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Abstract: In the report we have discussed a few aspect©af &ncept which in general have
strongly influence on explicitness of mapping psxeSOC idea is based on group of models
and/does not seem to give quite clear instructihsther mapped phenomena exhibit SOC or
not. To present the problem we have performed a comgirterlation in order to investigate the
effect of the critical point within the system ewtbn process without conservation. We have
considered that on two-dimensional cellular autemtose rule consists of one or two subrules.
The first one, based on Conway’s model (or veryilamto), has represented the local behavior
of transmission processes and has been appliedhén experiment synchronously, as
a fundamental mode. The second one, called a wanspe, has been applied sequentially. That
subrule has described the motion of a fractiomdividuals. As a result of comparing models of
the various sets of rules for the applied sizeatifde, we could find that the modified Conway’s
model would be merely treated as subcritical.
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1 Introduction

The idea of self-organized criticality (SOC) comte among other, two terms
of mechanism of self-organization and criticalitthe aim of the former is focused
on the system structure which often appears witleapticit pressure or influence
from outside the system. The observed change aémsybehavior results from the
interactions among the components. In spite of@lecharacteristic of constraints
between components, it is usually emphasized thdag behavior of the system is
independent of their physical nature. Self-orgashisgstem has, among other, the
following typical features: global order, dissiatj instability, multiple equilibria,
complexity, criticality. If we add, that the exisgj dissipation phenomena is not
critical, to the concept itself, one can say th& hew theory gives results applicable
to all other systems characterized by similar neitwieatures. The creation process
of the new SOC theory will be discussed further.
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There are some examples of self-organized systamb as crystallization or
different examples of magnetization and Bernardnph@non or certain chemical
reactions.

The second term i.e. criticality is a complex notiegarding phase change,
edge of chaos, percolation phenomena and others.cOuld explain criticality as
a point at which the system properties change sugdwrit that sounds as another
term: the phase change defined similar to the paintvhich appearance of the
system changes suddenly. Then describing critycadireferred to the critical point
of the system where a small change can push themyather into chaotic activity
or into frozen constancy (e.g. equilibrium). The chmnism through which
a complex system tends to maintain on this poietifed as edge of chaos) has been
called self-organized criticality by Per Bak et. fl]. When we observe system
behavior we can find that large adjustments arsiplesbut they are much more rare
then small ones. So in that way we formulate bedraef a complex system
governed by “the power law”.

The concept of self-organized criticality (SOC)based on observation of
near-critical behavior of many natural phenomemaleéd, the SOC brings those
ideas together with underlying explanation for soofserved, obvious universal,
dynamics of complex systems. SOC would be chaiaetéby structural approach
within which we determine, or rather simplify, thature focused on our analyses on
components and their constraints. The fractal datsmn would be a good example
here: machines and organizations are designed foabtl [1]. Both of them are
made of parts and on lower levels are made of comqs or subassemblies and so
on. One could expect the distribution of the numbkparts of a machine vs. the
masses (or volumes) of those parts to be in a fifrthe inverse power law. But in
that case power describes the dimension of fratdlsThis approach is valid for
a self-similar system such as the above-mentiorectal organizations which are
scale-free, what means that they look the samayateale. The considered power
law as a scale-free function would support theithdgmt any SOC system is fractal
(not necessary as regular, mathematically descriltertal but “as heterogenous
fractal”). The SOC, according to the definition ){tended by the fractal definition
above, could be treated as ability of a systenvtdve in such a way as to approach
a critical point and then remain at that point. lehare many examples of self-
organized criticality which include: sandpiles (daor rice piles of selected grains),
earthquakes, pulsar glitches, solar flares, tutpithyers, people killed in war
conflicts, traffic jams, variations in cotton fues, forest fires, landscape formation,
river network, mountain ranges, volcanic activityctuations on the stock market,
brain functions, spreading of epidemics and so on.

From that point of view SOC seems to link multituefecomplex phenomena
which we observe in real world to simplistic lawadaunderlying process (if
necessary) hence for many the SOC, like the systieeasy that was very popular in
the late 60’s, is ubiquitous. SOC, when we acdegt, tmay be used to model events
as diverse as aforesaid and we adopt that as gamdigm for the explanation of
complex phenomena. Naturally unifying theories ha®ng history as the recent
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examples of the string theory, the catastrophe rthemd the chaos theory, for
instance. The general question is whether the S@@iaes us how the nature works.
Now we will discuss a few further aspects of theCSGOC belongs to far-from-
equilibrium class of events. Dissipation phenometithin a self-organized system
are expected, although as we mentioned above itioatto the concept itself except
for some cases such as the sandpile model (ifpdiish events are introduced the
sandpile model loses criticality [9]). Some authataim that non-conservative
sandpile model may be SOC [15]. That diversity apph highlights the basic
theoretical problems of identifying physically redamt mechanisms for SOC. There
are many presented examples of physical eventsneitapparent conservation law
e.g. earthquakes, forest fires, solar flares, heitsandpile model needs conservation
[16]. Most striking is treating the sandpile modat,the same time, as a toy model
for an earthquake [15]. Further presented modelsrtficial systems have no
analogue for physical phenomena. So such systemsexaibit self-organization
criticality in non-conservative mode.

Phase change as a physical term is defined by prep®f a system which
changes suddenly. An example of a phase chandeige of a state of matter from
solid to liquid. In the described case criticaltstdas another sense as a term
common to thermodynamics. As usual we refer to thdhe pressure-temperature
phase-space of liquid-gas system. Such a systéine atitical point does not exhibit
SOC properties (state would be reached and maétaby applying of external
forces only), although for example gas bubble itlistion follows the power law
[17]. Artificial (non-physical) systems can alsopese phase changes. However, in
case of modeling internal energy of an element ®fsiem, use of that term is more
guestionable.

The aspects described above may raise doubts @@tddes not seem to be
a scientific theory. SOC is based on group of m®¢elg. stochastic model, external
model) which are “applied” to different domains tBinterpreting the elements of
one of the models [18]. In spite of that, SOC igrently developed and very useful
idea as a new way of thinking about processes anglexity of the systems.

In this paper we have performed a computer simarat order to investigate
the effect of the critical point within the systerwvolution process without
conservation. It seems that, in spite of more thatecade of intensive studies, the
SOC phenomenon is far from being fully understod®].[ That early approach is
based on the above-described physical model taaixpl vast class of self-similar
behavior which can often be found in physical systeFor example Bak’s sandpile
model was developed as a specific model of selfuimjng criticalities.

The way to interpret the time evolution of a complsystem is the
construction of a model. It is impossible to inauall features of a real system in the
model so such a simplified description requiresarintuition for understanding that.
An excellent tool for the described purpose artutz@lautomata (CA) which support
simple models for a number of complex systems. piteger question is whether
some models based on CA, especially Conway’s mfidelGame of Life model),
exhibit self-organized criticality or not. Thereeamwo groups representing different
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opinions. The former [4] concludes that a finiteesscaling analysis shows that the
Life model is critical while the latter [5] argusat the observed power law behavior
is an artifact of the small system sizes, howevetaoger scales the Life model is
subcritical or not critical at all [6]. The aim d¢iis research was to test the two
models, the Life model and the similar one, fotical behavior.

2 Themodd

The cellular automata, as a model of complex systecontain a large
number of identical elements. The interactions ketwthem occur on the local level
only. In both models the value of a variable athesite, for given time, depends on
the values of variables at the neighboring sites [XIl sites are updated
simultaneously because of the synchronous evolutinapplied. For both the Life
model and the similar one (the LifeLike model [&he local rule applied
synchronously can be presented in the followingnfor

Life model:
rule(0,p) = J1 P=3
0 otherwise

rule(l,p) = J1 2sp<3
0 otherwise

LifeLike model:

rule(0,p) = J1 P=3 or p=6
0 otherwise

rule(1,p) = 1 otherwise
0 2<p<5 or p>5

For the experiment there is applied a set of rat@ssisting of two subrules.
The first one, described above, is a local rulpimes! by the Conway’s Game of Life
or similar one. That rule represents the local bieglaf transmission processes. The
second one describes the motion of a fractionvef dites. This kind of process is an
important aspect of the global evolution modelshsas an epidemic model [11].
After Boccara [11] and Mansilla [12], we refer tosttype of rules as transport rules.
Both subrules were enhanced a little for the pugpad a numerical experiment. The
subrule governing the Life evolution updates eatéwith some probability. For
the experiment we apply random updating on thel lavevhich the system is nearly
asynchronously.

The second subrule describes a mixing process wisictesponsible for
perturbation in the CA system. On the contraryh® €A standard, that subrule is
based on looking for free (dead) site processes.sEleond subrule has an impact on
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the finally growing number of live sites. That sgdng process is sequential and can
be deterministic or random choice.

The modeling processes are observed at the falitied space with the cold
boundaries which means that all sites beyond theédb@re dead.

3 Thecritical exponent

The typical system is subjected to external facwanich have an influence on
changing a local state variable. When this variaiglaches a critical value we
observe in several cases transport process triggeff series of events. That chain
of reaction we call an avalanche. The statistithefavalanches obeys critical scaling
in a form of the power law [2][3]:

D(t) ~ £

whereD(t) is the number of avalanches of stizandb < 0 is a critical exponent —
usually non-integer. For the purposes of testinth Imaodels described above we are
interesting in that frequency distribution for aosig evidence of existing the SOC.
The log-log plot of avalanches size against the bemof avalanches of that size is
a straight line [1] [5].

We should have awareness that subsequent statistetey of a system in
whole repeated perturbation-stabilization procegesdnot depend on the initial
configuration. When transient as an intermediateabi®or exists, some artifacts of
the seed may remain for many perturbations aftegurE 3.1 shows the steps
evolution of the number of live cells. The resuliggests that we could neglect
transient period effect (starting from 15% of steypsnber we have nearly straight,
horizontal runs).

live cells of 32 CM

2,5

s — iecels|
1 Ive cells

0,5

normalized number
of live cells

1 1992 3983 5974 7965 9956

steps

Figure 3.1. Evolution of the number of live cells over pertations
(example of the case of Conway’s model for lattit82%x32)
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We look for the SOC behavior in the following runith the cold boundary
conditions employed. All runs are plotted belowigure 3.2 and Figure 3.3 for four
different lattice sizes: 32, 63, 128 and 150. Nmotitat for not very large avalanches
the raw plot in its tail includes sets of sparsafsowhich are separated by values of
zero frequency.

In this region the raw plot considerably decaysrfrihe power law run, so in
order to estimate the best fitting we have to pass the tail (for our experiment
results t > 190). However, without applying smonthiechniques we can observe
good fitting within the above-mentioned range.

We estimate in this region an average critical eemb for the analyzed size
of lattice and we obtain the following values loffor Conway’s the Life model:
-1,506 +0,063/-0,057 and for the LifeLike model:441 +0,102/-0,04.

The subrule of the local behavior of a transmisspocess exerts an
influence on diversity of values of the averagéical exponent between results for
the Life and LifeLike models mentioned above. Thesults obtained can be
compared with previous measures of that quantitytiie Life model e.gb = -1.6
[3], b=-1.41 [4] ancb = -1.175 [6]. In general it seems to be in compi@with our
results but we must emphasize the diversificatibeamditions on which the cited
results were obtained. Bak et. al. [2] explore l#téce with cold boundaries up to
the size 150 x 150, Blok [6] analyzes the SOC bienagsting the Conway‘s model
with several boundaries conditions (including tvidesl cold boundaries) on the
lattice up to 256 x 256, Alstrom [4] tests theitatup to 1024 x 1024.

That discrepancy points out that we have to idgmtibre factors which have
an influence on value of an average critical expbni& this paper we analyze only
one factor. We formulate hypothesis that the aitiexponent is integrated with
estimation of finite-size effects [6] [9]. To carout that we construct, after [6], the
cumulative distribution of lifetime€(t) presented in Figure 3.4. The distribution of
lifetimes in the finite system due to the lack affearacteristic size and time scales is
rewritten as [6][9]:

D(t) ~ =&

where all variables have an identical meaning asented in the first definition of
frequency distribution of avalanches lifetimes. Ttenulative distribution obeying
a finite-scaling law can also be written in a sanilorm [6]. The scaling function can
be expanded it in the Taylor polynomial. One camdate expansion at the first
order and find that [6] the fitting function can Weitten as:

C(t) - tl+b ehl titc

whereC(t) —cumulative distribution of lifetimed)1 — an expansion factor in the first
order with accepted valuehl = -1, tc — critical lifetime indicating the range over
which the power law is valid.
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On the basis of the modified cumulative distribntie can find adjustable
parameterd andtc for both models and all sizes of lattice. As a lese find for
the Life model the set of average values of pararagt = -0,955 +0,085/-0,055¢
= 14,49 +2,8/-1,2 and for the LifeLike modél:=-0,769 +0,063/-0,039r = 12,56
+1,0/-0,8.

Unfortunately, the comparison of these resultdlferLife model with Blok’s
ones [6] is not favorable for them but could beeayvinteresting base for possible
explanations and interpretations.

Frequency distribution - the LIfe model

——L=32
= =64
L=128
L =150
—%— average
— Wykt. (average)

lifetimes t

Figure 3.2. The raw frequency distribution of lifetime for thée model, L x L lattice
of four different sizes L: 32, 64, 128 and 150. Tigkt. curve interpolates the average
frequency distribution graph

Freugency distribution - the LifeLike model
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Figure 3.3. The raw frequency distribution of lifetime for ethifeLike model, L x L lattice
of four different sizes L: 32, 64, 128 and 150. Tigkt. curve interpolates the average
frequency distribution graph
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Cumulative distribution of lifetimes
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Figure 3.4. Example of the cumulative distribution of lifetiméor the Life model
on a cold lattice 64 x 64

4 Conclusions

Idea of self-organized criticality systems is emtty developed and seems to
have multitude of successful applications. In spit¢hat SOC does not seem to be
a scientific theory. SOC is constructed on a basa éew models and each of
applications is reinterpreted by one of them. Tdraates a problem of identification
whether a system exhibits SOC properties or notselkorganized critical system
represents a wide class of open, nonlinear andfréan equilibrium complex
systems. That kind of systems can spontaneouslglgewithout any even fine
tuning. The SOC model based on the Conway’'s modeh gimilar one needs
enhancement of the standard rules or modificatibrthe boundaries definition
because the modeled SOC system by definition hdsetopen. In this paper we
analyze the lattice with all boundaries definedcakl. We test behavior of both
models in the determined region so we could nat givy conclusions above it.

The first approach as analysis of raw distributiétifetimes, after ignoring values
of a plot tail, suggests, with notice given abavmt both the Life and the LifeLike
models are subcritical (both are some modificatimfisthe original Conway’s
model). The values of lifetimes of the analyzed eisgboint out on the existence of
strong influence of boundaries effects: for exampke have average lifetimes of
order 16 while Blok [6] has nearly TO(however the next are ignored). The possible
explanation of that we can see in interactions e gliders in case of cold
boundaries. The cold boundaries effect integrateth the finite size can be
observed through comparing values of an averadieatriexponent from the raw
distribution of lifetimes with its values from trezaling function e.g. for the Life
modelb =-1,506 for the first distribution and for the lasteb = -0,955.
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Both models are similar in character but the Lifelione produces
a completely different pattern [8]. One can desztiat in a form of sets of 2 x 2
blocks all aligned. This pattern will evolve withet same form adding rare gliders
and many different oscillators. The evolution pxwill strongly decay and we can
expect lower values of lifetimes than the origiridafe model exhibits (e.g.
comparing the maximum values of parameters — aeeldigtime/its frequency:
835,5/97,2 (LifeLike) and 1064,0/168,7 (Life)).

The received values of critical lifetimésare astonishingly low and point out
on a strong affect of edges. The self-organizetitaliy system are inherently based
on the physically proper conservation law. The yaed CA systems are artificial
and non-conservative. We remember that the SOGssdon suddenly changing
system properties from disconnected to connectatd sir vice versa. It can be
described through change on the level of an eleangmarticle of the system or the
whole system. The first explanation we can conmétit the change from solid to
liquid as a good example of physical conservatisesns. The second one we can
see in Thom’'s catastrophe theory [14] (ignoring yngwoposed applications),
considering CA systems described in this paper @&ftis problem is open,
considering the class of dissipative and conserzatiodels [9]. When one can find
examples of systems, that obey the power law ahibixo SOC features and on
the other hand the same phenomena could be mappedS®C model under the
conservative law or not, we could claim that SOCv&y inspiring idea but
development of that is far from the end.
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