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Abstract. Preserving data privacy while conducting data elisg among multiple parties is

a demanding problem. We address this challengingl@m in the following scenario: without
disclosing their private data to each other, midtjparties, each having a private data set, want
to collaboratively conduct k-medoids clustering. Tekle this problem, we develop secure
protocols for multiple parties to achieve this dge&l. The solution is distributed, i.e., therads
central, trusted party having access to all thea.d&istead, we define a protocol using
homomorphic encryption and digital envelope techefjto exchange the data while keeping it
private.
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1 Introduction

Huge amount of data often locates in geographiadiyributed sources. To
extract useful knowledge from these distributecidatany approaches [4] have been
designed. Although these techniques are sufficieach source would like to
provide its actual data, it is not desirable whiegirt data privacy comes into place.
How can multiple parties still extract the usefufiormation without comprising their
data privacy is a challenging problem. In the fiefcknowledge discovery and data
mining, the above problem is known &sivacy Preserving Collaborative Data
Mining. Vidya and Clifton [10] provided the following ceimcing example in the
area of automotive safety: Ford Explorers with gtioae tires from a specific factory
had tread separation problems in certain situati@asly identification of the real
problem could have avoided at least some of the i8ffies that occurred in
accidents attributed to the faulty tires. Sincetthes did not have problems on other
vehicles, and other tires on Ford Explorers did puge a problem, neither side felt
responsible. Both manufacturers had their own dah,only early extraction of
useful knowledge based on both parties' data mag Baabled Ford and Firestone
to collaborate in resolving this safety problem.
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Data mining contains many algorithms such as aaSoni rule mining,
classification, and clustering. This paper focuseslata clustering. In recent years,
there has been a surge of interest in clusteri@dy 1 is an active research area in
many fields such as pattern recognition, statistieel machine learning. It divides
the data into groups of similar objects such tlwhlntra-group similarity and inter-
group dissimilarity are maximized. Although losiogrtain fine details, it simplifies
the representation of data by several clustergréatice, clustering plays a high-
profile role in data mining applications such amstific data exploration, medical
diagnostics, and information retrieval, etc. Based the existing clustering
technologies, we study the problem of clusteringpovate data. More precisely, we
consider the scenario where data are verticallitipmed, and the problem is defined
as follows: multiple parties want to conduct ddtsstering on a data set that consists of
private data of all the parties, but none of theiggis willing to disclose its actual data
to one another or any other parties. More spedificthe data consist of instances, all
parties have data about all the instances involbatieach party has its own view of
the instances — each party works with its own aitd set. We develop secure
protocols, based on homomorphic encryption andalighvelope techniques, to tackle
the problem. An important feature of our approacitsi distributed character, i.e. there
is no single, centralized authority that all partieed to trust. Instead, the computation
is distributed among parties, and the use of homphio encryption and digital
envelope techniques ensures privacy of the data.

The paper is organized as follows: We describe diastering procedure
in Section 2. We then present our proposed seawteqnls and detailed analysis
in Section 3. The related works are discussed aoti@Ge4. We give our conclusion
in Section 5.

2 Clustering On Private Data

There are many clustering algorithms [4] such kameans method,
k-medoids method, probabilistic clustering, etc. Wéeus on k-medoids method
since it allows arbitrary objects that are not tadi to numerical attributes [12].
In k-medoids clustering, a cluster is denoted bg of its points. It is an easy
solution in that it covers any attribute type ahdttmedoids are resistant against
outliers. Once medoids are chosen, clusters airedefs subsets of points close to
respective medoids, and the objective functioneiscdbed as the distance between
a point and its medoid. In this paper, our goaloigprovide a privacy-preserving
algorithm for multiple parties to collaborativelyoroduct data clustering using
k-medoids method without compromising their datsgay.

2.1 Notations

We define the following notations for illustratiguirposes.
e n: the total number of parties. We assumes3.
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P: Party j.
k: the total number of medoids.

t: a non-medoid instance.
n the medoid of the clusteg, .

M: a general term for medoids. It contains all jldsesmedoids.
NM: a general term for non-medoids. It containgalésible medoids.
TD(C,): the measure of the compactness for a cluSter

TD: the measure of the compactness of a clustetiag contains all the
clusters.

2.2 Overview of k-medoids Clustering Algorithm

The k-medoids method divides a distance-space knttusters. A medoid

[12], that is selected from the dataset, represantBister. The algorithm chooses
k medoids to denote the k clusters. Clusters ae theated by assigning each of the
remaining instances to the nearest medoid. Asarkimeans methokl needs to be
predefined. Unlike k-means method where each meathd average of certain
instances, k-medoids are exactly k instances seldcdom the dataset. We describe
the k-medoids clustering algorithm in the following

1.
2.

3.

Arbitrarily select k instances from the datasetesioids.

Assign each remaining (non-medoid) instance tacthster with the nearest
medoid.

Compute the compactness of a clustering, denotertyy, .

TD:Zk:TD(Ci) )

i=1

TD(C) = _dist(t,m,) )
t0G

For each pair (medoid M and non-medoid NM)
- Compute the value of TD for the partition thasults from swapping M
with NM, denoted byrD,,, _,, -

Select the non-medoid NM for whicfD,,, _,, is minimal.
If TDy.w <TD,

currrent

- Swap NM with M
- SetTD to beTD

current

- Go to Step 4.

NM oM *

Artificial Intelligence
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The algorithm requires a distance function. Fotainse, the distances can be
defined in terms of standard Euclidean distance.w&swill discuss, each party
computes her own portion of the distance and atilim of certain distance measure
does not cause privacy violation. Therefore, otlistance functions can be applied
as well.

2.3 The Scenarios Wherethe Private Data M ay Be Exposed

The key step of the k-medoids clustering algoriikrthe computation of the
distance between each non-medoid t and its med@idwithout disclosing their

private data. There are two cases where we neadeseomputations: (1) Assign

each non-medoid instance to the cluster with therew medoid. Since each party
holds only a portion of attributes for each ins@neach party computes its portion
of the distance measure (called thstance portion) according to its attribute set. To
decide the nearest medoid of t, all the partiesd rteesum their distance portions
together, then compare the summation. For exangdeume that the distance
portions between t and the medoid instan%e ares,,s,, s, and the distance

portions between t and the medoid instamtEe(i #j) ares,,s,,, ,s,, Where S,
and s,; belong toP, for jO[Ln]. To compute whether the distance between the

medoid instanceTb and t is larger than the distance between the idddstance

m. and t, we need to evaluate the expres@% Zzn“szi . (2) Compute TD. That
i=1 i=1

is, for a particular cluster, computing the disesdetween each non-medoid

instance and its medoid; then adding all the déstartogether to obtaimD(C,). TD

can then be computed by summationT@C,) for all k clusters. Given a non-

medoid instance t, multiple parties want to compgte distance between t and its
medoid instance&b . Secure protocols are developed in the next settieenforce

such computations without sacrificing data privacy.

3 Secure Computing Protocol

3.1 Introducing Homomor phic Encryption

In our secure protocols, we use homomorphic enitmydi 7] keys to encrypt
the parties' private data. In particular, we utilithe following character of the
homomorphic encryption functionse(a ) xe(a,) =e(a, +a,) Wwhere e is an

encryption function;a, and a, are the data to be encrypted. Because of the gyope

of associativity, g(a, +a, +---_a,) can be computed aga)xe(@,)x---xea,)
whereg(a ) #20. That is

Sudia Informatica vol. 1/2(7)2006



A Multi-Party Scheme for Privacy Preserving Clustering 221

&a +a, +---+a,) =6a,) x6ay) X x€a,) ©)

We observe that some homomorphic encryption schéiese not robust against
chosen cleartext attacks. However, we base ourritdgo on [17], which is
semantically secure [10].

A Secure Protocol for Computing the Nearest M edoid

Assuming P has a private distance portion of tlig instance,gj, for

i0[LK], j O[], the problem is to decide whethdFg <35, for i, O[LK|G 1)
j=1 j=1
and select the smallest vald@®(C,), without disclosing each distance portion. We

will provide a solution which uses homomorphic gption and digital envelope
techniques.

Digital envelope A digital envelope is a random number (or a setrarfdom
numbers) only known by the owner of private data. Hide the private data in
a digital envelope, we conduct a set of mathemlatiparations between a random
number (or a set of random numbers) and the pridatia. The mathematical
operations could be addition, subtraction, multiglion, etc. For example, assume
the private data value is a. There is a random eurRbwhich is only known the
owner of a. The owner can hide a by adding thiseannumber, e.g., a+R.

Highlight of the protocol Our protocol has four steps. (1) Key and digitavedope
generation: multiple parties select one of them,, &, as the key generator, which

creates a cryptographic key pair (e, d) of a seicaht-secure homomorphic
encryption scheme. Each party generates k digitalelopes. (2) Computing

e(zn:(%”u)) for id[,k]: each party puts its private distance portion into
j=1

a digital envelope and sends it . (3) Computinge(zn:rij), for all i O[1,k]: each
j=1

party encrypts its digital envelopes and sends ttee®. (4) B, P_, and P, jointly

compute the nearest medoid: there are 4 sub-stéesdetails on howP, , and P,

compute the smallest element in the last stepdeseribed following the protocol.

Protocol 1.

Step I: Key and digital envelope generation.
1. Ps for jO[Ln] randomly select a key generator, eR.,

Artificial Intelligence
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2. P, generates a cryptographic key pair (e, d) of a asgically-secure

homomorphic encryption scheme and publishes itdipldey e. Let e(.) denote
encryption and d(.) denote decryption.
3. Each party independently generates k digitatkpes, i.e.,PJ. generates k digital

envelopes,, for allid[L k], jO[Ln].

Step 11: Computinge(zn:(sj +1,)) for iO[LK].
j=1
1. B, computes(s, +rjil), for iO[L k], and sends them tg, .
2. P,computes gs, +1,,) xe(s, +r,)=€(S, +S, +r, +1,,), where iJ[1k], and
sends them te,.
3. Repeat steps 1, 2 unfl , obtainse(s; +s, +---+§, ) +1, +r, +---+r,, ), for
all i Of1L k]
4. P, computesg(s,, +r, ) for i0[L k], and sends them B, .

5. Pn—lcompUtes e(31 *s, +"'+3(n—1) Ty Hh, +eeet ri(n—l)) Xe(sn + rin)

i(n-1)

&Sy +S, +r H Sy FSy Fhy Fp oy 1) :9(2(511' +1;)) iL[LK]. Let
j=1
e(S + R) denote the k encrypted elements as follows

[&(S +R). &S, +R,) -, &S, +R)], whereg :isﬁ and R :irij .

Step 111: Computinge(zn:rij) for all i O[1,K].
j=1
1. P, computese(r, ) for i [} k] and sends them tB_,.
2. B, computese(r, ) X (r; ) =1, + ) for iO[Lk], and sends them t® .
3. Repeat steps 1, 2 un} obtainse(r +r,, +”'+ri(n—1))x€(rin):e(zn:rij)' for all
j=1

i, K]. The k encrypted elements are denoted by e(R)cthratins the following:
[6R).&R,), - &R,)] whereR :Zl:rij :

=
Step 1V: Computing the nearest medoid.

1. Computation betweeR, and P, .

(@) B, randomly permuteg(R)),&(R,),--,&(R.) » then sends the
permuted elements tB,.
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(b) P, decrypts each element and sends thei® ta the same order &g did.
(c) B computes R that contains the followif@ ,R,,---.R ]. Note thatR, can do it
since it has the permutation function.

2. Computation betweeR,_, and P, .

(@) P_, randomly permute®(S),&(S,),---, &S, ), then sends the permuted elements
to P.

(b) P, decrypts each element and sends thei®, toin the same order a8 _, did.

(c) P_, computes[S +R,S, +R,,---, S +R ] denoted by S+R. Note that: (B

can do it since it has the permutation functior). e permutation function tha®
used is independent of the permutation functiob fha used.

3., and B, computeg(s -§)=&(>’s, - Ys,)- for i, OLLKI(i #1), and collects
the results into a sequengewhich cJo_ntain;_k(k—l) elements. This computatian c
be achieved via the following process:
(@) B, computesg(R) andeg(-R) for i,I O[LK](i #1), then sends them tB ,
(b) P_computesg(S - ) fori,I O[LK](i #I) as follows:

€S +R)xe(-R)=¢S)-

-e(-§ -R)xeR)=¢-5)-

-e(§)*e(-§)=¢S§ -9)-

4. Computation betweeR,_, and P, .
(@) P_, randomly permutes this sequencg and obtains the permuted sequence
denoted byg', then sendg/ to P,. Note that the permutation is independent of the

ones it used.
(b) P, decrypts each element in sequegtelt assigns the element +1 if the result of

decryption is not less than 0, and -1, otherwiseally, it obtains a +1/-1 sequence
denoted byg" .

(c) P, sends¢" to P_, who computes the smallest element. (Details arengiight

after this protocol.) It is the nearest medoiddagiven non-medoid instance
t. It then decides the cluster to which t belongs.

How To Compute the Smallest Element P_, is able to remove permutation effects
from ¢ (the resultant sequence is denoted ¢fy since it has the permutation
function that it used to permutg, so that the elements i and ¢" have the same

Artificial Intelligence
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- e - n n
order. It means that if thgth position in sequence denotese(zl“sﬁ _;Sj)' then
= J=
n n
the qgth position in sequencg” denotes the evaluation resuItsE‘sj _Zsﬁ . We
j=1 j=1
encode it as +1 ii“sj Zzn:sj , and as -1 otherwisé® , has two sequences: one is
j=1 j=1

the ¢, the sequence ngn“sj ‘ZH:SJ-)’ for i, O[LK](i #1), and the other ig", the
j=1 j=1
sequence of +1/-1. The two sequences have the saméer of elementsP,
knows whether or noi“sj is larger thanzn“sj by checking the corresponding
=1 j=1

value in the¢" sequence. For example, if the first elemghtis -1, P, concludes

Zn“sj <Zn:$j . P_, examines the two sequences and constructs the fabdke (Table
j=1 j=1

1) to compute the nearest medoid.

Tablel
Y 2.5 s, | T DS
1=1 1=1 1=1 1=1
lZ_l:Sm 1 ") 1 1
DS -1 +1 -1 -1
1=1
DS +1 +1 +1 +1
1=1
DS +1 +1 -1 +1
1=1
Table2
S S S, S, Weight
S +1 -1 -1 -1 2
S, +1 +1 -1 +1 +2
S, +1 +1 +1 +1 +4
S, +1 -1 -1 +1 0
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In Table 1, +1 in entry ij indicates that the dista measure of the row (e.@sl
=1

of the ith row) is not less than the distance mesmstia column (e.gi“sj| of the jth
=1

column); -1, otherwiseP, , sums the index values of each row and uses timbau

as the weight of the distance measure in that rdwthen selects the one that
corresponds to the smallest weight, as the nearedbid.

To make it clearer, let us illustrate it by an epéen Assume that: (1) there are 4
elements withS <S, <S, <S;; (2) the sequencg is

[6(S -S).6S -S).68 - S).€S, -S).6S, - S).&S, - S,)]- The sequencey”
will be [-1, -1, -1, -1, +1, +1]. According tg and ¢", P _, builds the Table 2. From
the table,P_, knows § is the smallest element since its weight, whickisis the
smallest.

Next, we will discuss how to securely compute TD.

A Secure Protocol for Computing TD

Once each non-medoid instance is assigned to #restemedoid, we need to
compute the compactness of a clustering.

D :_Zk:TD(q ) :Zk:Zdist(t, m ). @

i=1t00G,

To compute TD, each party computes its local destguortions between each non-
medoid instance and the corresponding medoid instaand adds them together. For
the purpose of illustration, let us assume tmjaltgets a distance portionj for

jO[Ln]. In order to compute TD, we need to compLEnf,\,j . We develop the
j=1

following protocol to tackle the problem. Note tHatotocol 1 and Protocol 2 are

independent protocols. Therefore, even if we usestimilar symbols, e.g., e, d and r,

to represent the keys and digital envelopes, theynalependent.

Protocol 2.

Step I: Key and digital envelope generation.
1. Ps for jO[Ln] randomly select a key generator, eR.,

Artificial Intelligence
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2.P, generates a cryptographic key pair (e, d) of aastically-secure homomorphic

encryption scheme and publishes its public keyet.€l(.) denote encryption and d(.)
denote decryption.
3. Each party independently generates a digitatiepe, i.e.,PJ. generates a digital

enveloper,, for jO[Ln].
Step I1: Computinge(Z(Vj +1,)) -
j=1
1. B computesyv, +r,), and sends it t,.
2. P, computese(y, +1,)xe(V, +1,) =€V, +V, +r, +r,), and sends it t@,.
3. Repeat steps 1, 2 unf| , obtains
OV, HV, Hee etV et T ) XV H ) SE(Vy eV ).
4. P computesg(v, +r,), and sends it t .
5. P_computesg(y, +---+V,_, +r, +---+r ) XV, +1,)

&V, +-HV, I ) :G(Z(Vj +1,))- Let us denote it by e(V + R), where
j=1
V] :ZVi and R:er .
j=1 j=1

Step 111: Computlngzl“vj .
=
1. P, computesg(-r,), and sends it t® .
2. P_, computese(-r ) xe(—r, ) =€-T, —r,), and sends it t®® ,
3. Repeat steps 1, 2 unBl obtainsg-R) =g(-r, —----r,) :e(—zn:rj)-

j=1
Step 1V: Computingzn“vj .
j=1
1B sendse(_zrj) toP,,.
j=1
2. P, computeyi(vj +, ))xe(—zn:rj):e(zn:vj), then sends it t®, .
j=1 j=1 j=1

3. R, computesd(e(d v,))=>v, -
=1 1=

In the next section, we show that the outputs efptotocols are correct, we argue
that the data privacy is preserved, and we anahgeomplexity for each protocol.
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The Analysis of Correctness, Privacy and Complexity

Analysisfor Protocol 1:

Correctness Analysis
Assuming all of the parties follow the protocdhetprotocol correctly finds the
nearest medoid for a given non-medoid instance t.

In step I, P_, obtainse(s, +r,)xe(s, +1,,) %---xe(s, +r,,)

=@(§, +r, +eoo+s, +r,) :e(i(Sj +1,)) for i O[1 k] according to Eq.[3]. In step I,
j=1

P finds e(ril)x'“xqrin):e(irij)' for i0[Lk], consistent with Eq.[3]. In step IV,

=1

during sub-step 1-3p , obtainse(zn“aj _Zn“sj) for i, O[LK](i #1) . Following the
j=1 j=1

detailed description on how to compute the smakdsment, we know thaP

finds the nearest medoid for a given non-medoidchwis the desired result.

Privacy Analysis Assuming B, P_ and P, do not collude, one party's distance
portion (i.e., private data) cannot be disclosedth®r parties.

In the protocol, there are two levels of privacgtpction: before one party sends his
private data to any other parties, she firstly setlby a digital envelope solely
known by herself, then uses a semantically secuceyption scheme to encrypt the
data. Thus, other parties cannot identify her peivdata. To make the discussion
concrete, we analyze the protocol step by stegp Stiwes not disclose private data
since there is no communication involving privatdad In Step Il, private data are
communicated. However, prior to sending her privddéa to the other party, one
party hides her private data by a two-level prateca digital envelope known only
by the owner of the private data aRds public key e. Sinc@®, does not receive any

data in this step and other parties have no ddorygey d, especially, no one knows
the digital envelope except for the owner, the agBvdata are securely hidden. In
Step I, digital envelopes are communicated. Simach digital envelope is
encrypted by e, an@ does not receive any encrypted digital envelopash digital

envelope is securely hidden. In Step IV, even thoRg has the decryption key d,

. . . n n - .
what it can obtain is a permuted sequenc%j _ZSJ , for i,IO[LK](i #1). By
j=1 j=1
knowing this sequence, it cannot identify othertipat private distance portions.
Neither canP,_, obtain private distance portions. Although, knows the sequences
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¢ and ¢", it cannot obtain other parties' private distapcetions since it only

knows the relation betweez?“sj and Zn‘,% and does not know the exact values.

j=1 j=1

Complexity Analysis The communication cost of this protocoldg3n +k?* +5k —3)
where ¢ is the number of bits for each encrypted eleméhé computational costs
are contributed by: (1) the generation of kn dig&avelopes; (2) additions; (3)
k? +k + (2n -2k multiplications; (4) 2kn encryptions; (Sk(k -1) decryptions; (6)
4k + k(k-1) permutations; (7)ik(k—1) assignments wherP, computes ¢".
Therefore, the total computational costSen+3k? -3k where k is the number of
clusters and n is the number of parties.

Analysisfor Protocol 2:

n
Correctness Analysis Assuming all of the parties follow the protoc«)i,sihowzvi is

i=1
correctly computed, we need to discuss it steptdgy. $n step I, whaP _, obtains is

eV, +1,)xe(v, +1,)x---xgv_ +r.) which equals toe(zn:(vj +1,)) according to
j=1

Eq.[3]. In step lll, B, obtains e(_rl_..._rn):e(_irj) consistent with Eq.[3].
j=1

In step 1V, P, finally gets
dEe(yy, + ) xel-Yr) =y, + 3 - r) =dEd v,) =Yy, =TD- Thisis
=1 j=1 j=1 j=1 j=1 j=1 j=1 j=1

the desired result that multiple parties want ttawb

Privacy Analysis Like in protocol 1, there are two levels of priygarotection. One
is that the actual local TD portion of each pasgidden by a digital envelope, e.g.,
r.; the other is the protection by semantically seaemcryptions. Before any party

sends anything related to their actual TD portidhe, TD portions are concealed by
this two-level protector. For example, prior Bpsending values, related {g, to P,

it computesg(y, +r,). Instead of sending, to P,, P, sendse(y, +v, +r, +r,), €tc.

Since B, P and P, play more important role than others, e.g., stépohly

involves these three parties, we provide more aisfpr these three parties. (1) In

step Il, P_, gets e(Z(Vj +1,))- Because eacbj is protected by a digital envelope
j=1

I and the summation of each TD portion with a digénvelope is encrypted by a
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semantic secure encryptiorp_, cannot learn anything about eaq}} for

jO@2---,n=2n]. (2) In step Ill,R, obtainse(_irj). Since it is the summation of
j=1
all the digital envelopes and is encrypted by e€aitinot know anything about each

digital enveloperj for jO[2n]. (3) P, finally obtains Zn:vj which is the desired
j=1

output of the protocol. It will be shared by aletparties. From the above analysis,

we can see that the protocol disclose nothing abaciy private TD portion.

Complexity Analysis The communication cost of this protocola$3n—1) where a

is the number of bits for each encrypted elemend,rais the total number of parties.
The computational costs are contributed by: (1)gdeeration of n digital envelopes;
(2) n additions; (3) 2n-1 multiplications; (4) 2naeyptions; (5) 1 decryption. Thus,
the computational costs are 6n.

An Interesting Case Let us discuss an interesting scenario wherep, ,, and P,

collude with each other. What we want to know isethler the private data can be
disclosed. In this case, these three parties cemngare information than what they
should according to the protocols. In protocolHeg extra useful information they

can obtain iszn“aj for idJ[Lk]. In protocol 2, the extra information they canabt
j=1

n
is ZVJ" Based on this information, other parties' indidal private distance
j=1

portions cannot be derived unless, among the réntpof n-3 parties, there are n-4
parties colluding withp,, P_, and P,. In other words, to break our two-level

protection and gain private data that should nadibelosed, n-1 parties in total need
to collude. Thus, although we assume tfRt P, and P.do not collude, the

assumption can be released to certain extent.

4 Related Work

In early work on privacy-preserving data miningndéell and Pinkas [14]
propose a solution to privacy-preserving clasdiiica problem using oblivious
transfer protocol, a powerful tool developed byusecmulti-party computation
(SMC) research [9, 21]. The techniques based on $E@fficiently dealing with
large data sets have been addressed in [10]. Raration approaches were firstly
proposed by Agrawal and Srikant in [2] to solvevady-preserving data mining
problem. Researchers proposed more random peltumkzdsed techniques to tackle
the problems (e.g., [3, 6, 19]). In addition totpdsation, aggregation of data values
[20] provides another alternative to mask the dctisda values. In [1], authors
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studied the problem of computing the kth-rankednelist. Dwork and Nissim [7]
showed how to learn certain types of boolean fonestifrom statistical databases in
terms of a measure of probability difference witbspect to  probabilistic
implication, where data are perturbed with noigetlie release of statistics.

Recently, there are several endeavours on privaesepving clustering [13,
15, 16, 17]. A framework for clustering distributeder horizontally partitioned data
in unsupervised and semi-supervised scenarios usampling techniques is
provided in [15]. In [13], Klusch et. al. presentad approach to distributed data
clustering based on sampling density estimatesie®i and Zaiane introduced a
family of geometric data transformation methods #resure the mining process does
not violate privacy up to a certain degree of si¢gun [16], and showed that a
solution can be achieved by transforming a datalbas®gy object similarity-based
representation and dimensionality reduction-basadstormation in [17]. Vaidya
and Clifton's work [11] is an important contributido the problem of privacy-
preserving clustering over vertically partitionedtal Their approach was using the
k-means method. In our paper, we focus on clugietsing k-medoids method.
Since the two algorithms are different, the design the secure protocols are
dissimilar. In our protocol, the digital envelogedistributed in that each party has
its own digital envelope and one party does notwkribe other party's digital
envelope. As we discussed in the previous sedti@mne are two-level protections in
our protocols. Even thougR, P_, and P,collude with one another, other parties'

private data still remain securely hidden unlessfalhe parties collude except only
one party.

5 Conclusion and Future Work

In this paper, we provide a novel solution for deltestering using k-medoids
method over vertically partitioned data. Insteadusing data transformation, we
define a protocol using homomorphic encryption digital envelope techniques to
exchange the data while keeping it private. As igeussed in the previous sections,
in our protocol, there is a two-level privacy piiten. Even if the non-desired
situation occurs wher@, P _, and P, collude with one another, other parties' private

data are still securely hidden unless all of theigs collude except only one party.
On the other hand, the bit-wise communication coktour protocol 1 is

a@n+k*+5k-3) andg(3n-1) for protocol 2.
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