
STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

LCS and GP Approaches to Multiplexer’s Problem

Katarzyna Wasielewska1, Mariusz Bagiński2, Franciszek Seredyński3,4

1,2 The State Higher School of Vocational Education in Elblag,
The Institute of Applied Informatics
Wojska Polskiego 1, 82-300 Elblag, Poland,

3 University of Podlasie, Institute of Computer Science
Sienkiewicza 51, 08-110 Siedlce, Poland

4 Institute of Computer Science, Polish Academy of Science
Ordona 21, 01-237 Warsaw, Poland

Abstract. In this paper we present the use of learning classifier systems and genetic
programming to solving multiplexer’s problem. The function of multiplexer is the popular
apparatus of researches which is used to investigate the effectiveness of systems based on
evolutionary algorithms. It turns out that the eXtended Classifier System (XCS) learns the
problem of multiplexer effectively and Genetic Programming (GP) finds the form of function of
multiplexer correctly.

Keywords. Learning classifier system, genetic programming, multiplexer problem

1 Introduction

Learning Classifier System (LCS) is a rule-based learning machine
introduced by John Holland [2]. This technique combines reinforcement learning and
evolutionary computing to produce adaptive systems. LCS is the system in which
rules (called classifiers) are generated with the use of Genetic Algorithm (GA). The
GA operates on a population of classifiers.

Wilson introduced accuracy-based eXtended Classifier System (XCS) ten years
ago [13]. The XCS consists of performance, reinforcement and discovery components.
The reinforcement component uses Q-learning technique [10] to update classifiers.
Whereas the discovery component consists in deleting classifiers from population and
creating a new classifiers. The XCS makes the use of a niche mechanism and has
tendency to evolve populations of maximally general classifier [13,7].

The Genetic Programming has been invented by N. L. Cramer [1] and
popularized by J. Koza since 1994 year [4]. It is also treated as a form of adaptive
teaching. The technique is based upon the GA which exploits the process of natural
selection based on a fitness measure to create a population of solutions. These

196 Wasilewska K., Bagiński M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

solutions keep improving all the time. The GP uses encoding tree and also the same
genetic operators like: selection, crossover and mutation. Each tree in population is
a single computer program. Computer creates thousands of programs in one loop and
it chooses the best fitness function.
 The paper first gives an overview of the XCS and a short introduction to the
GP. Section 4 presents results of experiments. Last section contains conclusions.

2 Overview of some techniques

2.1 Overview of the XCS

Traditionally, the XCS receives the message representing the current state of
environment and executes the suitable action in environment. However, it does not
have a message list and the strength parameter has a different form. And what is
more, several new mechanisms appeared.
 In single-step problem, at each time step the system receives the message
from environment (see Figure 2.1) and the system compares this message with conditions
of classifiers from population [P] and the system input creates a match set [M]. If the [M]
is empty a new classifier is created through covering mechanism. Then for each possible
action ai the system prediction P(ai) is computed. The value P(ai) gives an evaluation of
the expected reward if action ai is performed. Next, there is action selection.
The classifiers in [M] which propose the selected action are put in the action set [A].
The selected action is performed. Then an immediate reward is returned to the system.
The reward is used to update the parameters of the classifiers in [A].

Figure 2.1. Schematic diagram of XCS for single-step problem
(source: XCS tutorial, S. W. Wilson)

 LCS and GP Approaches to Multiplexer’s Problem 197

Artificial Intelligence

 Each classifier in XCS has three parameters which are updated in each time:
the prediction pj, the prediction error εj and the fitness Fj. The parameter prediction pj
gives an estimate of what is the payoff P that the classifier is expected to gain.
Reinforcement in XCS consists of updating these parameters. Classifier parameters
are updated by the Widrow-Hoff delta rule [11]. It is updated according to

),(jjj pPpp −+← β where β is a learning rate constant (10 ≤< β). The

prediction error εj estimates what the exact the prediction pj; it is updated according
to).|(| jjjj pP εβεε −−+← It applies these rules according to the moyenne

adaptive modifee (MAM) technique [9]. However, the update of fitness has several
phases. It is necessary to set the classification accuracy jκ of each classifier as

νεεακ −=)/(0jj
 if

0εε ≥j
 or otherwise 1=jκ , where α, ν are constants

parameters accuracy function and 10 << α as well as 0ε is a threshold such as,

if the classifier's error is less than 0ε , the classifier gives accuracy 1. And the fitness

parameter is updated by the rules),'(jjjj FFF −+← κβ where 'jκ is a relative

accuracy which is calculated by dividing jκ of each classifier in [A] by the sum

of the jκ s of the set. So, classifier fitness in XCS is based on the accuracy of the

classifier prediction.
The genetic algorithm in XCS is applied to the action sets and acts in

environmental niches. It consists in selecting two classifiers, copying them,
and performing crossover and mutating on each allele.

Accuracy-based fitness and a niche GA cause that XCS’s population tends to
form a complete and accurate mapping X x A => P from inputs and actions to payoff
predictions.

The XCS acts on so called macroclassifiers. These are classifiers that
represent a set of classifiers with the same condition and the same action by means
of a parameter called numerosity. Wilson shows that macroclassifiers are
a programming technique that speeds up the learning process by reducing the
number of real classifiers (microclassifiers) of XCS. The XCS evolves populations
of accurate and maximally general classifiers. The description of generalization
hypothesis may be found in [13].
 The extension of the XCS are also new genetic operators: subsumption
deletion [14] and specify [7]. Subsumption deletion acts when classifiers created by
the GA are inserted in the population and thanks to its accurate classifier can produce
only more general classifiers. Whereas specify assists the generalization mechanism
to eliminate overly general classifiers. Lanzi shows that specify operator rather slows
the generalization process [7].

198 Wasilewska K., Bagiński M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

2.2 Overview of GP

In Genetic Programming single computer program is presented most often as
S-expression (LISP notation). For example let be a simple tree for multiplexer
problem [4] presented in Figure 2.2. S-expression for this tree can be shown as
OR(A1(NOT D0)).

Figure 2.2. Example of S-expression (tree)

 Somewhat otherwise like in GA, in GP we calculate fitness function.
Generally are four cases of fitness function in GP [4]: (a) raw fitness

∑
=

−=
N

j

jCjiStir
1

|)(),(|),(of individual S-expression i in the population of size M

at any generational time step t, where S(i,j) – the value returned by S-expression i for
fitness case j (of N cases) and C(j) is the correct value for fitness case j; (b)
standardized fitness),(),(max tirrtis −= where rmax is a maximum possible value

of raw fitness; in particular problem is),(),(tirtis = , e.g. in regression problem [5,6];

(c) adjusted fitness)),(1/(1),(jisjia += where),(tis is the standardized fitness for

individual i at time t; (d) normalized fitness)),(/(),(),(
1
∑

=

=
M

k

tkatiatin where M is

force of population.

Figure 2.3. Example of crossover operator

 LCS and GP Approaches to Multiplexer’s Problem 199

Artificial Intelligence

Figure 2.4. Example of mutation operator

 In GP also occurs genetic operator like: crossover, mutation, reproduction
(showed on Figure 2.3 and Figure 2.4).
 Most important in GP is defining terminal T and function F sets. In our
example of 6-multiplexer showed in Figure 2.2 we have T = {A0,A1,D0,D1,D2,D3}
and F = {IF,OR,AND,NOT}. In T sets take a stand all variables defined within
a problem. However, in the F set can take a stand all mathematics functions or
specific operators properly defined for the problem and ADFs (Automatically
Defined Functions) [3]. The ADF is a function (i.e. procedure, module) that is
dynamically evolved during a run of GP and which may be called by a calling
program that is simultaneously being evolved.
 How GP works is presented on diagram in Figure 2.5.

Figure 2.5. Idea of Genetic Programming

200 Wasilewska K., Bagiński M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

3 A multiplexer’s function

The multiplexer’s problem is a logical function commonly used for testing
evolutionary techniques. The multiplexer’s function is defined for strings of length
L=k+2k where k is integer > 0. L-multiplexer has k address-inputs and 2k data-inputs
and one output always (0 or 1). For example for k=2 we have 6-multiplexer which
has 2 address-inputs and 4 data-inputs. Many electronic devices act according to
principle of multiplexer’s function (example of representation in Figure 3.1). The
multiplexer’s problem is single-step problem, i. e. the choice of action does not
affect future inputs.

Figure 3.1. Schema of 6-multiplexer

 In Figure 3.1 we see six inputs (110011) of which the first two (address-
inputs) indexes one bit of data-inputs. The value of multiplexer function is the value
of the indexed bit. In our example the value of 6-multiplexer function is 1, because
bits of address – 11 – represent the last bit of data-inputs (i.e. D3). Similarly, the
value of 000111 is 0.
 The multiplexer function we can introduce in disjunctive normal form. For
example, 6-multiplexer is 5104

'
1031

'
02

'
1

'
06 xxxxxxxxxxxxF +++= where primes

indicate negation.

4 Experiments with a multiplexer

In context of XCS, the multiplexer’s problem means to learn a correct
classification of input signals according to multiplexer’s principles, whereas
in context of GP – to find a logical function of multiplexer.

4.1 XCS approach to multiplexer’s problem

This problem is encoded as a binary bitstring by the XCS’s input interface
and the system’s action is returned by the output interface. We focus on
6-multiplexer. The input to the system consists of a string of 6 binary digits,
of which the first two represent address into the remaining bits (the data). We receive

D3:x5

D2:x4

D1:x3

D0:x2

A1:x1

A0:x0

1

1

0

0

1

1

1

output

a
dd

re
ss

da
ta

in

p
u

t

 LCS and GP Approaches to Multiplexer’s Problem 201

Artificial Intelligence

the 64-input space. The most specific classifier is 100101:0 and the most general is
10##0#:0. The classifier 10##0#:0 is correct for all inputs it can match. It is
maximally general classifier. Notice, that we have the 8 maximally general
classifiers (Figure 4.1).

Figure 4.1. The best action map (left) and the complete map (right) for 6-multiplexer

 Taking into account 2 payoff levels (payoff p1 for the correct answer
and payoff p2 for the wrong answer) we receive that the optimal population consists
of the 16 maximally general classifiers (Figure 4.1). The XCS aspires to create
a complete map of input/output. It means that XCS strives to create the population
of classifiers which will be capable of matching themselves to each input and they
will offer all possible actions.
 The XCS has the task of executing the action which matches to input in the
current situation in the environment. This is single-step problem.

Figure 4.2. Results in the 6-multiplexer environment. Points: Performance. Population size

in microclassifiers. Parameters (as [13]): N = 400, β = 0.2, γ = 0.71, θ = 25, ε0 = 0.01, α = 0.1,
χ = 0.8, µ = 0.04, δ = 0.1, Φ = 0.5, P# = 0.33, pI = 10.0, εI = 0.0, FI = 10.0

 It is visible in the Figure 4.2, that XCS has done very well with multiplexer’s
problem. Quickly enough, XCS has started classifying the encoded messages. Many

000###:0
001###:1
01#0##:0
01#1##:1
10##0#:0
10##1#:1
11###0:0
11###1:1

000###:0 10##0#:0
000###:1 10##0#:1
001###:0 10##1#:0
001###:1 10##1#:1
01#0##:0 11###0:0
01#0##:1 11###0:1
01#1##:0 11###1:0
01#1##:1 11###1:1

202 Wasilewska K., Bagiński M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

scientists’ experiments, for multiplexer’s problem, have proved also the large
effectiveness of XCS architecture.

Below we present the results of experiments with 11- and 20-multiplexer
(Figure 4.3), where number of individuals in population is equal 790 and 2100
respectively. Let’s notice, that together with an increase of problem’s complexity,
the time of learning increase.

Figure 4.3. Comparison the results in the 6-, 11- and 20-multiplexer environment. Points:

Performance. Population size in microclassifiers. Parameters: N6 = 400, N11 = 790,
N20 = 2100

 It is worth mentioning, that Lanzi and Perruci have showed learning of the
6-multiplexer using XCS with s-classifiers [8], which are classifiers with Lisp
s-expression conditions [12].

4.2 GP approach to multiplexer’s problem

Solving problem of 6-multiplexer with GP, first of all we must define T and
F sets. For 6-multiplexer we have T = {A0, A1, D0, D1, D2, D3} and logic functions
set F = {IF, NOT, OR, AND}. Fitness function is equivalent to standardized fitness
and equal 64 minus raw function. The GP technique representing number of hits is
“a number of fitness cases for which the S-expression matches correct output” [4].
We want to obtain an S-expression which output is equal like 6-multiplexer.
In experiment we use application lilgp-1.1 [15].

All experiment was performed on machine with Ultra Sparc IIIi 1.5GHz
processor with 1G RAM on Solaris 10 (Sun Blade 1500 workstation).

In first experiment we set: population size = 500, crossover = 0.8 (internal),
crossover = 0.1 (external), mutation = 0.05 and reproduction = 0.05. After 44 sec.
was obtained result in generation 40 in subpopulation 7. We obtained S-expression
which in 100% correct describe 6-multiplexer (Adjusted fitness = 1 (Figure 4.4)).

 LCS and GP Approaches to Multiplexer’s Problem 203

Artificial Intelligence

Figure 4.4. Adjusted fitness for 6-multiplexer. Population size = 500

 Corresponding S-expression (computer program) is showed below:

(AND (NOT (NOT (OR (IF D2 A0 A0)(IF A1 D2 D0))))(OR (IF A1 D3 D1)(NOT
(AND (IF (OR (NOT (AND A0 D2))(AND (IF A1 D3 D1)(AND (NOT D2)(AND
D1 A1))))(OR (AND (OR (NOT D1)(AND (IF D0 D1 D2)(OR D0 D3)))(AND D3
A1))(IF A1 A0 A0))(IF (NOT A0)(OR A0 D0)(OR D1 A0))) (OR (NOT (IF A1 D3
D2))(AND (NOT (AND (IF (OR D3 D2)(AND D3 D1) (AND (IF D1 A0 A1)(IF
(OR D3 D1) D3 A1)))(AND (AND A1 D0)(IF A1 D1 A1))))(IF (IF (OR (AND D2
D1)(OR A1 A1))(NOT (AND D3 D0))(AND (OR A1 D2)(OR A1 D2)))(OR (AND
(IF D0 A1 D2)(IF D0 D1 D0))(OR (OR (AND D2 D0)(AND D1 D1))(NOT
D1)))(OR (NOT (OR D0 D2))(AND (IF (NOT (IF D3 D2 A0)) (AND A0 D3)(AND
(OR A1 D0)(OR A1 D2)))(IF A0 D0 D2))))))))))

Increasing population size to 2000 we obtained best solution after 48 sec.
in generation 14 (subpopulation 7) (Figure 4.5)

Figure 4.5. Adjusted fitness for 6-multiplexer. Population size = 2000

204 Wasilewska K., Bagiński M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

 Computer program in LISP is showed below:

(IF (AND (OR D1 A1)(OR A1(AND A0 D3)))(AND (IF A0 D3 D2)(IF (AND A0
D1)(IF A0 D1 D2)(OR (OR (OR (AND A0 D3)(NOT A0))(OR (IF A1 D3 D0)
D1))(OR (OR (IF D0 A0 D2)(OR D0 D0))(IF (IF D0 D0 D0)(AND D3 D2)
(NOT D0))))))(IF (AND A1 A0)(OR D2 D2)(IF (NOT A0)(OR A0 D0)(IF A1
(AND D1(AND D3(AND D0(AND D2(NOT A0))))) D1))))

 For k = 3 we have 11-multiplexer which has three address inputs and eight
data inputs. For this case we have: T set: T = {A0, A1, A2, D0, D1, …, D7} and F
set: F = {IF, NOT, OR, AND}. Fitness function is equivalent to standardized fitness
and equal 2048 minus raw function.
 We use the same value of genetic operation like in 6-multiplexer. In first case
we have population size 500. After 24437 sec. we obtained the best solution in 346
generation (in subpopulation 4) (Figure 4.6).

Figure 4.6. Adjusted fitness for 11-multiplexer. Population size = 500

 Changing population size on 2000 we obtained next 100% solution. The
solution was find after 23894 sec. in generation = 76 (subpopulation 6) (Figure 4.7).

Figure 4.7. Adjusted fitness for 11-multiplexer. Population size = 2000

 LCS and GP Approaches to Multiplexer’s Problem 205

Artificial Intelligence

 In 11-mulitplexer’s problem we obtained very long S-expression and we cannot
show this solutions in our publication. For example first solution consists of 503
nodes and tree has depth 16. Second solution has 441 nodes and depth 17.

5 Summary

The XCS and the GP solve the multiplexer’s problem but in different
manners. Setting other parameters we may obtain better or worse solution in a time.
Wilson has claimed that comparison between XCS and GP in solving the
6-multiplexer indicates that speed of a learning process in XCS may be even
thousand times faster [14].
 The XCS evolves the population of classifiers that solve this problem. And
the GP evolves individuals which are full solutions to multiplexer’s problem.
Whereas, the GP needs more time to find solution of problem and XCS is really
quickly. However, the XCS system has considerably more complicated structure and
it is more difficult for implementation.

References

1. Cramer, N. L. (1985). A representation for the adaptive generation of simple
sequential programs. Proceedings of an International Conference on Genetic
Algorithms and the Applications, Carnegie-Mellon University, Pittsburgh, PA,
USA, 183-187.

2. Holland J. H., (1986). Escaping Brittleness: The possibilities of General-
Purpose Learning Algorithms Applied to Parallel Rule-Based Systems, in: M.
et al. (Ed.), Machine learning, an artificial intelligence approach. Volume II,
Morgan Kaufmann.

3. Koza John R., (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs, Cambridge, Bradford Book / MIT Press 4 s. XXI, 746
Complex Adaptive Systems.

4. Koza J. R., (1994). Genetic Programming: on the Programming of Computers
by Means of Natural Selection, Cambridge, Bradford Book / MIT Press 4 s.
XV, 819 Complex Adaptive Systems.

5. Koza J. R., (1994). Genetic Programming for Economic Modeling, Stanford
University, California USA.

6. Langdon W. B., Qureshi Adil, (2000). Genetic Programming – Computer using
“Natural Selection” to Generate Programs, University Collage London.

7. Lanzi P. L., (1997). A Study of the Generalization Capabilities of XCS, in
Back, T. (ed.), Proc. of ICGA97 Conference, Morgan Kaufmann, San
Francisco, 418-425.

8. Lanzi P. L., Perruci A., (1999). Extending the representation of classifier
conditions, part II: from messy coding to s-expressions, GECCO.

206 Wasilewska K., Bagiński M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

9. Venturini G., (1994). Apprentissage Adaptatif et Apprentissage Supervise par
Algorithme Genetique, These de Docteur en Science (Informatique), Universite
de Paris-Sud.

10. Watkins C. J. C. H., (1989). Learning from Delayed Rewards, Ph.D thesis,
Cambridge University.

11. Widrow B., Hoff M., (1960). Adaptive switching circuits. In Western
Electronic Show and Convention, Institute of Radio Engineers (now IEEE) vol.
4, 96-104.

12. Wilson S. W., (1994). ZCS: a zeroth level classifier system. Evolutionary
Computation, 1(2): 1-18.

13. Wilson S. W., (1995). Classifier Fitness Based on Accuracy, Evolutionary
Computation, 3(2), 149-175.

14. Wilson S. W., (1996). Generalization in the XCS classifier system, unpublished
contribution to the ICML'96 Workshop on Evolutionary Computing and
Machine Learning, http://prediction-dynamics.com.

15. Zonker D., Punch B., (1996). Lil-gp 1.01 User's Manual, Michigan State
University.

