- \{2\}),(---1-\{1,2\})\};
$R 5=\{(---5\{1,2\}),(-26--\{2\}),(---6-\{2\}),(---2\{1\})\} ;$
 $R 7=\{(7--6-\{1,2\}),(1----\{1\})\}$.

Then we have the representation (SOP-system):
$f_{1}=P 21 \vee P 22 \vee P 31 \vee P 34 \vee P 42 \vee P 51 \vee P 54 \vee P 61 \vee P 63 \vee P 64 \vee P 71$ $\boldsymbol{v P 7 2}=\left(2 \wedge\left(v_{3}^{4} \wedge v_{5}^{2}\right)\right) v\left(2 \wedge v_{5}^{7}\right) v\left(3 \wedge v_{6}^{4}\right) v\left(3 \wedge v_{5}^{0}\right) v\left(4 \wedge v_{5}^{1}\right) v\left(5 \wedge v_{6}^{5}\right)$ $v\left(5 \wedge v_{6}^{0}\right) v\left(6 \wedge v_{3}^{7}\right) v\left(6 \wedge\left(v_{1}^{0} \wedge v_{2}^{6}\right)\right) v\left(6 \wedge v_{2}^{7}\right) v\left(v_{1}^{7} \wedge v_{5}^{6}\right) v v_{1}^{1}$;
$f_{2}=P 11 \vee P 23 \vee P 32 \vee P 33 \vee P 41 \vee P 42 \vee P 51 \vee P 52 \vee P 53 \vee P 61 \vee P 62$ $\vee P 65 \vee P 71=\left(1 \wedge v_{1}^{4}\right) v\left(2 \wedge v_{5}^{7}\right) v\left(3 \wedge v_{1}^{7}\right) v\left(3 \wedge v_{3}^{6}\right) v\left(4 \wedge v_{3}^{0}\right) v\left(4 \wedge v_{5}^{1}\right) v(5 \wedge$ $\left.v_{6}^{5}\right) v\left(5 \wedge\left(v_{2}^{2} \wedge v_{3}^{6}\right)\right) v\left(5 \wedge v_{5}^{6}\right) v\left(6 \wedge v_{3}^{7}\right) v\left(6 \wedge\left(v_{1}^{0} \wedge v_{2}^{4}\right)\right) v\left(6 \wedge\left(v_{1}^{0} \wedge v_{2}^{6}\right)\right) v$ $\left(v_{1}^{7} \wedge v_{5}^{6}\right)$.

It's easy to realize our SOP-system by alone $\boldsymbol{8} \boldsymbol{- P L A}(\mathbf{6}, 2,21)$. In our case we have the circuit, where the structure of $\mathbf{8 - P L A}(6,2,21)$ is showed on Fig. 8 and the matrixes for turning are showed on Fig. 9.

At last we have the circuit for realization our translator $(\mathbf{1 8 , 6 , 2 0})$, which is showed on Fig. 10 .

We can apply new results received in this paper to investigation of the problem reducing the chip-area.

The each system ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) of \boldsymbol{r} partial Boolean functions can be easily realized by PLA-circuit with alone $\operatorname{2-PLA}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$, where are \boldsymbol{m} inputs pins, \boldsymbol{r} output pins and \boldsymbol{q} intermediate lines. For realization $(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ it is necessary one $\mathbf{2 - P L A}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$, where usually $\boldsymbol{r}<\boldsymbol{m}$, containing $\boldsymbol{L}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ commutation points between input/output pins and intermediate lines, where
$L(m, r, q)=(2 m+r)^{*} q$.
In our example for realization $(\mathbf{1 8 , 6 , 2 0})$ by the circuit with one $2-P L A(18,2,20)$ we need the chip-area, which is equal to $L(18,6,20)=840$.

Our new method of synthesis allows to aid the circuit with showed on Fig. 3 blocks for realization of that $(\mathbf{1 8}, 6,20)$, where $T(2 / 8)$ - area is equal to $L_{1}=56$, $T(8 / 2)$ - area is equal to $L_{2}=32$ and $8-\operatorname{PLA}(6,2,21)$-area is equal to $L_{3}=168$. Then we have
$L(18,6,20)=6 L_{1}+2 L_{2}+L_{3}=568$.
In that way we can greatly reduce the chip-area for realization the system of partial Boolean functions with the help of our results (new \boldsymbol{K}-valued gates and new method of synthesis).

Using our method we get for realization $(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ the chip-area, which is equal to
$L(m, r, q)=n^{*} L(T(2 / K))+L\left(K-P L A\left(n, s, q^{\prime}\right)\right)+s^{*} L(T(K / 2))$,
where $\boldsymbol{n}=] \boldsymbol{m} / \log _{2} \boldsymbol{K}[; \boldsymbol{s}=] \boldsymbol{r} / \log _{2} \boldsymbol{K}\left[; \boldsymbol{q}^{\boldsymbol{\prime}} \leq \boldsymbol{q}\right.$ is the number of intermediate lines, which depends from the result of minimization of the system ($n, \boldsymbol{s}, \boldsymbol{q}$) of K-valued logical functions; $L(T(2 / K))=\left(2 * \log _{2} K+1\right) * K ; L(T(K / 2))=\left(\log _{2}\right.$ $K+1) * K$.

Finally, we get

$$
\begin{align*}
L(m, r, q) & =n^{*}\left(2 * \log _{2} K+1\right) * K+(n+s) * q^{\prime}+s^{*}\left(\log _{2} K+1\right) * K= \\
& =K^{*}\left((2 n+s) * \log _{2} K+n+s\right)+(n+s) * q \cdot \tag{3}
\end{align*}
$$

We can propose the more comfortable formula for the estimation of the chiparea, which is needed for realization the system $(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$

$$
\begin{equation*}
L(m, r, q) \leq K^{*}\left((2 n+s) * \log _{2} K+n+s\right)+(n+s)^{*} \tag{4}
\end{equation*}
$$

It is obvious the justice of inequality (4), if $q^{\prime} \leq \boldsymbol{q}$.
If we have $\boldsymbol{q} \boldsymbol{>}>\boldsymbol{q}$ implicants as result of minimization of \boldsymbol{K}-valued functions $(\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q})$, than for minimization of the chip-area we can ignore these results and make use of the technical possibility of \boldsymbol{K}-PLA for realization the system of \boldsymbol{K}-valued functions ($\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q}$) by a circuit with one $\boldsymbol{K}-\boldsymbol{P L A}(\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q})$. The example of that realization was showed on Fig.6. In this case $\boldsymbol{L}(\boldsymbol{K}-\boldsymbol{P L A}(\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q}))=(\boldsymbol{n}+\boldsymbol{s}) * \boldsymbol{q}$. Thus the justice of inequality (4) is proved in all possible cases.

With the help of (4) we have for $\boldsymbol{K}=\mathbf{4}$
$L(m, r, q) \leq 4(2(2 n+s)+n+s)+(n+s) q=n(20+q)+s(12+q)$,
where $n=] m / 2[, s=] r / 2[$.
Then we have
$L(18,6,20)=4((18+3) * 2+12)+12 * 20=216+240=456$.
Thus the use of the new method of the synthesis allows considerably to reduce the chip-area, which is needed for realization the system of partial Boolean functions $(\mathbf{1 8 , 6 , 2 0})$.

If the use of traditional 2 -valued gates allows to realize $(\mathbf{1 8 , 6 , 2 0})$ by a circuit, where the chip-area is equal to 840 , to the use 8 -valued gates allows to realize the right $(\mathbf{1 8 , 6 , 2 0})$ by the other circuit, where chip-area is equal to 568 . We can reduce the chip-area considerably more, if we'll realize $(18,6,20)$ by a circuit with 4 -valued gates. In this case the chip-area for realization of our partial Boolean functions $(\mathbf{1 8 , 6}, 20)$ is equal to 456.

On the certain level of the abstraction (without calculation of the difficulty of the solution of the technical tasks of realization \boldsymbol{K}-valued elements) we can conclude, that the new method of synthesis, reported in this paper, have been applied for solution actual technical problems, for example chip-area minimization.

References

1. Zakrevskij A.D., Logical Synthesis of the Cascade Circuits. Moscow, Nauka, 1981 (in Russian).
2. Novikov S.V., Theory of the Regular Structures. Minsk, Universitetskoje, 1987 (in Russian).
3. Pyotr Bibilo, Natalia Kirienko, Block synthesis of combinational circuits in the basis of PLA and library gates. Proceedings of The International Workshop on Discrete-Event System Design. Zielona Góra, Technical University of Zielona Góra, 2001, s. 181-186.
4. Sergey Novikov, Realization of Many-valued Logical Functions in PLA basis. Proceedings of Artificial Intelligence Studies. Institute of computer science, University of Podlasie, vol. 2(25)2005, Siedlce, 2005, s. 217-224.
5. Sergiej Nowikow, Metoda minimalizacji systemów K- znacznych częściowych funkcji logicznych. Studia Informatica 2, Siedlce, AP, 2004, s. 157-164.
6. Sergey Novikov, The Methods of Realization of K-Valued Logical Function's Implicants. Mathematica. Proceedings of the XI Slovak-Czech-Polish Mathematical School. Catholik University in Ruzomberok, Ruzomberok, 2004, s. 51-56.
