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Abstract. In this paper we present the use of learning ifiesssystems and genetic
programming to solving multiplexer's problem. Thenétion of multiplexer is the popular
apparatus of researches which is used to investitie effectiveness of systems based on
evolutionary algorithms. It turns out that the exted Classifier System (XCS) learns the
problem of multiplexer effectively and Genetic Pimmmming (GP) finds the form of function of
multiplexer correctly.
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1 Introduction

Learning Classifier System (LCS) is a rule-basea@rrimg machine
introduced by John Holland [2]. This technique cameb reinforcement learning and
evolutionary computing to produce adaptive systeln@sS is the system in which
rules (callecclassifierd are generated with the use of Genetic Algoriti@A). The
GA operates on a population of classifiers.

Wilson introduced accuracy-based eXtended Clas$fistem (XCS) ten years
ago [13]. The XCS consists of performance, reirgforent and discovery components.
The reinforcement component uses Q-learning teaknid0] to update classifiers.
Whereas the discovery component consists in dgletassifiers from population and
creating a new classifiers. The XCS makes the fise miche mechanism and has
tendency to evolve populations of maximally genelessifier [13,7].

The Genetic Programming has been invented by NCilamer [1] and
popularized by J. Koza since 1994 year [4]. Iti®dreated as a form of adaptive
teaching. The technique is based upon the GA wigtoits the process of natural
selection based on a fitness measure to createpalgtion of solutions. These
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solutions keep improving all the time. The GP umesoding tree and also the same
genetic operators like: selection, crossover anthtin. Each tree in population is
a single computer program. Computer creates thalgsainprograms in one loop and
it chooses the best fithess function.

The paper first gives an overview of the XCS arghart introduction to the
GP. Section 4 presents results of experiments.deadion contains conclusions.

2 Overview of some techniques
2.1  Overview of the XCS

Traditionally, the XCS receives the message reptaggthe current state of
environment and executes the suitable action iremwment. However, it does not
have a message list and tsteengthparameter has a different form. And what is
more, several new mechanisms appeared.

In single-step problem, at each time step theesysteceives the message
from environment (see Figure 2.1) and the systempepes this message with conditions
of classifiers from population [P] and the systapui creates match sefM]. If the [M]
is empty a new classifier is created throagheringmechanism. Then for each possible
actiong; the system predictioR(g) is computed. The value(g) gives an evaluation of
the expected reward if actiop is performed. Next, there is action selection.
The classifiers in [M] which propose the selectetioa are put in thaction set[A].
The selected action is performed. Then an immedéatard is returned to the system.
The reward is used to update the parameters ofdbsifiers in [A].
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Figure 2.1.Schematic diagram of XCS for single-step problem
(source: XCS tutorial, S. W. Wilson)
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Each classifier in XCS has three parameters waiehupdated in each time:
the predictiorp;, the prediction errog and the fitnes§;. The parameter predictiqn
gives an estimate of what is the pay®ffthat the classifier is expected to gain.
Reinforcement in XCS consists of updating thesaupaters. Classifier parameters
are updated by the Widrow-Hoff delta rule [11]. i updated according to
p, —« p; +B(P-p,), where B is a learning rate constant0&fF<1). The

prediction errok; estimates what the exact the predictgrit is updated according
to & « & +pB(P-p,|-¢). It applies these rules according to the moyenne

adaptive modifee (MAM) technique [9]. However, tinedate of fithess has several
phases. It is necessary to set the classificatamuracy K; of each classifier as

K, =a(elg)” if g 2¢, or otherwise x; =1, where a, v are constants
parameters accuracy function aGck a <1 as well asg, is a threshold such as,
if the classifier's error is less thag, the classifier gives accuracy 1. And the fitness
parameter is updated by the rulds, — F, + B(kx,'-F,), where,' is arelative
accuracywhich is calculated by dividing(j of each classifier in [A] by the sum
of the K;S of the set. So, classifier fitness in XCS is base the accuracy of the

classifier prediction.

The genetic algorithm in XCS is applied to the @ttisets and acts in
environmental niches. It consists in selecting telassifiers, copying them,
and performing crossover and mutating on eacheallel

Accuracy-based fitness and a niche GA cause th&'X@opulation tends to
form a complete and accurate mapping X x A => Infioputs and actions to payoff
predictions.

The XCS acts on so callethacroclassifiers These are classifiers that
represent a set of classifiers with the same ciomdand the same action by means
of a parameter callechumerosity Wilson shows that macroclassifiers are
a programming technique that speeds up the learpiogess by reducing the
number of real classifiersnjcroclassifiery of XCS. The XCS evolves populations
of accurate and maximally general classifiers. Hescription of generalization
hypothesis may be found in [13].

The extension of the XCS are also new genetic aipes: subsumption
deletion[14] andspecify[7]. Subsumption deletioacts when classifiers created by
the GA are inserted in the population and thanksstaccurate classifier can produce
only more general classifiers. Wheregecifyassists the generalization mechanism
to eliminate overly general classifiers. Lanzi sedhatspecifyoperator rather slows
the generalization process [7].

Artificial Intelligence
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2.2 Overview of GP

In Genetic Programming single computer progranrés@nted most often as
Sexpression (LISP notation). For example let bsiraple tree for multiplexer
problem [4] presented in Figure 2.2.expression for this tree can be shown as
OR(AL1(NOT D0)).

S-expression
(INDWVIDUAL)

Figure 2.2.Example ofS-expression (tree)

Somewhat otherwise like in GA, in GP we calculditeess function.
Generally are four cases of fitness function in GH: (a) raw fitness
r@i,t) = ZN:| S(i, j)-c(j)| of individual S-expression in the population of size M

j=1
at any generational time stepvhereS(i,j) — the value returned irexpression for
fitness casg (of N cases) andC(j) is the correct value for fithess cage(b)
standardized fitness(i,t) =r_, —r(i,t) where fa is @ maximum possible value
of raw fitness; in particular problem igi,t) = r(,t), €.9. in regression problem [5,6];
(c) adjusted fitness(i, j) =1/(1+s(i, j)) Where s(i,t) is the standardized fitness for
individual i at timet; (d) normalized fitness;](i,t) =a(i,t) /(i a(k,t)) where M is

k=1
force of population.

Figure 2.3.Example of crossover operator
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INDMIDUAL I

OFFSPRING

Figure 2.4.Example of mutation operator

In GP also occurs genetic operator like: crossomartation, reproduction
(showed on Figure 2.3 and Figure 2.4).

Most important in GP is defining termindl and functionF sets. In our
example of 6-multiplexer showed in Figure 2.2 weeha = {A0,A1,D0,D1,D2,D3}
and F = {IF,OR,AND,NOT}. In T sets take a stand wdlriables defined within
a problem. However, in the F set can take a stdndchahematics functions or
specific operators properly defined for the probleammd ADFs Automatically
Defined Functions [3]. The ADF is a function (i.e. procedure, magjuthat is
dynamically evolved during a run of GP and whichyniee called by a calling
program that is simultaneously being evolved.

How GP works is presented on diagram in Figure 2.5
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3 A multiplexer’s function

The multiplexer’s problem is a logical function coonly used for testing
evolutionary techniques. The multiplexer’s functisndefined for strings of length
L=k+2% wherek is integer > OL-multiplexer hask address-inputs argf data-inputs
and one output always (0 or 1). For example for iwe2have 6-multiplexer which
has 2 address-inputs and 4 data-inputs. Many eldctidevices act according to
principle of multiplexer’s function (example of mgsentation in Figure 3.1). The
multiplexer’s problem is single-step problem, i.tbBe choice of action does not
affect future inputs.

1 —— D3
g 1 — D2
©
*;;s_ 0 — Dilixs outpu
2 < —
= 0 — DO:x.
?
< 1 — Alxy
3
L © 1 — A0

Figure 3.1.Schema of 6-multiplexer

In Figure 3.1 we see six inputs (110011) of whibbk first two (address-
inputs) indexes one bit of data-inputs. The valtimoltiplexer function is the value
of the indexed bit. In our example the value of 6Hiplexer function is 1, because
bits of address — 11 — represent the last bit ¢td-tgouts (i.e. D3). Similarly, the
value of 000111 is 0.

The multiplexer function we can introduce in digjtive normal form. For
example, 6-multiplexer isF, =X XX, + X,X X; + X, % X, +X,% X, Where primes
indicate negation.

4  Experiments with a multiplexer

In context of XCS, the multiplexer’'s problem meatas learn a correct
classification of input signals according to mulier's principles, whereas
in context of GP — to find a logical function of Hiplexer.

4.1 XCS approach to multiplexer’s problem

This problem is encoded as a binary bitstring by XCS'’s input interface
and the system’s action is returned by the outpuerface. We focus on
6-multiplexer The input to the system consists of a string obiBary digits,
of which the first two represent address into #maining bits (the data). We receive

Studia Informatica vol. 1/2(7)2006



LCS and GP Approaches to Multiplexer’s Problem 201

the 64-input space. The most specific classifiek08101:0 and the most general is
10##0#:0. The classifier 10##0#:0 is correct fdr inputs it can match. It is
maximally general classifier. Notice, that we hathee 8 maximally general
classifiers (Figure 4.1).

000###:0 000###:0 10##0#:0
001###:1 000###:1 10##0#:1
01#0##.0 001###:0 10##1#:0
01#1##:1 001###:1 10##1#:1
10##0#.0 01#0##:0 11###0:0
10##1#:1 01#0##:1 11###0:1
11###0:0 01#1##:0 11###1:(
11###1:1 01#1##:1 11###1:1

Figure 4.1.The best action map (left) and the complete mightrfor 6-multiplexer

Taking into account 2 payoff levels (paygff for the correct answer
and payoffp, for the wrong answer) we receive that the optipggulation consists
of the 16 maximally general classifiers (Figure)4.The XCS aspires to create
a complete map of input/output. It means that X@&es to create the population
of classifiers which will be capable of matchingtiselves to each input and they
will offer all possible actions.

The XCS has the task of executing the action wiigliches to input in the
current situation in the environment. This is siagtep problem.

1.4

G-nultiplexer  +

Value of prediction

5
o 2600 4000 8000 8000 10000 12000 4doo0 16000 18000 20000

Figure 4.2.Results in the 6-multiplexer en{r/lia;sonment. Poinerf@rmance. Population size
in microclassifiers. Parameters (as [13]): N = 4908,0.2,y =0.71,0 = 25,60 = 0.01,a = 0.1,
x=0.8,u=0.046=0.1,0=0.5 R=0.33, p=10.0,¢ = 0.0, F =10.0

It is visible in the Figure 4.2, that XCS has deeey well with multiplexer’s
problem. Quickly enough, XCS has started classgifyire encoded messages. Many
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scientists’ experiments, for multiplexer’'s probleinave proved also the large
effectiveness of XCS architecture.

Below we present the results of experiments with 4dd 20-multiplexer
(Figure 4.3), where number of individuals in popigla is equal 790 and 2100
respectively. Let’s notice, that together with aerease of problem’s complexity,
the time of learning increase.

1.1

[ 5000 10000 15000 20000 25000 30000 35000 40000

Figure 4.3.Comparison the results in the 6 11- and 20-miekgr environment. Points:
Performance. Population size in microclassifieesabeters: = 400, N, = 790,
N20 =2100

It is worth mentioning, that Lanzi and Perruci @ahowed learning of the
6-multiplexer using XCS withs-classifiers[8], which are classifiers with Lisp
s-expression conditions [12].

4.2  GP approach to multiplexer’s problem

Solving problem of 6-multiplexer with GP, first afl we must defind and
F sets. For 6-multiplexer we ha¥e= {A0, A1, DO, D1, D2, D3}and logic functions
setF = {IF, NOT, OR, AND}. Fitness function is equivaleto standardized fitness
and equal 64 minus raw function. The GP technigyeasenting number of hits is
“a number of fitness cases for which tB&xpression matches correct output” [4].
We want to obtain arSexpression which output is equal like 6-multiplexe
In experiment we use applicatiblgp-1.1[15].

All experiment was performed on machine with Ul8aarc Illi 1.5GHz
processor with 1G RAM on Solaris 10 (Sun Blade 1&0ekstation).

In first experiment we set: population size = 56@ssover = 0.8 (internal),
crossover = 0.1 (external), mutation = 0.05 andadipction = 0.05. After 44 sec.
was obtained result in generation 40 in subpomrafi. We obtaine&-expression
which in 100% correct describe 6-multiplexer (Adadsfitness = 1 (Figure 4.4)).
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ss tor &-nultiplexer

Adjusted Fitne:

GENERATIONS

Figure 4.4.Adjusted fitness for 6-multiplexer. Populationesiz 500
Corresponding S-expression (computer progranf)agved below:

(AND (NOT (NOT (OR (IF D2 A0 AO)(IF A1 D2 DO0))))(ORIF Al D3 D1)(NOT
(AND (IF (OR (NOT (AND A0 D2))(AND (IF A1 D3 D1)(AND (NOT D2)(AND
D1 A1))))(OR (AND (OR (NOT D1)(AND (IF DO D1 D2)(OR0 D3)))(AND D3
AL))(IF AL A0 AD))(IF (NOT AO)(OR A0 DO)(OR D1 A0))(OR (NOT (IF Al D3
D2))(AND (NOT (AND (IF (OR D3 D2)(AND D3 D1) (AND IF D1 A0 AL)(IF
(OR D3 D1) D3 A1)))(AND (AND Al DO)(IF A1 D1 AL)YJF (IF (OR (AND D2
D1)(OR Al AL))(NOT (AND D3 DO))(AND (OR Al D2)(OR A D2)))(OR (AND
(IF DO Al D2)(IF DO D1 DO))(OR (OR (AND D2 DO)(ANDD1 D1))(NOT
D1)))(OR (NOT (OR DO D2))(AND (IF (NOT (IF D3 D2 A (AND A0 D3)(AND
(OR A1 DO)(OR Al D2)))(IF A0 DO D2))))))))))

Increasing population size to 2000 we obtained bssution after 48 sec.
in generation 14 (subpopulation 7) (Figure 4.5)

=5 for G-multiplexer

adjusted Fitne

L L L
] 2 4 3 ) 19 12 14
GENERATIONS

Figure 4.5.Adjusted fitness for 6-multiplexer. Populationesiz 2000
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Computer program in LISP is showed below:

(IF (AND (OR D1 A1)(OR AL(AND AO D3)))(AND (IF A0 3 D2)(IF (AND AO
D1)(IF A0 D1 D2)(OR (OR (OR (AND A0 D3)(NOT A0))(ORIF Al D3 DO)
D1))(OR (OR (IF DO A0 D2)(OR DO DO))(IF (IF DO DOGXAND D3 D2)

(NOT DO))))))(IF (AND A1 AO)(OR D2 D2)(IF (NOT AOJOR AO DO)(IF Al
(AND D1(AND D3(AND DO(AND D2(NOT A0))))) D1))))

For k = 3 we have 11-multiplexer which has thrddrass inputs and eight
data inputs. For this case we have: T set: T = {AD, A2, DO, D1, ..., D7} and F
set: F = {IF, NOT, OR, AND}. Fitness function is @galent to standardized fitness
and equal 2048 minus raw function.

We use the same value of genetic operation lik&finultiplexer. In first case
we have population size 500. After 24437 sec. winkd the best solution in 346
generation (in subpopulation 4) (Figure 4.6).

150
nnnnnnnnnnn

Figure 4.6.Adjusted fitness for 11-multiplexer. Populationesi 500

Changing population size on 2000 we obtained €% solution. The
solution was find after 23894 sec. in generatiof6{subpopulation 6) (Figure 4.7).

a0
aaaaaaaaaaa

Figure 4.7.Adjusted fitness for 11-multiplexer. Populatiomesi 2000
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In 11-mulitplexer’s problem we obtainetery long S-expression and we cannot
show this solutions in our publication. For examfist solution consists of 503
nodes and tree has depth 16. Second solution Hasoties and depth 17.

5 Summary

The XCS and the GP solve the multiplexer's probleot in different
manners. Setting other parameters we may obtaiarkat worse solution in a time.
Wilson has claimed that comparison between XCS &Ml in solving the
6-multiplexer indicates that speed of a learningcpss in XCS may be even
thousand times faster [14].

The XCS evolves the population of classifiers thaltve this problem. And
the GP evolves individuals which are full solutiotts multiplexer’s problem.
Whereas, the GP needs more time to find solutioproblem and XCS is really
quickly. However, the XCS system has consideraldyentomplicated structure and
it is more difficult for implementation.
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