STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

How To Construct Support Vector Machines Without
Breaching Privacy

Justin Zhan?, Liwu Chang? and Stan Matwin®

! School of Information Technology and Engineeridgjversity of Ottawa, Canada,
zhizhan@site.uottawa.ca

2Center for High Assurance Computer Systems, NavaldRelsé¢.aboratory,
USA, Ichang@itd.nrl.navy.mil

3 School of Information Technology and Engineeridgijversity of Ottawa, Canada. Institute
for Computer Science, Polish Academy of Sciencesst¥g Poland, stan@site.uottawa.ca

Abstract. This paper addresses the problem of data sharimmp@mmultiple parties in the
following scenario: without disclosing their prieatlata to each other, multiple parties, each
having a private data set, want to collaborativebnstruct support vector machines using
a linear, polynomial or sigmoid kernel function. Taxkle this problem, we develop a secure
protocol for multiple parties to conduct the degioemputation. In our solution, multiple parties
use homomorphic encryption and digital envelopbrnegpes to exchange the data while keeping
it private. All the parties are treated symmetticathey all participate in the encryption and in
the computation involved in learning support vectachines.
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1 Introduction

In the modern business world, collaboration becoessecially important
because of the mutual benefit it brings. In thipgra we address the following
collaboration problem: multiple parties are coofiagaon a data mining task. Each
of the parties owns data pertinent to the aspethetask addressed by this party.
More specifically, the data consist of instancdsparties have data about all the
instances involved, but each party has its own wéwhe instances - each party
works with its own attribute set. The parties may Unwilling to release their
attribute values to the other party due to privacgonfidentiality of the data. How
can multiple parties structure information shatirgween them so that the data will
be shared for the purpose of data mining, whilthatsame time specific attribute
values will be kept confidential by the partiesatbom they belong? This is the task
addressed in this paper. In the privacy-orientetd daining this task is known as
data mining with vertically partitioned data [13]he following scenarios illustrate
situations in which this type of collaboration rgdresting: (i) Multiple competing
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supermarkets, each having an extra large set afréabrds of its customers' buying
behaviors, want to conduct data mining on theintjalata set for mutual benefit.

Since these companies are competitors in the matey do not want to disclose
too much about their customers' information to eattier, but they know the results
obtained from this collaboration could bring them advantage over other

competitors. (ii) Vaidya and Clifton [13] providbe following convincing example

in the area of automotive safety: Ford ExplorershWirestone tires from a specific
factory had tread separation problems in certairatons. Early identification of the

real problem could have avoided at least some ®f00 injuries that occurred in

accidents attributed to the faulty tires. Sincetthes did not have problems on other
vehicles, and other tires on Ford Explorers did puge a problem, neither side felt
responsible. Both manufacturers had their own dati&,only early generation of

mining results based on all of the data may hawbled Ford and Firestone to
collaborate in resolving this safety problem.

This paper studies how to learn support vector imashin the distributed
scenario with private attributes as described abbvéhe last few years, there has
been a surge of interest in Support Vector Machif®@éM) [23, 24]. SVM is
a powerful methodology for solving problems in rinebr classification, function
estimation and density estimation which has alst e many other recent
developments in kernel based learning methods mergé [6, 20, 21]. SVMs have
been introduced within the context of statistiadrhing theory and structural risk
minimization. As part of the SVM algorithm, one w&$ convex optimization
problems, typically quadratic programs. It has beewirically shown that SVMs
have good generalization performance on many agfgitcs such as text
categorization [12], face detection [16], and harti@n character recognition [14]
based on the existing SVM learning technologies stuely the problem of learning
Support Vector Machines on private data. More gedgj the problem is defined as
follows: multiple parties want to jointly build spprt vector machines on their data
set, but none of the parties is willing to discléwe actual data to each other or any
other parties. The dataset is vertically partitibime that all parties have data about
all the instances involved, but each party haows view of the instances - each
party works with its own attribute set. We devel@psecure protocol, based on
homomorphic encryption and digital envelope techeg] to tackle the problem. An
important feature of our approach is its distriliutharacter, i.e. there is no single,
centralized authority that all parties need to ttrusstead, the computation is
distributed among parties, and the use of homoniorghcryption and digital
envelope techniques ensures privacy of the data.

The paper is organized as follows: The related vimdiscussed in Section 2.
We describe the SVMs training procedure in Sect®nWe then present our
proposed secure protocols in Section 4. We giveconclusion in Section 5.
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2 Reated Work

2.1 Secure Multi-Party Computation

A Secure Multi-party Computation (SMC) problem deaith computing any
function on any input, in a distributed network wde@ach participant holds one of
the inputs, while ensuring that no more informat®nevealed to a participant in the
computation than can be inferred from that paréinifs input and output. The SMC
problem literature was introduced by Yao [26]. Hshbeen proved that for any
polynomial function, there is a secure multi-pactymputation solution [11]. The
approach used is as follows: the functioto be computed is firstly represented as a
combinatorial circuit, and then the parties rurhars protocol for every gate in the
circuit. Every participant gets corresponding skarethe input wires and the output
wires for every gate. This approach, though appgaiin its generality and
simplicity, is highly impractical for large dataset

2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data miningndé€ll and Pinkas [15]
propose a solution to privacy-preserving clasdiiica problem using oblivious
transfer protocol, a powerful tool developed byusecmulti-party computation
(SMC) research [11, 26]. The techniques based oft &M efficiently dealing with
large data sets have been addressed in [13]. Raration approaches were firstly
proposed by Agrawal and Srikant in [2] to solvevady-preserving data mining
problem. Researchers proposed more random petitmbzdsed techniques to tackle
the problems (e.g., [3, 8, 19]). In addition totpdsation, aggregation of data values
[22] provides another alternative to mask the dctisda values. In [1], authors
studied the problem of computing the kth-rankednelet. Dwork and Nissim [9]
showed how to learn certain types of boolean fonetifrom statistical databases in
terms of a measure of probability difference witbspect to  probabilistic
implication, where data are perturbed with noisetlfi@ release of statistics. In [25],
Wright and Yang applied homomorphic encryption [1d]the Bayesian networks
induction for the case of two parties. In [10], @wds et.al. deal with secure scalar
product computation for privacy-preserving dataingn In this paper, we develop a
secure protocol based on homomorphic encryptiondigital envelope techniques
to learn support vector machines.

3 Learning SYMsOn Private Data

Support vector machines were invented by VapniK [B41982. The idea
consists of mapping the space of input examples énhigh-dimensional feature
space, so that the optimal separating hyperplaile druthis space allows a good
generalization capacity. The input examples becdimearly or almost linearly
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separable in the high dimensional space througitset an adequate mapping [23].
Research on SVMs is extensive since it was inventéowever, to our best
knowledge, there is no effort on learning SVMs eivaie data. In this paper, our
goal is to provide a privacy-preserving algorithror fmultiple parties to
collaboratively learn SVMs without compromising itheata privacy.

3.1 Notations

We define the following notations for illustratiguirposes.
* n: the total number of parties. We assume3.
* P Party j.
* m: the total number of attributes &f for i [ n].
* m: the total number of attributes.

3.2 Overview of Support Vector Machine

SVM is primarily a two-class classifier for whichet optimization criterion is the
width of the margin between the different classeshe linear form, the formula for
output of a SVM is

u=wx+b, (1)

where w is the normal vector to the hyperplane ardis the input vector. To
maximize margin, we need minimize the following:[4]

min,, 1[[wlE, (2

subject toy, (Vsz +b)21, Oi, WhereZ is theith training example, ang;, is the
correct output of the SVM for thigh training example. The valug is +1 (resp. -1)
for the positive (resp. negative) examples in agla

Through introducing Lagrangian multipliers, the wabooptimization can be

converted into a dual quadratic optimization pratle

- N . N
min. ¢/(a) =min, ,, I aayyKa.a)->a, )

ij=1 i=1

where g;s are the Lagrange multipliers_y}:al,az,---,aN, subject to inequality

N
constraintsig; 20,0, and linear equality constrainZyiai =0
i=1
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By solving the dual optimization problem, one obsaithe coefficients
a,,i=12---,N from which the normal vectow and the threshold b can be derived
[18].

To deal with non-linearly separable data in featspace, Cortes and Vapnik [5]
introduced slack-variables to relax the hard-macginstraints. The modification is:

— N
mind [w| +C & 4)
i=1

subject toy, (wix +b)>1-¢ (i, where ¢ is a slack variable that allows margin

failure and constant C > 0 determines the traddsefiveen the empirical error and
the complexity term. This leads to dual quadrat@bfem involving

Eq.(3) subject to the constraints>a, =0, i, andiyiari =0.

i=1
To solve the dual quadratic problem, we apply setigeminimal optimization [18]
which is a very efficient algorithm for training $As.

3.3 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) [18] is a gte algorithm that can
efficiently solve the SVM quadratic optimization @) problem. Instead of directly
tackling the QO problem, it decomposes the ove@ll problem into QO sub-
problems based on Osunna's convergence theoremAtLléfch step, SMO chooses
two Lagarange multipliers to jointly optimize, finthe optimal values for these
multipliers, and updates the SVM to reflect the raptimal values.

In order to solve for the two Lagrange multiplie®dO firstly computes the
constraints on these multipliers and then solvesi# constrained minimum.
Normally, the objective function is positive defmi SMO computes the minimum

2
along the direction of the linear constrainEyiai =0 within the boundary
i=1

Cza 20i=12.
a"=a, +y,(E ~E,)n, )

whereE =y a, K(Z,;() -y, is the error on théth training exampIeZ is the stored

training vector andx is the input vector, ang is the second derivative of Eq.(3)
along the direction of the above linear constraints
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1=K, %) + K(%, %) — 2K (%, %,)- ©

Next step, the constrained minimum is found by giig the unconstrained
minimum to the ends of the line segmept®'**** is equal to H ifa)®">H, is
equal toa?®™ if L<a®<H, and is equal ta)*PPe= | if gl®'<L. If the target
y, is not equal to the target,, L=maxQa, -a,),H=minC,C+a, -a,). If the
targety, is equal to the target,, L=maxQ,a, +a, —-C),H=minC,a, +a,)-

The value ofa, is computed from the new, clipped, :
a®=a, +sa, —ay""e), @)
wheres=y,y,.

In the procedure of sequential minimal optimizatidime only step accessing the
actual attribute values is the computation of thenkl function K. Kernel functions
have various forms. Three types of kernel functiaresconsidered here: they are the

linear kernel functionK:(a,B), the polynomial kernel functiorK=((a,B)+6'),
where dON,80R are constants, and the sigmoid kernel function

K= tanh(/(((a, 6)) +6), where x, §1Rare constants, for instancasnd b.

To compute these types of kernel functions, thg aoimputation involving private
data is to compute the inner product between tvstaites. Since each party has
partial attribute values, each of them can only got® partial inner product. The
challenge is how to combine these partial innerdpets without disclosing each
party's private data. Suppose thgtP,,---,and P, get the partial inner products

denoted by,,v,,---, andv_ respectively. The goal is to compute

n

ZVJ without compromising data privacy. To achieve togl, a secure protocol is
j=1
developed in next section.

4 A Secure Protocol
4.1 Homomor phic Encryption and Digital Envelope

In our secure protocols, we use homomorphic eninydtl7] keys to encrypt the
parties' private data. In particular, we utilizee thollowing characterizer of the
homomorphic encryption functions: ea )xea,) =€a, +a,) Where e is an

encryption function;a, and a, are the data to be encrypted. Because of the gyope
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of associativity, g(a, +a, +---_a,) can be computed aga )xefa,)x---xea,)
whereeg(a ) #0. That is

ga +ta, +---+a,)=6a) xea,) x---xea,) (S)

Digital envelopeA digital envelope is a random number (or a setraridom
numbers) only known by the owner of private date.hide the private data in a
digital envelope, we conduct a set of mathematigarations between a random
number (or a set of random numbers) and the pridatia. The mathematical
operations could be addition, subtraction, multigtion, etc. For example, assume
the private data value is a. There is a random eurRowhich is only known the
owner of a. The owner can hide a by adding thideannumber, e.g., a+R.

4.2 Description of Protocol

Let's assume that there are two instance vectalrs,and Z which contain
m=m +m, +---+m, number of attributesP, has the attribute values of the firs{
attributes, andP,has the attribute values of the secangd attributes,.--, P, has the
attribute values of the lash, attributes. We usex; to denote theth element in
vectorz, and x,, to denote thdth element in vectosz. In order to compute the
K(Z,;Z), the key issue is how the multiple parties compthie inner product
betweenz and xj without disclosing them to each other. Before wiogl our

m
secure protocol, R, computes 3% O, and gets a county,, P, computes
i=1

mf)g,- X, and gets a couny,, ---,P, computes ixn X, and gets a couny, .
i=m+1 i=m-m,+1

. n
The goal is to securely compuEVj SV HV, eV
j=1
In our protocol, there is no single centralizethatity that all parties need to trust.
Instead, the computation is distributed among esriThere are four steps. In Step |,
multiple parties randomly select a party as the g@yerator. Let's assume tiRtis

selected. Each party generates a digital envelopgé B also generates a

cryptographic key pair (e, d). In Step R, computese(zn:(vj +1,)) where I is a
j=1

digital envelope (See below for detaild}, , uses the property of homomorphic

encryptions to combine the data received from opi@ties whose private data are
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securely protected. In Step IIR computese(_ivj). P, also applies the property

j=1
of homomorphic encryptions to combine the encrymtath from other parties. In

Step IV, B, andP,_, computee(zn:\,j), then send it taP,. P, computesznlvj that
j=1 j=1
is the desired output.

We describe this more formally as follows:

Protocol 1. Secure Multi-Party Protocol
INPUT: B,'s input is a count,, B,'s input is a count,, ---,P,'s input is a count, .

The counts are taken from the real number domain.
OUTPUT:Zn:\,i .

i=1
Step I: Key and digital envelope generation.
1.Ps for jO[4n] randomly select a key generator, eR.,

2. P, generates a cryptographic key pair (e, d) of a astically-secure

homomorphic encryption scheme and publishes itdipldey e. Let e(.) denote
encryption and d(.) denote decryption.
3. Each party independently generates a digita¢lepe, i.e.,|:>j generates a digital

enveloper , for jO[Ln].

n
Step 11: Computinge(zl:(\,j +1,)) -

1. P computesg(y, + ri), and sends it t¢,.

2. P, computess(v, +r,) XV, +1,) =&V, +V, +1, +r,), and sends it te,.
3. Repeat steps 1, 2 un@_, obtains

e(Vl R IR P i PR rn—z) Xe(Vn—l + rn—l)

=V, HV, Fe VD ).

4. P computesg(v, +r,), and sends it t@®

5. P_, computesg(y, +---+V,_, +r 41, )XV, +r,)

n .
=@V, +-HV, I 4T :e(Z(Vj +1,))- Let us denote it by e(V + R), where
j=1

\V/ :Zn:\,j and R:Zn:rj .
j=1 j=1
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Step 111: Computinge(_zn:rj).
j=1
1. P, computesg(—r,), and sends it t® .
2. P_, computese(-r, ) xe(-r,_,) =€(-T, —r,,), and sends it t@, _,.
3. Repeat steps 1, 2 unh| obtainsg(—R) =1, —r,——T) :e(—zn:rj)-
j=1
Step 1V: Computinge(zn“vj).
j=1

1B sendse(_zn:rj) toP,.
j=1
2. P, computese(zn:(vj +1, ))xe(—zn:rj):e(ivj), then sends it t®, .
j=1 j=1 j=1

3. B, computesd(e(}v;))=> v, -
= =

In the next section, we show that the outputs efptotocols are correct, we argue
that the data privacy is preserved, and we anahgeomplexity for each protocol.

4.3 TheAnalysisof Correctness, Privacy and Complexity

Correctness AnalysiAssuming all of the parties follow the protoccoj,sjhowi“vi
i=1
is correctly computed, we need to discuss it stegtép. In Step Il, whaP,_, obtains

is eV, +1,) XV, +1,)x---xg(v, +r ) Which equals tce(zn:(vj +1,))
j=1

according to Eq.(8). In Step IIR, obtainse(_rl - 1) :e(—zn:rj) consistent with
j=1

EQ.(8). In Step IV,P, finally gets
d(ed v, + D) e r ) =dE3y, + 31, -3 ) =ded v )=y, - This
j=1 j=1 j=t j=1 = = = j=t

is the desired result that multiple parties wantltain.

Privacy AnalysisThere are two levels of privacy protection. Onehiat the actual
count of each party is hidden by a digital envelapg, r,; the other is the protection

by semantically secure encryptions. Before anyypsehds anything related to their
actual counts, the counts are concealed by thislewaled protector. For example,
prior to B, sending values related tg to P,, he computesy(v, +r,). Instead of
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sendingv, to B,, P, sendse(v, +v, +r, +1,), etc. SinceR, P _, and P, play more
important role than others, e.g., Step IV only imes these three parties, we provide

more analysis for these three parties. (1) In 8tep, getse(Z(Vj +1,))- Because
j=1
eachvj is protected by a digital envelopje, and the summation of each count with

a digital envelope is encrypted by a semantic geemcryption,P_, cannot learn
anything about eaclvj for jO[2---,;n=-2n]. (2) In Step IIl,R, obtainse(_irj).
j=1

Since it is the summation of all the digital enyme and is encrypted by e, she
cannot know anything about each digital envelq;pe‘or jo[2n]. (3) P, finally

obtains ZH:VJ- which is the desired output of the protocol. Iliwe shared by all the
j=1

parties. From the above analysis, we can see Kajptotocol discloses nothing

about each private count.

Complexity Analysighe communication cost of this protocolag3n—1) where a

is the number of bits for each encrypted elemend,rais the total number of parties.
The computational costs are contributed by: (1)gdeeration of n digital envelopes;
(2) n additions; (3) 2n-1 multiplications; (4) 2naeyptions; (5) 1 decryption. Thus,
the total computational costs are 6n.

5 Conclusion and Future Work

In this paper, we consider the problem of collabeedy learning Support
Vector Machines, by using linear, polynomial omsad kernel functions, on private
data. We develop a secure collaborative protodagusomomorphic encryption and
digital envelope techniques. In our protocol, tlaeties do not need to send all their
data to a central, trusted party. Instead, we heehbmomorphic encryption and
digital envelope techniques to conduct the contfmuia across the parties without
compromising their data privacy. Privacy analysfsour protocol is provided.
Correctness of our protocol is shown and complexitthe
protocol is addressed as well. As future work, v develop secure protocols for
the cases where other kernel functions are applied.
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