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Abstract. Preserving data privacy while conducting data clustering among multiple parties is  
a demanding problem. We address this challenging problem in the following scenario: without 
disclosing their private data to each other, multiple parties, each having a private data set, want 
to collaboratively conduct k-medoids clustering. To tackle this problem, we develop secure 
protocols for multiple parties to achieve this dual goal. The solution is distributed, i.e., there is no 
central, trusted party having access to all the data. Instead, we define a protocol using 
homomorphic encryption and digital envelope techniques to exchange the data while keeping it 
private. 
 
Keywords. Privacy, security, clustering. 

 
 
1 Introduction 

Huge amount of data often locates in geographically distributed sources. To 
extract useful knowledge from these distributed data, many approaches [4] have been 
designed. Although these techniques are sufficient if each source would like to 
provide its actual data, it is not desirable when their data privacy comes into place. 
How can multiple parties still extract the useful information without comprising their 
data privacy is a challenging problem. In the field of knowledge discovery and data 
mining, the above problem is known as Privacy Preserving Collaborative Data 
Mining. Vidya and Clifton [10] provided the following convincing example in the 
area of automotive safety: Ford Explorers with Firestone tires from a specific factory 
had tread separation problems in certain situations. Early identification of the real 
problem could have avoided at least some of the 800 injuries that occurred in 
accidents attributed to the faulty tires. Since the tires did not have problems on other 
vehicles, and other tires on Ford Explorers did not pose a problem, neither side felt 
responsible. Both manufacturers had their own data, but only early extraction of 
useful knowledge based on both parties' data may have enabled Ford and Firestone 
to collaborate in resolving this safety problem.  
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Data mining contains many algorithms such as association rule mining, 
classification, and clustering. This paper focuses on data clustering. In recent years, 
there has been a surge of interest in clustering [12]. It is an active research area in 
many fields such as pattern recognition, statistics, and machine learning. It divides 
the data into groups of similar objects such that both intra-group similarity and inter-
group dissimilarity are maximized. Although losing certain fine details, it simplifies 
the representation of data by several clusters. In practice, clustering plays a high-
profile role in data mining applications such as scientific data exploration, medical 
diagnostics, and information retrieval, etc. Based on the existing clustering 
technologies, we study the problem of clustering on private data. More precisely, we 
consider the scenario where data are vertically partitioned, and the problem is defined 
as follows: multiple parties want to conduct data clustering on a data set that consists of 
private data of all the parties, but none of the parties is willing to disclose its actual data 
to one another or any other parties. More specifically, the data consist of instances, all 
parties have data about all the instances involved, but each party has its own view of 
the instances – each party works with its own attribute set. We develop secure 
protocols, based on homomorphic encryption and digital envelope techniques, to tackle 
the problem. An important feature of our approach is its distributed character, i.e. there 
is no single, centralized authority that all parties need to trust. Instead, the computation 
is distributed among parties, and the use of homomorphic encryption and digital 
envelope techniques ensures privacy of the data. 
 

The paper is organized as follows: We describe the clustering procedure  
in Section 2. We then present our proposed secure protocols and detailed analysis  
in Section 3. The related works are discussed in Section 4. We give our conclusion  
in Section 5. 
 
2 Clustering On Private Data 

There are  many  clustering algorithms [4] such as k-means method,  
k-medoids method, probabilistic clustering, etc. We focus on k-medoids method 
since it allows arbitrary objects that are not limited to numerical attributes [12].  
In k-medoids clustering, a cluster is denoted by one of its points. It is an easy 
solution in that it covers any attribute type and that medoids are resistant against 
outliers. Once medoids are chosen, clusters are defined as subsets of points close to 
respective medoids, and the objective function is described as the distance between  
a point and its medoid. In this paper, our goal is to provide a privacy-preserving 
algorithm for multiple parties to collaboratively conduct data clustering using  
k-medoids method without compromising their data privacy.  
 
2.1 Notations 

We define the following notations for illustration purposes. 
• n: the total number of parties. We assume 3≥n . 
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• 
jP : Party j. 

• k: the total number of medoids. 
• t: a non-medoid instance. 
• 

iCm : the medoid of the cluster 
iC .  

• M: a general term for medoids. It contains all possible medoids. 
• NM: a general term for non-medoids. It contains all possible medoids. 
• )( iCTD : the measure of the compactness for a cluster 

iC .  

• TD: the measure of the compactness of a clustering that contains all the 
clusters. 

 

2.2 Overview of k-medoids Clustering Algorithm 

The k-medoids method divides a distance-space into k clusters. A medoid 
[12], that is selected from the dataset, represents a cluster. The algorithm chooses  
k medoids to denote the k clusters. Clusters are then created by assigning each of the 
remaining instances to the nearest medoid. As in the k-means method k needs to be 
predefined. Unlike k-means method where each mean is the average of certain 
instances, k-medoids are exactly k instances selected from the dataset. We describe 
the k-medoids clustering algorithm in the following. 
 

1. Arbitrarily select k instances from the dataset as medoids. 
2. Assign each remaining (non-medoid) instance to the cluster with the nearest 

medoid.  
3. Compute the compactness of a clustering, denoted by 

currentTD . 
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4. For each pair (medoid M and non-medoid NM) 

-  Compute the value of TD for the partition that results from swapping M 
with NM, denoted by 

MNMTD ↔ . 

5. Select the non-medoid NM for which 
MNMTD ↔  is minimal. 

6. If 
currrentMNM TDTD <↔  

- Swap NM with M 
       - Set 

currentTD  to be 
MNMTD ↔ . 

       - Go to Step 4. 
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The algorithm requires a distance function. For instance, the distances can be 
defined in terms of standard Euclidean distance. As we will discuss, each party 
computes her own portion of the distance and utilization of certain distance measure 
does not cause privacy violation. Therefore, other distance functions can be applied 
as well. 
 
2.3 The Scenarios Where the Private Data May Be Exposed 

The key step of the k-medoids clustering algorithm is the computation of the 
distance between each non-medoid t and its medoid 

iCm  without disclosing their 

private data. There are two cases where we need secure computations: (1) Assign 
each non-medoid instance to the cluster with the nearest medoid. Since each party 
holds only a portion of attributes for each instance, each party computes its portion 
of the distance measure (called the distance portion) according to its attribute set. To 
decide the nearest medoid of t, all the parties need to sum their distance portions 
together, then compare the summation. For example, assume that the distance 
portions between t and the medoid instance 

iCm  are 
nsss 11211 ,,, L ; and the distance 

portions between t and the medoid instance )( jim
iC ≠  are 

nsss 22221 ,,, L  where 
js1
 

and 
js2
 belong to 

jP  for ],1[ nj∈ . To compute whether the distance between the 

medoid instance 
iCm  and t is larger than the distance between the medoid instance 

iCm  and t, we need to evaluate the expression ∑∑
==

≥
n

i
i

n

i
i ss

1
2

1
1

. (2) Compute TD. That 

is, for a particular cluster, computing the distances between each non-medoid 
instance and its medoid; then adding all the distances together to obtain )( iCTD . TD 

can then be computed by summation of )( iCTD  for all k clusters. Given a non-

medoid instance t, multiple parties want to compute the distance between t and its 
medoid instances 

iCm . Secure protocols are developed in the next section to enforce 

such computations without sacrificing data privacy. 
 
3 Secure Computing Protocol 

3.1 Introducing Homomorphic Encryption 

In our secure protocols, we use homomorphic encryption [17] keys to encrypt 
the parties' private data. In particular, we utilize the following character of the 
homomorphic encryption functions: )()()( 2121 aaeaeae +=×  where e is an 

encryption function; 
1a  and 

2a  are the data to be encrypted. Because of the property 

of associativity, )_( 21 naaae L++  can be computed as )()()( 21 naeaeae ××× L  

where 0)( ≠iae . That is  
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)3()()()()( 2121 nn aeaeaeaaae ×××=+++ LL  

 
We observe that some homomorphic encryption schemes [7] are not robust against 
chosen cleartext attacks. However, we base our algorithm on [17], which is 
semantically secure [10]. 
 
  A Secure Protocol for Computing the Nearest Medoid 

Assuming 
jP  has a private distance portion of the ith instance, 

ijs , for 

],1[],,1[ njki ∈∈ , the problem is to decide whether ∑∑
==

≤
n

j
lj

n

j
ij ss

11

 for )](,1[, likli ≠∈  

and select the smallest value )( iCTD , without disclosing each distance portion. We 

will provide a solution which uses homomorphic encryption and digital envelope 
techniques. 
 
Digital envelope A digital envelope is a random number (or a set of random 
numbers) only known by the owner of private data. To hide the private data in  
a digital envelope, we conduct a set of mathematical operations between a random 
number (or a set of random numbers) and the private data. The mathematical 
operations could be addition, subtraction, multiplication, etc. For example, assume 
the private data value is a. There is a random number R which is only known the 
owner of a. The owner can hide a by adding this random number, e.g., a+R. 
 
Highlight of the protocol Our protocol has four steps. (1) Key and digital envelope 
generation: multiple parties select one of them, e.g., 

nP , as the key generator, which 

creates a cryptographic key pair (e, d) of a semantically-secure homomorphic 
encryption scheme.  Each party generates k digital envelopes. (2) Computing 

))((
1
∑

=

+
n

j
ijij rse  for ],1[ ki∈ : each party puts its private distance portion into  

a digital envelope and sends it to 
1−nP . (3) Computing )(

1
∑

=

n

j
ijre , for all ],1[ ki∈ : each 

party encrypts its digital envelopes and sends them to 
1P . (4) 

1P , 
1−nP  and 

nP  jointly 

compute the nearest medoid: there are 4 sub-steps. The details on how 
1−nP  and 

nP  

compute the smallest element in the last step  are described following the protocol. 
 
 
Protocol 1. 
 
Step I: Key and digital envelope generation. 
1. 

jP s for ],1[ nj∈  randomly select a key generator, e.g., 
nP . 
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2. 
nP  generates a cryptographic key pair (e, d) of a semantically-secure 

homomorphic encryption scheme and publishes its public key e. Let e(.) denote 
encryption and d(.) denote decryption. 
3. Each party independently generates k digital envelopes, i.e., 

jP  generates k digital 

envelopes 
ijr , for all ],1[],,1[ njki ∈∈ . 

 

Step II: Computing ))((
1
∑

=

+
n

j
ijij rse  for ],1[ ki∈ . 

1. 
1P  computes )( 11 ii rse + , for ],1[ ki∈ , and sends them to 

2P . 

2. 
2P computes )()()( 21212211 iiiiiiii rrsserserse +++=+×+ , where ],1[ ki∈ , and 

sends them to 
3P . 

3. Repeat steps 1, 2 until 
1−nP  obtains )( )1(21)1(21 −− +++++++ niiiniii rrrssse LL , for 

all ],1[ ki∈ . 

4.  
nP  computes )( inin rse +  for ],1[ ki∈ , and sends them to 

1−nP . 

5.  
1−nP computes  )()( )1(21)1(21 ininniiiniii rserrrssse +×+++++++ −− LL  

))(()(
1

)1(21)1(21 ∑
=

−− +=+++++++++
n

j
ijijinniiiinniii rserrrrsssse LL , ],1[ ki∈ . Let 

e(S + R) denote the k encrypted elements as follows:  

[ )( 11 RSe + , )( 22 RSe + , )(, kk RSe +L ], where ∑
=

=
n

j
iji sS

1

and ∑
=

=
n

j
iji rR

1

. 

 

Step III: Computing )(
1
∑

=

n

j
ijre  for all ],1[ ki∈ . 

1. 
nP  computes )( inre  for ],1[ ki∈  and sends them to 

1−nP . 

2. 
1−nP  computes )()()( )1()1( −− +=× niinniin rrerere  for ],1[ ki∈ , and sends them to  

2−nP . 

3. Repeat steps 1, 2 until 
1P  obtains )()()(

1
)1(21 ∑

=
− =×+++

n

j
ijinniii rererrre L , for all 

],1[ ki∈ . The k encrypted elements are denoted by e(R) that contains the following: 

)](,),(),([ 21 kReReRe L  where ∑
=

=
n

j
iji rR

1

. 

Step IV: Computing the nearest medoid. 
 
1. Computation between 

1P  and 
nP . 

(a) 
1P  randomly permutes )(,),(),( 21 kReReRe L , then sends the 

permuted elements to 
nP . 
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(b) 
nP  decrypts each element and sends them to 

1P  in the same order as 
1P  did. 

(c)  
1P  computes R that contains the following: ].,,[ 21 kRRR L . Note that 

1P  can do it 

since it has the permutation function. 
 
2. Computation between 

1−nP  and 
nP . 

(a) 
1−nP  randomly permutes )(,),(),( 21 kSeSeSe L , then sends the permuted elements 

to 
nP . 

(b) 
nP  decrypts each element and sends them to 

1−nP  in the same order as 
1−nP  did. 

(c) 
1−nP  computes ],,,[ 2211 kk RSRSRS +++ L  denoted by S+R. Note that: (1) 

1−nP  

can do it since it has the permutation function. (2) The permutation function that 
1P  

used is independent of the permutation function that 
1−nP  used. 

 

3. 
1−nP  and 

1P  compute )()(
11
∑∑

==
−=−

n

j
lj

n

j
ijli sseSSe , for )](,1[, likli ≠∈ , and collects 

the results into a sequence φ  which contains k(k-1) elements. This computation can 

be achieved via the following process: 
(a) 

1P  computes )( lRe  and )( iRe −  for )](,1[, likli ≠∈ , then sends them to 
1−nP . 

(b) 
1−nP computes )( li SSe −  for )](,1[, likli ≠∈  as follows: 

      - )()()( iiii SeReRSe =−×+ . 

      - )()()( llll SeReRSe −=×−− . 

      - )()()( lili SSeSeSe −=−× . 

 
4. Computation between 

1−nP  and 
nP . 

(a)  
1−nP  randomly permutes this sequence  φ  and obtains the permuted sequence 

denoted by φ′ , then sends φ′  to 
nP . Note that the permutation is independent of the 

ones it used. 
(b) 

nP  decrypts each element in sequence φ′ . It assigns the element +1 if the result of 

decryption is not less than 0, and -1, otherwise. Finally, it obtains a +1/-1 sequence 
denoted by φ ′′ . 

(c) 
nP  sends φ ′′  to 

1−nP  who computes the smallest element. (Details are given right 

after this protocol.) It is the nearest medoid for a given non-medoid instance 
t. It then decides the cluster to which t belongs. 
 
How To Compute the Smallest Element  

1−nP  is able to remove permutation effects 

from φ ′′  (the resultant sequence is denoted by φ ′′′ ) since it has the permutation 

function that it used to permute φ , so that the elements in φ  and φ ′′′  have the same 
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order.  It means  that if the qth position in sequence φ  denotes )(
11
∑∑

==
−

n

j
lj

n

j
ij sse , then 

the qth position in sequence φ ′′′  denotes  the evaluation results of ∑∑
==

−
n

j
lj

n

j
ij ss

11

. We 

encode it as +1 if ∑∑
==

≥
n

j
lj

n

j
ij ss

11

, and as -1 otherwise. 
1−nP  has two sequences:  one is 

the φ , the sequence of )(
11
∑∑

==
−

n

j
lj

n

j
ij sse , for )](,1[, likli ≠∈ , and the other is φ ′′′ , the 

sequence of +1/-1. The two sequences have the same number of elements. 
1−nP  

knows whether or not ∑
=

n

j
ijs

1

 is larger than ∑
=

n

j
ljs

1

 by checking the corresponding 

value in the φ ′′′  sequence. For example, if the first element φ ′′′  is -1, 
1−nP  concludes 

∑∑
==

<
n

j
lj

n

j
ij ss

11

. 
1−nP  examines the two sequences and constructs the index table (Table  

1) to compute the nearest medoid. 
Table 1 
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Table 2 
 

1S  
2S  

3S  
4S  Weight 

1S  +1 -1 -1 -1 -2 

2S  +1 +1 -1 +1 +2 

3S  +1 +1 +1 +1 +4 

4S  +1 -1 -1 +1 0 
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In Table 1, +1 in entry ij indicates that the distance measure of the row (e.g., ∑
=

n

l
ils

1

 

of the ith row) is not less than the distance measure of a column (e.g., ∑
=

n

l
jls

1

of the jth 

column); -1, otherwise. 
1−nP  sums the index values of each row and uses this number 

as the weight of the distance measure in that row.  It then selects the one that 
corresponds to the smallest weight, as the nearest medoid. 
 
To make it clearer, let us illustrate it by an example. Assume that: (1) there are 4 
elements with  

3241 SSSS <<< ; (2) the sequence φ  is 

)](),(),(),(),(),([ 434232413121 SSeSSeSSeSSeSSeSSe −−−−−− . The sequence φ ′′′  

will be [-1, -1, -1, -1, +1, +1]. According to φ  and φ ′′′ , 
1−nP  builds the Table 2.  From 

the table, 
1−nP  knows 

1S  is the smallest element since its weight, which is -2, is the 

smallest. 
 
Next, we will discuss how to securely compute TD. 
 
 A Secure  Protocol for Computing TD 

Once each non-medoid instance is assigned to the nearest medoid, we need to 
compute the compactness of a clustering. 
 

∑ ∑∑
= = ∈

==
k

i

k

i Ct
Ci

i

i
mtdistCTDTD

1 1

)4(,),()(  

 
To compute TD, each party computes its local distance portions between each non-
medoid instance and the corresponding medoid instance, and adds them together. For 
the purpose of illustration, let us assume that 

jP  gets a distance portion 
jv  for 

],1[ nj∈ . In order to compute TD, we need to compute ∑
=

n

j
jv

1

. We develop the 

following protocol to tackle the problem. Note that Protocol 1 and Protocol 2 are 
independent protocols. Therefore, even if we use the similar symbols, e.g., e, d and r, 
to represent the keys and digital envelopes, they are independent. 
 
Protocol 2. 
 
Step I: Key and digital envelope generation. 
1. 

jP s for ],1[ nj∈  randomly select a key generator, e.g., 
nP . 
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2.
nP  generates a cryptographic key pair (e, d) of a semantically-secure homomorphic 

encryption scheme and publishes its public key e. Let e(.) denote encryption and d(.) 
denote decryption. 
3. Each party independently generates a digital envelope, i.e., 

jP  generates a digital 

envelope 
jr , for ],1[ nj∈ . 

Step II: Computing ))((
1
∑

=

+
n

j
jj rve . 

1. 
1P  computes )( 11 rve + , and sends it to 

2P . 

2.  
2P  computes )()()( 21212211 rrvververve +++=+×+ , and sends it to 

3P . 

3.  Repeat steps 1, 2 until 
1−nP  obtains 

)()( 1121221 −−−− +×++++++ nnnn rverrvvve LL )( 1111 −− +++++= nn rrvve LL . 

4. 
nP  computes )( nn rve + , and sends it to 

1−nP . 

5.  
1−nP computes )()( 1111 nnnn rverrvve +×+++++ −− LL  

))(()(
1

11 ∑
=

+=+++++
n

j
jjnn rverrvve LL . Let us denote it by e(V + R), where 

∑
=

=
n

j
jvV

1

 and ∑
=

=
n

j
jrR

1

. 

 

Step III: Computing ∑
=

n

j
jv

1

. 

1. 
nP  computes )( nre − , and sends it to 

1−nP . 

2. 
1−nP  computes )()()( 11 −− −−=−×− nnnn rrerere , and sends it to 

2−nP . 

3.  Repeat steps 1, 2 until 
1P  obtains )()()(

1
1 ∑

=

−=−−−=−
n

j
jn rerreRe L . 

Step IV: Computing ∑
=

n

j
jv

1

. 

1. 
1P  sends )(

1
∑

=

−
n

j
jre  to 

1−nP . 

2.  
1−nP  computes )()())((

111
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===

=−×+
n

j
j

n

j
j

n

j
jj vererve , then sends it to 

nP . 

3.  
nP  computes ∑∑

==

=
n

j
j

n

j
j vved

11

))(( . 

 
In the next section, we show that the outputs of the protocols are correct, we argue 
that the data privacy is preserved, and we analyze the complexity for each protocol. 
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 The Analysis of Correctness, Privacy and Complexity 

Analysis for Protocol 1: 
 
Correctness Analysis 
 Assuming all of the parties follow the protocol, the protocol correctly finds the 
nearest medoid for a given non-medoid instance t. 
 
In step II, 

1−nP  obtains )()()( 2211 ininiiii rserserse +××+×+ L  

))(()(
1

11 ∑
=

+=++++=
n

j
ijijininii rsersrse L , for ],1[ ki∈  according to Eq.[3]. In step III, 

1P  finds )()()(
1

1 ∑
=

=××
n

j
ijini rerere L , for ],1[ ki∈ , consistent with Eq.[3]. In step IV, 

during sub-step 1-3, 
1−nP  obtains )(

1 1
∑ ∑

= =

−
n

j

n

j
ljij sse  for )](,1[, likli ≠∈ . Following the 

detailed description on how to compute the smallest element, we know that 
1−nP  

finds the nearest medoid for a given non-medoid, which is the desired result. 
 
Privacy Analysis Assuming 

1P , 
1−nP  and 

nP  do not collude, one party's distance 

portion (i.e., private data) cannot be disclosed to other parties. 
 
In the protocol, there are two levels of privacy protection: before one party sends his 
private data to any other parties, she firstly seals it by a digital envelope solely 
known by herself, then uses a semantically secure encryption scheme to encrypt the 
data. Thus, other parties cannot identify her private data. To make the discussion 
concrete, we analyze the protocol step by step. Step I does not disclose private data 
since there is no communication involving private data. In Step II, private data are 
communicated. However, prior to sending her private data to the other party, one 
party hides her private data by a two-level protector: a digital envelope known only 
by the owner of the private data and 

nP 's public key e. Since 
nP  does not receive any 

data in this step and other parties have no decryption key d, especially, no one knows 
the digital envelope except for the owner, the private data are securely hidden. In 
Step III, digital envelopes are communicated. Since each digital envelope is 
encrypted by e, and 

nP  does not receive any encrypted digital envelopes, each digital 

envelope is securely hidden. In Step IV, even though 
nP  has the decryption key d, 

what it can obtain is a permuted sequence of ∑∑
==

−
n

j
lj

n

j
ij ss

11

, for )](,1[, likli ≠∈ . By 

knowing this sequence, it cannot identify other parties' private distance portions. 
Neither can 

1−nP obtain private distance portions. Although 
1−nP  knows  the sequences 
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φ  and φ ′′′ , it cannot obtain  other parties' private distance portions since it only 

knows the relation between ∑
=

n

j
ijs

1

 and ∑
=

n

j
ljs

1

 and does not know the exact values. 

 
Complexity Analysis The communication cost of this protocol is )353( 2 −++ kknα  

where α  is the number of bits for each encrypted element. The computational costs 
are contributed by: (1) the generation of kn digital envelopes; (2) additions; (3) 

knkk )22(2 −++  multiplications; (4) 2kn encryptions; (5) )1(2
1 −kk  decryptions; (6) 

4k + k(k-1) permutations; (7) )1(2
1 −kk  assignments when 

nP  computes φ ′′ . 

Therefore, the total computational cost is kkkn 335 2 −+  where k is the number of 
clusters and n is the number of parties. 
 
Analysis for Protocol 2: 
 

Correctness Analysis Assuming all of the parties follow the protocol, to show ∑
=

n

i
iv

1

is 

correctly computed, we need to discuss it step by step. In step II, what 
1−nP  obtains is 

)()()( 2211 nn rververve +××+×+ L  which equals to ))((
1
∑

=

+
n

j
jj rve   according to 

Eq.[3]. In step III, 
1P  obtains  )()(

1
1 ∑

=

−=−−−
n

j
jn rerre L  consistent with Eq.[3].  

In step IV, 
nP  finally gets 

TDvvedrrvedrerved
n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j ===−+=−×+ ∑∑∑∑∑∑∑∑

======== 11111111

))(())(())()(( . This is 

the desired result that multiple parties want to obtain. 
 
Privacy Analysis Like in protocol 1, there are two levels of privacy protection. One 
is that the actual local TD portion of each party is hidden by a digital envelope, e.g., 

ir ; the other is the protection by semantically secure encryptions. Before any party 

sends anything related to their actual TD portions, the TD portions are concealed by 
this two-level protector. For example, prior to 

1P  sending values, related to 
1v , to 

2P , 

it computes )( 11 rve + . Instead of sending 
2v  to 

3P , 
2P  sends )( 2121 rrvve +++ , etc. 

Since 
1P , 

1−nP  and 
nP  play more important role than others, e.g., step IV only 

involves these three parties, we provide more analysis for these three parties. (1) In 

step II, 
1−nP  gets ))((

1
∑

=

+
n

j
jj rve . Because each 

jv  is protected by a digital envelope 

jr , and the summation of each TD portion with a digital envelope is encrypted by a 
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semantic secure encryption, 
1−nP  cannot learn anything about  each 

jv  for 

],2,,2,1[ nnj −∈ L . (2) In step III, 
1P  obtains )(

1
∑

=

−
n

j
jre . Since it is the summation of 

all the digital envelopes and is encrypted by e, it cannot know anything about each 

digital envelope 
jr  for ],2[ nj∈ . (3) 

nP  finally obtains ∑
=

n

j
jv

1

 which is the desired 

output of the protocol. It will be shared by all the parties. From the above analysis, 
we can see that the protocol disclose nothing about each private TD portion. 
 
Complexity Analysis The communication cost of this protocol is )13( −nα  where α  

is the number of bits for each encrypted element, and n is the total number of parties. 
The computational costs are contributed by: (1) the generation of n digital envelopes; 
(2) n additions; (3) 2n-1 multiplications; (4) 2n encryptions; (5) 1 decryption. Thus, 
the computational costs are 6n. 
 
An Interesting Case Let us discuss an interesting scenario where 

1P , 
1−nP , and 

nP  

collude with each other. What we want to know is whether the private data can be 
disclosed. In this case, these three parties can gain more information than what they 
should according to the protocols. In protocol 1, the extra useful information they 

can obtain is ∑
=

n

j
ijs

1

 for ],1[ ki∈ . In protocol 2, the extra information they can obtain 

is ∑
=

n

j
jv

1

.  Based on this information, other parties' individual private distance 

portions cannot be derived unless, among the remaining of n-3 parties, there are n-4 
parties colluding with 

1P , 
1−nP  and 

nP . In other words, to break our two-level 

protection and gain private data that should not be disclosed, n-1 parties in total need 
to collude. Thus, although we assume that 

1P , 
1−nP  and 

nP do not collude, the 

assumption can be released to certain extent. 
 
4 Related Work 

In early work on privacy-preserving data mining, Lindell and Pinkas [14] 
propose a solution to privacy-preserving classification problem using oblivious 
transfer protocol, a powerful tool developed by secure multi-party computation 
(SMC) research [9, 21]. The techniques based on SMC for efficiently dealing with 
large data sets have been addressed in [10]. Randomization approaches were firstly 
proposed by Agrawal and Srikant in [2] to solve privacy-preserving data mining 
problem. Researchers proposed more random perturbation-based techniques to tackle 
the problems (e.g., [3, 6, 19]). In addition to perturbation, aggregation of data values 
[20] provides another alternative to mask the actual data values.  In [1], authors 
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studied the problem of computing the kth-ranked element. Dwork and Nissim [7] 
showed how to learn certain types of boolean functions from statistical databases in 
terms of a measure of probability difference with respect to  probabilistic 
implication, where data are perturbed with noise for the release of statistics. 

 
Recently, there are several endeavours on privacy preserving clustering [13, 

15, 16, 17]. A framework for clustering distributed over horizontally partitioned data 
in unsupervised and semi-supervised scenarios using sampling techniques is  
provided in [15]. In [13], Klusch et. al. presented an approach to distributed data 
clustering based on sampling density estimates. Oliveira and Zaiane introduced a 
family of geometric data transformation methods that ensure the mining process does 
not violate privacy up to a certain degree of security in [16], and showed that a 
solution can be achieved by transforming a database using object similarity-based 
representation and dimensionality reduction-based transformation in [17]. Vaidya 
and Clifton's work [11] is an important contribution to the problem of privacy-
preserving clustering over vertically partitioned data. Their approach was using the 
k-means method. In our paper, we focus on clustering using k-medoids method. 
Since the two algorithms are different, the design for the secure protocols are 
dissimilar. In our protocol, the digital envelope is distributed in that each  party has 
its own digital envelope and one party does not know the other party's digital 
envelope. As we discussed in the previous section, there are two-level protections in 
our protocols. Even though 

1P , 
1−nP  and 

nP collude with one another, other parties' 

private data still remain securely hidden unless all of the parties collude except only 
one party. 

 
5 Conclusion and Future Work 

In this paper, we provide a novel solution for data clustering using k-medoids 
method over vertically partitioned data. Instead of using data transformation, we 
define a protocol using homomorphic encryption and digital envelope techniques to 
exchange the data while keeping it private. As we discussed in the previous sections, 
in our protocol, there is a two-level privacy protection. Even if the non-desired 
situation occurs where 

1P , 
1−nP  and 

nP collude with one another, other parties' private 

data are still securely hidden unless all of the parties collude except only one party. 
On the other hand, the bit-wise communication cost of our protocol 1 is 

)353( 2 −++ kknα  and )13( −nα  for protocol 2.  
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