
STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

How To Construct Support Vector Machines Without
Breaching Privacy

Justin Zhan1, LiWu Chang2, and Stan Matwin3

1 School of Information Technology and Engineering, University of Ottawa, Canada,
zhizhan@site.uottawa.ca

2 Center for High Assurance Computer Systems, Naval Research Laboratory,
 USA, lchang@itd.nrl.navy.mil
3 School of Information Technology and Engineering, University of Ottawa, Canada. Institute

for Computer Science, Polish Academy of Sciences, Warsaw, Poland, stan@site.uottawa.ca

Abstract. This paper addresses the problem of data sharing among multiple parties in the
following scenario: without disclosing their private data to each other, multiple parties, each
having a private data set, want to collaboratively construct support vector machines using
a linear, polynomial or sigmoid kernel function. To tackle this problem, we develop a secure
protocol for multiple parties to conduct the desired computation. In our solution, multiple parties
use homomorphic encryption and digital envelope techniques to exchange the data while keeping
it private. All the parties are treated symmetrically: they all participate in the encryption and in
the computation involved in learning support vector machines.

Keywords. Privacy, security, support vector machine

1 Introduction

In the modern business world, collaboration becomes especially important
because of the mutual benefit it brings. In this paper, we address the following
collaboration problem: multiple parties are cooperating on a data mining task. Each
of the parties owns data pertinent to the aspect of the task addressed by this party.
More specifically, the data consist of instances, all parties have data about all the
instances involved, but each party has its own view of the instances - each party
works with its own attribute set. The parties may be unwilling to release their
attribute values to the other party due to privacy or confidentiality of the data. How
can multiple parties structure information sharing between them so that the data will
be shared for the purpose of data mining, while at the same time specific attribute
values will be kept confidential by the parties to whom they belong? This is the task
addressed in this paper. In the privacy-oriented data mining this task is known as
data mining with vertically partitioned data [13]. The following scenarios illustrate
situations in which this type of collaboration is interesting: (i) Multiple competing

234 Zhan J., Malwin S., Liwu Chang

Studia Informatica vol. 1/2(7)2006

supermarkets, each having an extra large set of data records of its customers' buying
behaviors, want to conduct data mining on their joint data set for mutual benefit.
Since these companies are competitors in the market, they do not want to disclose
too much about their customers' information to each other, but they know the results
obtained from this collaboration could bring them an advantage over other
competitors. (ii) Vaidya and Clifton [13] provide the following convincing example
in the area of automotive safety: Ford Explorers with Firestone tires from a specific
factory had tread separation problems in certain situations. Early identification of the
real problem could have avoided at least some of the 800 injuries that occurred in
accidents attributed to the faulty tires. Since the tires did not have problems on other
vehicles, and other tires on Ford Explorers did not pose a problem, neither side felt
responsible. Both manufacturers had their own data, but only early generation of
mining results based on all of the data may have enabled Ford and Firestone to
collaborate in resolving this safety problem.

This paper studies how to learn support vector machines in the distributed
scenario with private attributes as described above. In the last few years, there has
been a surge of interest in Support Vector Machines (SVM) [23, 24]. SVM is
a powerful methodology for solving problems in nonlinear classification, function
estimation and density estimation which has also led to many other recent
developments in kernel based learning methods in general [6, 20, 21]. SVMs have
been introduced within the context of statistical learning theory and structural risk
minimization. As part of the SVM algorithm, one solves convex optimization
problems, typically quadratic programs. It has been empirically shown that SVMs
have good generalization performance on many applications such as text
categorization [12], face detection [16], and handwritten character recognition [14]
based on the existing SVM learning technologies, we study the problem of learning
Support Vector Machines on private data. More precisely, the problem is defined as
follows: multiple parties want to jointly build support vector machines on their data
set, but none of the parties is willing to disclose her actual data to each other or any
other parties. The dataset is vertically partitioned in that all parties have data about
all the instances involved, but each party has its own view of the instances - each
party works with its own attribute set. We develop a secure protocol, based on
homomorphic encryption and digital envelope techniques, to tackle the problem. An
important feature of our approach is its distributed character, i.e. there is no single,
centralized authority that all parties need to trust. Instead, the computation is
distributed among parties, and the use of homomorphic encryption and digital
envelope techniques ensures privacy of the data.

The paper is organized as follows: The related work is discussed in Section 2.
We describe the SVMs training procedure in Section 3. We then present our
proposed secure protocols in Section 4. We give our conclusion in Section 5.

 How to Construct Support Vector Machines Without Breaching Privacy 235

Artificial Intelligence

2 Related Work

2.1 Secure Multi-Party Computation

A Secure Multi-party Computation (SMC) problem deals with computing any
function on any input, in a distributed network where each participant holds one of
the inputs, while ensuring that no more information is revealed to a participant in the
computation than can be inferred from that participant's input and output. The SMC
problem literature was introduced by Yao [26]. It has been proved that for any
polynomial function, there is a secure multi-party computation solution [11]. The
approach used is as follows: the function F to be computed is firstly represented as a
combinatorial circuit, and then the parties run a short protocol for every gate in the
circuit. Every participant gets corresponding shares of the input wires and the output
wires for every gate. This approach, though appealing in its generality and
simplicity, is highly impractical for large datasets.

2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data mining, Lindell and Pinkas [15]
propose a solution to privacy-preserving classification problem using oblivious
transfer protocol, a powerful tool developed by secure multi-party computation
(SMC) research [11, 26]. The techniques based on SMC for efficiently dealing with
large data sets have been addressed in [13]. Randomization approaches were firstly
proposed by Agrawal and Srikant in [2] to solve privacy-preserving data mining
problem. Researchers proposed more random perturbation-based techniques to tackle
the problems (e.g., [3, 8, 19]). In addition to perturbation, aggregation of data values
[22] provides another alternative to mask the actual data values. In [1], authors
studied the problem of computing the kth-ranked element. Dwork and Nissim [9]
showed how to learn certain types of boolean functions from statistical databases in
terms of a measure of probability difference with respect to probabilistic
implication, where data are perturbed with noise for the release of statistics. In [25],
Wright and Yang applied homomorphic encryption [17] to the Bayesian networks
induction for the case of two parties. In [10], Goethals et.al. deal with secure scalar
product computation for privacy-preserving data mining. In this paper, we develop a
secure protocol based on homomorphic encryption and digital envelope techniques
to learn support vector machines.

3 Learning SVMs On Private Data

Support vector machines were invented by Vapnik [24] in 1982. The idea
consists of mapping the space of input examples into a high-dimensional feature
space, so that the optimal separating hyperplane built on this space allows a good
generalization capacity. The input examples become linearly or almost linearly

236 Zhan J., Malwin S., Liwu Chang

Studia Informatica vol. 1/2(7)2006

separable in the high dimensional space through selecting an adequate mapping [23].
Research on SVMs is extensive since it was invented. However, to our best
knowledge, there is no effort on learning SVMs on private data. In this paper, our
goal is to provide a privacy-preserving algorithm for multiple parties to
collaboratively learn SVMs without compromising their data privacy.

3.1 Notations

We define the following notations for illustration purposes.
• n: the total number of parties. We assume 3≥n .
•

jP : Party j.

•
im : the total number of attributes of

iP for],1[ni ∈ .

• m: the total number of attributes.

3.2 Overview of Support Vector Machine

SVM is primarily a two-class classifier for which the optimization criterion is the
width of the margin between the different classes. In the linear form, the formula for
output of a SVM is

,bxwu +⋅= (1)

where w is the normal vector to the hyperplane and x is the input vector. To
maximize margin, we need minimize the following [4]:

,||||min 2
2
1

, wbw
 (2)

subject to 1)(≥+⋅ bxwy ii
, i∀ , where

ix is the ith training example, and
iy is the

correct output of the SVM for the ith training example. The value
iy is +1 (resp. -1)

for the positive (resp. negative) examples in a class.

Through introducing Lagrangian multipliers, the above optimization can be
converted into a dual quadratic optimization problem.

)3(,),(min)(min
11,

2
1

, ∑∑
==

−=
N

i
i

N

ji
jijiji Kyy

ji
ααααααψ ααα

where
iα s are the Lagrange multipliers,

Nαααα ,,, 21 L= , subject to inequality

constraints: ,,0 ii ∀≥α and linear equality constraint: 0
1

=∑
=

N

i
iiy α .

 How to Construct Support Vector Machines Without Breaching Privacy 237

Artificial Intelligence

By solving the dual optimization problem, one obtains the coefficients

Nii ,,2,1, L=α from which the normal vector w and the threshold b can be derived

[18].

To deal with non-linearly separable data in feature space, Cortes and Vapnik [5]
introduced slack-variables to relax the hard-margin constraints. The modification is:

∑
=

+
N

i
iCw

1

2
2
1 ||||min ξ (4)

subject to ,1)(, ibxwy iii ∀−≥+⋅ ξ where
iξ is a slack variable that allows margin

failure and constant C > 0 determines the trade-off between the empirical error and
the complexity term. This leads to dual quadratic problem involving

Eq.(3) subject to the constraints ,,0 iC i ∀≥≥α and ∑
=

=
N

i
iiy

1

0α .

To solve the dual quadratic problem, we apply sequential minimal optimization [18]
which is a very efficient algorithm for training SVMs.

3.3 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) [18] is a simple algorithm that can
efficiently solve the SVM quadratic optimization (QO) problem. Instead of directly
tackling the QO problem, it decomposes the overall QO problem into QO sub-
problems based on Osunna's convergence theorem [16]. At each step, SMO chooses
two Lagarange multipliers to jointly optimize, find the optimal values for these
multipliers, and updates the SVM to reflect the new optimal values.

In order to solve for the two Lagrange multipliers, SMO firstly computes the

constraints on these multipliers and then solves for the constrained minimum.
Normally, the objective function is positive definite, SMO computes the minimum

along the direction of the linear constraints ∑
=

=
2

1

0
i

iiy α within the boundary

2,1,0 =≥≥ iC iα .

)5(,)(21222 ηαα EEyNew −+=

where
iiiii yxxKyE −=),(α is the error on the ith training example,

ix is the stored

training vector and x is the input vector, and η is the second derivative of Eq.(3)

along the direction of the above linear constraints:

238 Zhan J., Malwin S., Liwu Chang

Studia Informatica vol. 1/2(7)2006

)6().,(2),(),(212211 xxKxxKxxK −+=η

Next step, the constrained minimum is found by clipping the unconstrained
minimum to the ends of the line segment: clippednew,

2α is equal to H if Hnew ≥2α , is

equal to new
2α if HL new<< 2α , and is equal to Lclippedewn =,

2α if Lnew ≤2α . If the target

1y is not equal to the target
2y ,),min(),,0max(1212 αααα −+=−= CCHL . If the

target
1y is equal to the target

2y ,),min(),,0max(1212 αααα +=−+= CHCL .

The value of

1α is computed from the new, clipped,
2α :

)7(),(,
2211

clippednewnew s αααα −+=

where
21yys= .

In the procedure of sequential minimal optimization, the only step accessing the
actual attribute values is the computation of the kernel function K. Kernel functions
have various forms. Three types of kernel functions are considered here: they are the

linear kernel function),,(baK = the polynomial kernel function),),((θ+= baK

where RNd ∈∈ θ, are constants, and the sigmoid kernel function

),)),(tanh((θκ += baK where R∈θκ, are constants, for instances aand b .

To compute these types of kernel functions, the only computation involving private
data is to compute the inner product between two instances. Since each party has
partial attribute values, each of them can only compute partial inner product. The
challenge is how to combine these partial inner products without disclosing each
party's private data. Suppose that ,,, 21 LPP and

nP get the partial inner products

denoted by ,,, 21 Lvv and
nv respectively. The goal is to compute

∑
=

n

j
jv

1

 without compromising data privacy. To achieve this goal, a secure protocol is

developed in next section.

4 A Secure Protocol

4.1 Homomorphic Encryption and Digital Envelope

In our secure protocols, we use homomorphic encryption [17] keys to encrypt the
parties' private data. In particular, we utilize the following characterizer of the
homomorphic encryption functions:)()()(2121 aaeaeae +=× where e is an

encryption function;
1a and

2a are the data to be encrypted. Because of the property

 How to Construct Support Vector Machines Without Breaching Privacy 239

Artificial Intelligence

of associativity,)_(21 naaae L++ can be computed as)()()(21 naeaeae ××× L

where 0)(≠iae . That is

)8()()()()(2121 nn aeaeaeaaae ×××=+++ LL

Digital envelope A digital envelope is a random number (or a set of random
numbers) only known by the owner of private data. To hide the private data in a
digital envelope, we conduct a set of mathematical operations between a random
number (or a set of random numbers) and the private data. The mathematical
operations could be addition, subtraction, multiplication, etc. For example, assume
the private data value is a. There is a random number R which is only known the
owner of a. The owner can hide a by adding this random number, e.g., a+R.

4.2 Description of Protocol

Let's assume that there are two instance vectors,
1x and

2x , which contain

nmmmm +++= L21
 number of attributes.

1P has the attribute values of the first
1m

attributes, and
2P has the attribute values of the second

2m attributes,
nP,L has the

attribute values of the last
nm attributes. We use

ix1
 to denote the ith element in

vector
1x , and

ix2
 to denote the ith element in vector

2x . In order to compute the

),(21 xxK , the key issue is how the multiple parties compute the inner product

between
1x and

2x without disclosing them to each other. Before applying our

secure protocol,
1P computes ∑

=

⋅
1

1
21

m

i
ii xx and gets a count

1v ,
2P computes

∑
+

+=

⋅
21

1 1
21

mm

mi
ii xx and gets a count

2v ,
nP,L computes ∑

+−=

⋅
m

mmi
ii

n

xx
1

21
 and gets a count

nv .

The goal is to securely compute
n

n

j
j vvvv +++=∑

=

L21
1

.

In our protocol, there is no single centralized authority that all parties need to trust.
Instead, the computation is distributed among parties. There are four steps. In Step I,
multiple parties randomly select a party as the key generator. Let's assume that

nP is

selected. Each party generates a digital envelope and
nP also generates a

cryptographic key pair (e, d). In Step II,
1−nP computes))((

1
∑

=

+
n

j
jj rve where

jr is a

digital envelope (See below for details).
1−nP uses the property of homomorphic

encryptions to combine the data received from other parties whose private data are

240 Zhan J., Malwin S., Liwu Chang

Studia Informatica vol. 1/2(7)2006

securely protected. In Step III,
1P computes)(

1
∑

=

−
n

j
jve .

1P also applies the property

of homomorphic encryptions to combine the encrypted data from other parties. In

Step IV,
1P and

1−nP compute)(
1
∑

=

n

j
jve , then send it to

nP .
nP computes ∑

=

n

j
jv

1

 that

is the desired output.

We describe this more formally as follows:

Protocol 1. Secure Multi-Party Protocol
INPUT:

1P 's input is a count
1v ,

2P 's input is a count
2v ,

nP,L 's input is a count
nv .

The counts are taken from the real number domain.

OUTPUT: ∑
=

n

i
iv

1

.

Step I: Key and digital envelope generation.
1.

jP s for],1[nj ∈ randomly select a key generator, e.g.,
nP .

2.
nP generates a cryptographic key pair (e, d) of a semantically-secure

homomorphic encryption scheme and publishes its public key e. Let e(.) denote
encryption and d(.) denote decryption.
3. Each party independently generates a digital envelope, i.e.,

jP generates a digital

envelope
jr , for],1[nj ∈ .

Step II: Computing))((
1
∑

=

+
n

j
jj rve .

1.
1P computes)(11 rve + , and sends it to

2P .

2.
2P computes)()()(21212211 rrvververve +++=+×+ , and sends it to

3P .

3. Repeat steps 1, 2 until
1−nP obtains

)()(11221221 −−−− +×+++++++ nnnn rverrrvvve LL

)(121121 −− +++++++= nn rrrvvve LL .

4.
nP computes)(nn rve + , and sends it to

1−nP .

5.
1−nP computes)()(1111 nnnn rverrvve +×+++++ −− LL

))(()(
1

11 ∑
=

+=+++++=
n

j
jjnn rverrvve LL . Let us denote it by e(V + R), where

∑
=

=
n

j
jvV

1

 and ∑
=

=
n

j
jrR

1

.

 How to Construct Support Vector Machines Without Breaching Privacy 241

Artificial Intelligence

Step III: Computing)(
1
∑

=

−
n

j
jre .

1.
nP computes)(nre − , and sends it to

1−nP .

2.
1−nP computes)()()(11 −− −−=−×− nnnn rrerere , and sends it to

2−nP .

3. Repeat steps 1, 2 until
1P obtains)()()(

1
21 ∑

=

−=−−−−=−
n

j
jn rerrreRe L .

Step IV: Computing)(
1
∑

=

n

j
jve .

1.
1P sends)(

1
∑

=

−
n

j
jre to

1−nP .

2.
1−nP computes)()())((

111
∑∑∑

===

=−×+
n

j
j

n

j
j

n

j
jj vererve , then sends it to

nP .

3.
nP computes ∑∑

==

=
n

j
j

n

j
j vved

11

))((.

In the next section, we show that the outputs of the protocols are correct, we argue
that the data privacy is preserved, and we analyze the complexity for each protocol.

4.3 The Analysis of Correctness, Privacy and Complexity

Correctness Analysis Assuming all of the parties follow the protocol, to show ∑
=

n

i
iv

1

is correctly computed, we need to discuss it step by step. In Step II, what
1−nP obtains

is)()()(2211 nn rververve +××+×+ L which equals to))((
1
∑

=

+
n

j
jj rve

according to Eq.(8). In Step III,
1P obtains)()(

1
1 ∑

=

−=−−−
n

j
jn rerre L consistent with

Eq.(8). In Step IV,
nP finally gets

 ∑∑∑∑∑∑∑∑
========

==−+=−×+
n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j vvedrrvedrerved

11111111

))(())(())())((. This

is the desired result that multiple parties want to obtain.

Privacy Analysis There are two levels of privacy protection. One is that the actual
count of each party is hidden by a digital envelope, e.g,

ir ; the other is the protection

by semantically secure encryptions. Before any party sends anything related to their
actual counts, the counts are concealed by this two-leveled protector. For example,
prior to

1P sending values related to
1v to

2P , he computes)(11 rve + . Instead of

242 Zhan J., Malwin S., Liwu Chang

Studia Informatica vol. 1/2(7)2006

sending
2v to

3P ,
2P sends)(2121 rrvve +++ , etc. Since

1P ,
1−nP and

nP play more

important role than others, e.g., Step IV only involves these three parties, we provide

more analysis for these three parties. (1) In Step II,
1−nP gets))((

1
∑

=

+
n

j
jj rve . Because

each
jv is protected by a digital envelope

jr , and the summation of each count with

a digital envelope is encrypted by a semantic secure encryption,
1−nP cannot learn

anything about each
jv for],2,,2,1[nnj −∈ L . (2) In Step III,

1P obtains)(
1
∑

=

−
n

j
jre .

Since it is the summation of all the digital envelopes and is encrypted by e, she
cannot know anything about each digital envelope

jr for],2[nj ∈ . (3)
nP finally

obtains ∑
=

n

j
jv

1

 which is the desired output of the protocol. It will be shared by all the

parties. From the above analysis, we can see that the protocol discloses nothing
about each private count.

Complexity Analysis The communication cost of this protocol is)13(−nα where α

is the number of bits for each encrypted element, and n is the total number of parties.
The computational costs are contributed by: (1) the generation of n digital envelopes;
(2) n additions; (3) 2n-1 multiplications; (4) 2n encryptions; (5) 1 decryption. Thus,
the total computational costs are 6n.

5 Conclusion and Future Work

In this paper, we consider the problem of collaboratively learning Support
Vector Machines, by using linear, polynomial or sigmoid kernel functions, on private
data. We develop a secure collaborative protocol using homomorphic encryption and
digital envelope techniques. In our protocol, the parties do not need to send all their
data to a central, trusted party. Instead, we use the homomorphic encryption and
digital envelope techniques to conduct the computations across the parties without
compromising their data privacy. Privacy analysis of our protocol is provided.
Correctness of our protocol is shown and complexity of the
protocol is addressed as well. As future work, we will develop secure protocols for
the cases where other kernel functions are applied.

References

1. Aggarwal G., Mishra N., and Pinkas B. Secure computation of the kth-rankerd
element. In EUROCRYPT, 40-55, 2005.

 How to Construct Support Vector Machines Without Breaching Privacy 243

Artificial Intelligence

2. Agrawal R. and Srikant R. Privacy-preserving data mining. In Proceedings of
the ACM SIGMOD Conference on Management of Data, 439-450, ACM Press,
May 2000.

3. Gehrke J.E., Evfimievshi A., and Srikant R. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of the 22nd ACM SIGMOD
Symposium on Principles of Database Systems, San Diego, CA, June 2003.

4. Burges C. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121-167, 1998.

5. Cortes C, and Vapnik V. Support vector networks. Machine Learning,
20(3):273-297, 1995.

6. Shawe-Taylor J., and Cristianini N. An introduction to support vector
machines. In Cambridge University Press.

7. Domingo-Ferrer J. A provably secure additive and multiplicative privacy
homomorphism. In Information Security Conference, 471-483, 2002.

8. Du W., and Zhan Z. Using randomized response techniques for privacy-
preserving data mining. In Proceedings of The 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 24-27, 2003.

9. Dwork C., and Nissim K. Privacy-preserving data mining on vertically
partitioned databases. In CRYPTO 2004, 528-544.

10. Goethals B, Laur S., Lipmaa H., and Mielikainen T. On secure scalar product
computation for privacy-preserving data mining. In Proceedings of The 7th
Annual International Conference of Information Security and Cryptology,
volume 3506 of Lecture Notes in Computer Science, 104-120, Seoul, Korea,
December 2-3, 2004, Springer-Verlag.

11. Goldreich O. Secure multi-party computation (working draft).
http://www.wisdom,weizmann.ac.il/home/oded/public_html/foc.html, 1998.

12. Joachims T. Text categorization with support vector machines: learning with
many relevant features. In Proceedings of 10th European Conference on
Machine Learning, number 1398, pages 137-142, Chemnitz, DE, 1998.

13. Vaidya J., and Clifton C. Privacy preserving association rule mining in
vertically partitioned data. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, July
23-26, 2002, Edmonton, Alberta, Canada.

14. LeCun Y., Botou L., Jackel L., Drucker H., Cortes C., Denker J., Guyon I.,
Muller U., Sackinger E., Simard P., and Vapnik V. Learning algorithms for
classification: A comparison on handwritten digit recognition, 1995.

15. Lindell Y., and Pinkas B. Privacy preserving data mining. In Advances in
Cryptology – Crypto2000, Lecture Notes in Computer Science, volume 1880,
2000.

244 Zhan J., Malwin S., Liwu Chang

Studia Informatica vol. 1/2(7)2006

16. Freund R., Girosi F., and Osuna e. Training support vector machines: An
application to face detection. In Proceedings of Computer Vision and Pattern
Recognition, 130-136.

17. Paillier P. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cyrptography – EUROCRYPT99, 223-238, Prague,
Czech Republic, May 1999.

18. Platt J. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical Report, MST-TR-98-14, Microsoft Research, 1998.

19. Rizvi S., and Haritsa J. Maintaining data privacy in association rule mining. In
Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

20. Schlkopf B., Smola A., and Mller K. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299--1319, 1998.

21. Smola A., Schlkopf B., and Burge C. Advances in kernel methods – support
vector learning. In MIT Press.

22. Sweeney L. k-anonymity: a model for protecting privacy. In International
Journal on Uncertainty, fuzziness and Knowledge-based Systems, 10(5), 557-
570, 2002.

23. Vapnik V. The nature of statistical learning theory. In Springer-Verlag, New
York, 1995.

24. Vapnik V. Estimation of dependences based on empirical data. In Springer-
Verlag, New York, 1982.

25. Wright R., and Yang Z. Privacy-preserving Bayesian network structure
computation on distributed heterogeneous data. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2004.

26. Yao A. Protocols for secure computations. In Proceedings of the 23rd Annual
IEEE Symposium on foundations of Computer Science, 1982.

