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Abstract. This paper addresses the problem of data sharing among multiple parties in the 
following scenario: without disclosing their private data to each other, multiple parties, each 
having a private data set, want to collaboratively construct support vector machines using  
a linear, polynomial or sigmoid kernel function. To tackle this problem, we develop a secure 
protocol for multiple parties to conduct the desired computation. In our solution, multiple parties 
use homomorphic encryption and digital envelope techniques to exchange the data while keeping 
it private. All the parties are treated symmetrically: they all participate in the encryption and in 
the computation involved in learning support vector machines.  
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1 Introduction 

In the modern business world, collaboration becomes especially important 
because of the mutual benefit it brings. In this paper, we address the following 
collaboration problem: multiple parties are cooperating on a data mining task. Each 
of the parties owns data pertinent to the aspect of the task addressed by this party. 
More specifically, the data consist of instances, all parties have data about all the 
instances involved, but each party has its own view of the instances - each party 
works with its own attribute set. The parties may be unwilling to release their 
attribute values to the other party due to privacy or confidentiality of the data. How 
can multiple parties structure information sharing between them so that the data will 
be shared for the purpose of data mining, while at the same time specific attribute 
values will be kept confidential by the parties to whom they belong? This is the task 
addressed in this paper. In the privacy-oriented data mining this task is known as 
data mining with vertically partitioned data [13]. The following scenarios illustrate 
situations in which this type of collaboration is interesting: (i) Multiple competing 
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supermarkets, each having an extra large set of data records of its customers' buying 
behaviors, want to conduct data mining on their joint data set for mutual benefit. 
Since these companies are competitors in the market, they do not want to disclose 
too much about their customers' information to each other, but they know the results 
obtained from this collaboration could bring them an advantage over other 
competitors. (ii) Vaidya and Clifton [13] provide the following convincing example 
in the area of automotive safety: Ford Explorers with Firestone tires from a specific 
factory had tread separation problems in certain situations. Early identification of the 
real problem could have avoided at least some of the 800 injuries that occurred in 
accidents attributed to the faulty tires. Since the tires did not have problems on other 
vehicles, and other tires on Ford Explorers did not pose a problem, neither side felt 
responsible. Both manufacturers had their own data, but only early generation of 
mining results based on all of the data may have enabled Ford and Firestone to 
collaborate in resolving this safety problem.   
 

This paper studies how to learn support vector machines in the distributed 
scenario with private attributes as described above. In the last few years, there has 
been a surge of interest in Support Vector Machines (SVM) [23, 24]. SVM is  
a powerful methodology for solving problems in nonlinear classification, function 
estimation and density estimation which has also led to many other recent 
developments in kernel based learning methods in general [6, 20, 21]. SVMs have 
been introduced within the context of statistical learning theory and structural risk 
minimization. As part of the SVM algorithm, one solves convex optimization 
problems, typically quadratic programs. It has been empirically shown that SVMs 
have good generalization performance on many applications such as text 
categorization [12], face detection [16], and handwritten character recognition [14] 
based on the existing SVM learning technologies, we study the problem of learning 
Support Vector Machines on private data. More precisely, the problem is defined as 
follows: multiple parties want to jointly build support vector machines on their data 
set, but none of the parties is willing to disclose her actual data to each other or any 
other parties. The dataset is vertically partitioned in that all parties have data about 
all the instances involved, but each party has its own view of the instances - each 
party works with its own attribute set. We develop a secure protocol, based on 
homomorphic encryption and digital envelope techniques, to tackle the problem.  An 
important feature of our approach is its distributed character, i.e. there is no single, 
centralized authority that all parties need to trust. Instead, the computation is 
distributed among parties, and the use of homomorphic encryption and digital 
envelope techniques ensures privacy of the data.  
 

The paper is organized as follows: The related work is discussed in Section 2. 
We describe the SVMs training procedure in Section 3. We then present our 
proposed secure protocols in Section 4. We give our conclusion in Section 5. 
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2 Related Work 

2.1 Secure Multi-Party Computation 

A Secure Multi-party Computation (SMC) problem deals with computing any 
function on any input, in a distributed network where each participant holds one of 
the inputs, while ensuring that no more information is revealed to a participant in the 
computation than can be inferred from that participant's input and output. The SMC 
problem literature was introduced by Yao [26]. It has been proved that for any 
polynomial function, there is a secure multi-party computation solution [11]. The 
approach used is as follows: the function F to be computed is firstly represented as a 
combinatorial circuit, and then the parties run a short protocol for every gate in the 
circuit. Every participant gets corresponding shares of the input wires and the output 
wires for every gate. This approach, though appealing in its generality and 
simplicity, is highly impractical for large datasets. 

 
2.2   Privacy-Preserving Data Mining 

In early work on privacy-preserving data mining, Lindell and Pinkas [15] 
propose a solution to privacy-preserving classification problem using oblivious 
transfer protocol, a powerful tool developed by secure multi-party computation 
(SMC) research [11, 26]. The techniques based on SMC for efficiently dealing with 
large data sets have been addressed in [13]. Randomization approaches were firstly 
proposed by Agrawal and Srikant in [2] to solve privacy-preserving data mining 
problem. Researchers proposed more random perturbation-based techniques to tackle 
the problems (e.g., [3, 8, 19]). In addition to perturbation, aggregation of data values 
[22] provides another alternative to mask the actual data values.  In [1], authors 
studied the problem of computing the kth-ranked element. Dwork and Nissim [9] 
showed how to learn certain types of boolean functions from statistical databases in 
terms of a measure of probability difference with respect to  probabilistic 
implication, where data are perturbed with noise for the release of statistics. In [25], 
Wright and Yang applied homomorphic encryption [17] to the Bayesian networks 
induction for the case of two parties. In [10], Goethals et.al. deal with secure scalar 
product computation for privacy-preserving data mining.  In this paper, we develop a 
secure protocol based on homomorphic encryption and digital envelope techniques 
to learn support vector machines. 
 
 
3 Learning SVMs On Private Data 

Support vector machines were invented by Vapnik [24] in 1982. The idea 
consists of mapping the space of input examples into a high-dimensional feature 
space, so that the optimal separating hyperplane built on this space allows a good 
generalization capacity. The input examples become linearly or almost linearly 
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separable in the high dimensional space through selecting an adequate mapping [23]. 
Research on SVMs is extensive since it was invented. However, to our best 
knowledge, there is no effort on learning SVMs on private data. In this paper, our 
goal is to provide a privacy-preserving algorithm for multiple parties to 
collaboratively learn SVMs without compromising their data privacy.  
 
3.1 Notations 

We define the following notations for illustration purposes. 
• n: the total number of parties. We assume 3≥n . 
• 

jP : Party j. 

• 
im : the total number of attributes of 

iP  for ],1[ ni ∈ .  

• m: the total number of attributes. 
 
3.2 Overview of Support Vector Machine 

SVM is primarily a two-class classifier for which the optimization criterion is the 
width of the margin between the different classes. In the linear form, the formula for 
output of a SVM is  
 

,bxwu +⋅=  (1)   

 

where w is the normal vector to the hyperplane and x  is the input vector. To 
maximize margin, we need minimize the following [4]: 
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ix  is the ith training example, and 
iy  is the 

correct output of the SVM for the ith training example. The value 
iy  is +1 (resp. -1) 

for the positive (resp. negative) examples in a class. 
 
Through introducing Lagrangian multipliers, the above optimization can be 
converted into a dual quadratic optimization problem.  
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By solving the dual optimization problem, one obtains the coefficients 

Nii ,,2,1, L=α  from which the normal vector w and the threshold b can be derived 

[18]. 
 
To deal with non-linearly separable data in feature space, Cortes and Vapnik [5] 
introduced slack-variables to relax the hard-margin constraints. The modification is:  
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subject to ,1)( , ibxwy iii ∀−≥+⋅ ξ  where 
iξ  is a slack variable that allows margin 

failure and constant C > 0 determines the trade-off between the empirical error and 
the complexity term. This leads to dual quadratic problem involving 

Eq.(3) subject to the constraints ,,0 iC i ∀≥≥α  and ∑
=

=
N

i
iiy

1

0α . 

To solve the dual quadratic problem, we apply sequential minimal optimization [18] 
which is a very efficient algorithm for training SVMs. 
 
3.3 Sequential Minimal Optimization 

Sequential Minimal Optimization (SMO) [18] is a simple algorithm that can 
efficiently solve the SVM quadratic optimization (QO) problem. Instead of directly 
tackling the QO problem, it decomposes the overall QO problem into QO sub-
problems based on Osunna's convergence theorem [16]. At each step, SMO chooses 
two Lagarange multipliers to jointly optimize, find the optimal values for these 
multipliers, and updates the SVM to reflect the new optimal values. 

 
In order to solve for the two Lagrange multipliers, SMO firstly computes the 

constraints on these multipliers and then solves for the constrained minimum. 
Normally, the objective function is positive definite, SMO computes the minimum 

along the direction of the linear constraints ∑
=

=
2

1

0
i

iiy α  within the boundary 

2,1,0 =≥≥ iC iα . 
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where 
iiiii yxxKyE −= ),(α  is the error on the ith training example, 

ix  is the stored 

training vector and x  is the input vector, and η  is the second derivative of Eq.(3) 

along the direction of the above linear constraints: 
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Next step, the constrained minimum is found by clipping the unconstrained 
minimum to the ends of the line segment: clippednew,

2α  is equal to H if Hnew ≥2α , is  

equal to new
2α  if HL new<< 2α , and is equal to Lclippedewn =,

2α  if Lnew ≤2α . If the target 

1y  is not equal to the target 
2y , ),min(),,0max( 1212 αααα −+=−= CCHL . If the 

target 
1y  is equal to the target 

2y , ),min(),,0max( 1212 αααα +=−+= CHCL . 

 
The value of 

1α  is computed from the new, clipped, 
2α : 

)7(),( ,
2211

clippednewnew s αααα −+=  

where 
21yys= . 

In the procedure of sequential minimal optimization, the only step accessing the 
actual attribute values is the computation of the kernel function K. Kernel functions 
have various forms. Three types of kernel functions are considered here: they are the 

linear kernel function ),,( baK =  the polynomial kernel function ),),(( θ+= baK  

where RNd ∈∈ θ,  are constants, and the sigmoid kernel function 

),)),(tanh(( θκ += baK  where R∈θκ, are constants, for instances aand b . 

 
To compute these types of kernel functions, the only computation involving private 
data is to compute the inner product between two instances. Since each party has 
partial attribute values, each of them can only compute partial inner product. The 
challenge is how to combine these partial inner products without disclosing each 
party's private data. Suppose that ,,, 21 LPP and 

nP  get the partial inner products 

denoted by ,,, 21 Lvv  and 
nv  respectively. The goal is to compute 

∑
=

n

j
jv

1

 without compromising data privacy. To achieve this goal,  a secure protocol is 

developed in next section. 
 
 
4 A Secure Protocol 

4.1 Homomorphic Encryption and Digital Envelope 

In our secure protocols, we use homomorphic encryption [17] keys to encrypt the 
parties' private data. In particular, we utilize the following characterizer of the 
homomorphic encryption functions:  )()()( 2121 aaeaeae +=×  where e is an 

encryption function; 
1a  and 

2a  are the data to be encrypted. Because of the property 
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of associativity, )_( 21 naaae L++  can be computed as )()()( 21 naeaeae ××× L  

where 0)( ≠iae . That is  

)8()()()()( 2121 nn aeaeaeaaae ×××=+++ LL  

 
 
Digital envelope A digital envelope is a random number (or a set of random 
numbers) only known by the owner of private data. To hide the private data in a 
digital envelope, we conduct a set of mathematical operations between a random 
number (or a set of random numbers) and the private data. The mathematical 
operations could be addition, subtraction, multiplication, etc. For example, assume 
the private data value is a. There is a random number R which is only known the 
owner of a. The owner can hide a by adding this random number, e.g., a+R. 
 
4.2 Description of Protocol 

Let's assume that there are two instance vectors, 
1x  and 

2x , which contain 

nmmmm +++= L21
 number of attributes. 

1P  has the attribute values of the first 
1m  

attributes, and 
2P has the attribute values of the second 

2m  attributes, 
nP,L  has the 

attribute values of the last 
nm  attributes. We use 

ix1
 to denote the ith element in 

vector 
1x , and 

ix2
 to denote the ith element in vector 

2x . In order to compute the 

),( 21 xxK , the key issue is how the multiple parties compute the inner product 

between 
1x  and 

2x  without disclosing them to each other. Before applying our 

secure protocol, 
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The goal is to securely compute 
n

n

j
j vvvv +++=∑

=

L21
1

. 

In our protocol,  there is no single centralized authority that all parties need to trust. 
Instead, the computation is distributed among parties. There are four steps. In Step I, 
multiple parties randomly select a party as the key generator. Let's assume that 

nP  is 

selected. Each party generates a digital envelope and 
nP  also generates a 

cryptographic key pair (e, d).  In Step II, 
1−nP  computes ))((

1
∑

=

+
n

j
jj rve  where 

jr  is a 

digital envelope (See below for details). 
1−nP  uses the property of homomorphic 

encryptions to combine the data received from other parties whose private data are 
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securely protected. In Step III, 
1P  computes )(

1
∑

=

−
n

j
jve . 

1P  also applies the property 

of homomorphic encryptions to combine the encrypted data from other parties. In 

Step IV, 
1P   and 

1−nP  compute )(
1
∑

=

n

j
jve ,  then send it to 

nP . 
nP  computes ∑

=

n

j
jv

1

 that 

is the desired output.  
 
We describe this more formally as follows: 
 
Protocol 1. Secure Multi-Party Protocol 
INPUT: 

1P 's input is a count 
1v , 

2P 's input is a count 
2v , 

nP,L 's input is a count 
nv . 

The counts are taken from the real number domain. 

OUTPUT: ∑
=

n

i
iv

1

. 

 
Step I: Key and digital envelope generation. 
1. 

jP s for ],1[ nj ∈  randomly select a key generator, e.g., 
nP . 

2. 
nP  generates a cryptographic key pair (e, d) of a semantically-secure 

homomorphic encryption scheme and publishes its public key e. Let e(.) denote 
encryption and d(.) denote decryption. 
3. Each party independently generates a digital envelope, i.e., 

jP  generates a digital 

envelope 
jr , for ],1[ nj ∈ . 

 

Step II: Computing ))((
1
∑

=

+
n

j
jj rve . 

1. 
1P  computes )( 11 rve + , and sends it to 

2P . 

2. 
2P  computes )()()( 21212211 rrvververve +++=+×+ , and sends it to 

3P . 

3. Repeat steps 1, 2 until 
1−nP  obtains 

)()( 11221221 −−−− +×+++++++ nnnn rverrrvvve LL  

)( 121121 −− +++++++= nn rrrvvve LL . 

4. 
nP   computes )( nn rve + , and sends it to 

1−nP . 

5. 
1−nP  computes )()( 1111 nnnn rverrvve +×+++++ −− LL  

))(()(
1

11 ∑
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j
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Step III: Computing )(
1
∑

=

−
n

j
jre . 

1. 
nP  computes )( nre − , and sends it to 

1−nP . 

2. 
1−nP  computes )()()( 11 −− −−=−×− nnnn rrerere , and sends it to 

2−nP . 

3.  Repeat steps 1, 2 until 
1P  obtains )()()(

1
21 ∑
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−=−−−−=−
n

j
jn rerrreRe L . 

Step IV: Computing )(
1
∑
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n

j
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1. 
1P  sends )(

1
∑

=

−
n

j
jre  to 

1−nP . 

2.  
1−nP  computes )()())((

111
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j
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j
j
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j
jj vererve , then sends it to 
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3.  
nP  computes ∑∑

==

=
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j
j

n

j
j vved

11

))(( . 

In the next section, we show that the outputs of the protocols are correct, we argue 
that the data privacy is preserved, and we analyze the complexity for each protocol. 
 
4.3 The Analysis of Correctness, Privacy and Complexity 

Correctness Analysis Assuming all of the parties follow the protocol, to show ∑
=

n

i
iv

1

 

is correctly computed, we need to discuss it step by step. In Step II, what 
1−nP  obtains 

is )()()( 2211 nn rververve +××+×+ L  which equals to ))((
1
∑

=

+
n

j
jj rve    

according to Eq.(8). In Step III, 
1P  obtains )()(

1
1 ∑

=

−=−−−
n

j
jn rerre L  consistent with 

Eq.(8). In Step IV, 
nP  finally gets 
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is the desired result that multiple parties want to obtain. 
 
Privacy Analysis There are two levels of privacy protection. One is that the actual 
count of each party is hidden by a digital envelope, e.g, 

ir ; the other is the protection 

by semantically secure encryptions. Before any party sends anything related to their 
actual counts, the counts are concealed by this two-leveled protector. For example, 
prior to 

1P  sending values related to 
1v  to 

2P , he computes )( 11 rve + . Instead of 
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sending 
2v  to 

3P , 
2P  sends )( 2121 rrvve +++ , etc. Since 

1P , 
1−nP  and 

nP  play more 

important role than others, e.g., Step IV only involves these three parties, we provide 

more analysis for these three parties. (1) In Step II, 
1−nP  gets ))((

1
∑

=

+
n

j
jj rve . Because 

each 
jv  is protected by a digital envelope 

jr , and the summation of each count with 

a digital envelope is encrypted by a semantic secure encryption, 
1−nP  cannot learn 

anything about each 
jv  for ],2,,2,1[ nnj −∈ L . (2) In Step III, 

1P  obtains )(
1
∑

=

−
n

j
jre . 

Since it is the summation of all the digital envelopes and is encrypted by e, she 
cannot know anything about each digital envelope 

jr  for ],2[ nj ∈ . (3) 
nP  finally 

obtains  ∑
=

n

j
jv

1

 which is the desired output of the protocol. It will be shared by all the 

parties. From the above analysis, we can see that the protocol discloses nothing 
about each private count. 
 
Complexity Analysis The communication cost of this protocol is )13( −nα  where α  

is the number of bits for each encrypted element, and n is the total number of parties. 
The computational costs are contributed by: (1) the generation of n digital envelopes; 
(2) n additions; (3) 2n-1 multiplications; (4) 2n encryptions; (5) 1 decryption. Thus, 
the total computational costs are 6n. 
 
5 Conclusion and Future Work 

In this paper, we consider the problem of collaboratively learning Support 
Vector Machines, by using linear, polynomial or sigmoid kernel functions, on private 
data. We develop a secure collaborative protocol using homomorphic encryption and 
digital envelope techniques. In our protocol, the parties do not need to send all their 
data to a central, trusted party. Instead, we use the homomorphic encryption and 
digital envelope  techniques to conduct the computations across the parties without 
compromising their data privacy.  Privacy analysis of our protocol is provided. 
Correctness of our protocol is shown and complexity of the 
protocol is addressed as well. As future work, we will develop secure protocols for 
the cases where other kernel functions are applied. 
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