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Abstract: Artificial Immune Systems inspired by clonal selent principle (called clonal
selection algorithms) have already been succegsiplblied to pattern recognition tasks. In this
paper we present our implementation of one of theaied CLONCLAS, and discuss its
behavior in application to recognition of a sebofary patterns. The algorithm performs process
of learning based on a set of training data inclgddatterns which belong to ten previously
unknown classes and finally generates a groupasisiiers which are able to assign the testing
input patterns to appropriate classes. Our expetisneere performed for a set of commonly
known similarity measures of binary strings to selthe most efficient of them. We also
observed a phenomenon of transformation of memonyents in subsequent phases of iterated
process of the system learning.
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1 Introduction

Immune system of mammals includes a set of defeneehanisms, and
among them a primary and a secondary immune respomse the most
sophisticated. The primary one is responsible farognition and destruction of
intruders, i.e. pathogens recognized as dangeauthé mammal which appeared
for the first time in the organism. The recognitisrbased on a quick adaptation of
the system to a new type of patterns. In case téctlen of pathogens of the
previously unknown type, the system has to buildl wells (i.e. white blood cells
called lymphocytes) which will be able to eliminatéruders as soon as possible.
The secondary response is based on memory andly abilremember previously
recognized pathogens and this way it reacts mustierfahan the primary one. Both
mechanisms complement each other making an effi¢@oi for recognition and
elimination of the different microbes, viruses,.etc

The process of adaptation of cells of the immuwstesn to the new patterns is
called clonal selection, and it is based on thetiea of the lymphocytes which are
generated in the bone marrow (thus called B-cétishe matching pathogens [1].
The B-cell matches the pathogens with its receptalied antibodies. On the surface
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of the B-cell there are hundred thousands of susleptors. When an intruder
appears in the organism, the B-cells are activhjethe system. Those cells which
match the pathogens bind to them and eliminate tfremm the organism. The
B-cells are cloned and undergo hypermutation tateraew receptors able to match
the pathogens better and this way they exploresffece of pattern shapes. The
number of clones is directly proportional to the@® matching specificity while the
strength of mutation is inversely proportional. TBweell, which closely matches the
pathogen (which is called antigen since then bexi#us responsible for generation
of new B-cells with new antibodies, simply it istiody generating) generates large
number of clones and becomes memory B-cell evdgtulifetime of B-cells is
rather short in comparison to the lifetime of thmivner however the memory B-cells
live much longer.

In our research we used a heuristic approach basedlonal selection
principle to the pattern recognition problem. Thehtem can be stated in the
following form: “given a collection of objects belging to a predefined set of
classes and a set of measurements on these olject$fy the class of membership
of each of these objects by a suitable analysith@fmeasurements” [4]. For our
experiments we prepared a set of binary pattenidedi into ten classes. The set for
each of classes is a subset of randomly selectitelrps from a larger set delivered
by UCI Repository [5].

The clonal selection process was an inspiratiortfe CLONCLAS system
[6]. CLONCLAS originates from CLONALG (CLONal sekmn ALGorithm) [2,3].
The CLONCLAS extends features of CLONALG by takimgo account multiple
examples of a class of patterns to be learnechithgtea rule that there is only one pattern
for each of the classes. The CLONCLAS was reimpieeteand adapted by us for our
experiments. Comparisons described in [6] were rfadgassifiers built with measures
based on the Hamming distance. In our researclestedt the algorithm with Hamming
distance as well as with some other affinity meastor binary patterns. Additionally a
new transformation of binary patterns was propasbhith modified properties of the
affinity measures and significantly improved theufés.

This paper is organized as follows: in Sectionu2 algorithm is described.
Section 3 presents discussion on affinity measagsied in our research and
Section 4 shows the solved problem, i.e. input dats. Section 5 shows the
algorithm in action, i.e. we present behaviourha &lgorithm during the process of
learning and its results. Section 6 concludes #pep

2 Clonal Selection Algorithm

Our algorithm is based on the CLONCLAS howeverdlae some modification
in the schema presented in [6]. The goal is to gémea set of binary classifiers able to
recognize more than one class of input pattermait Idata consist of a set of patterns,
more precisely, binary strings of length n dividet classes. The number of classes is
not given to the system. The system iteratively ifresdand evaluates its set of classifiers
using given affinity. The classifiers which aresdoto the input patterns are evaluated as

Studia Informatica vol. 1/2(7)2006



A Look Inside The Artificial Immune Algorithm Insml... 149

better than the others. It is expected, that aetittof the process the set of classifiers
will consists of different elements and each ofhth&ill be close to its input class. This
expectation is a formal goal of the pattern rediogmisystems where a set of classifiers
called modes is searched. It is obvious that thefsdassifiers for the same set of input
data can be different for different measures afigff It was interesting to study what set
of classifiers they could generate and which daffimneasure would be the most
appropriate i.e. would give the highest accuracy.

The algorithm works with two sets of patterns:unpatterns, called antigens
(Ag) and system patterns (classifiers) called afiks (Ab). In the model it is
assumed that each B-cell is equipped with exaatly antibody. This assumption
simplifies the model, without losing its adaptatfeatures.

Ab is divided into fwq,supsets:

Ab=Ab, UAb,,, + =

where Aby, is a set of memory antibodies (i.e. memory B-geadissize m,
andAby, is a set of remaining antibodies of sizeThe main loop of the algorithm
which is executedNye, times consist of an internal loop executed folvakhntigens.

A pseudo-code of the algorithm is presented in féidul.

I nput: Ab, Ag, Nen N, d, L8
Qut put : Ab,

for t=1t 0 Ngen begin
for j=1to M begin

?J := affinity( Ab, ag ),
Ably, = select( Ab,?l, n);
C! := clone(Aby; , B, T,)§
c" = hypermut(C, T
17 =affinity(C” , ag);

)

ah” :=select(C", ? 1);

Ablyy = insert(Ably, , al’ );
Ay =replace(Aly , C , f);
Al :=generate(d, L),
Al = replace(Al, , Abg , T);

end;
end

Figure 2.1.A pseudo-code of the version of CLONCLAS algorithrplégal in experiments.

The internal loop consists of the following stepffinity method evaluates
antibodies inAb, i.e. compares them withth antigen 4g) and writes the evaluated
affinities in vectory selectmethod selects the set mfthe most fitted patterns to

the j-th antigen Ab,), clone method generates set of clon€) ©of sizen, of the
selected patters, where:

Artificial Intelligence
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N
n, :Zrounc(—ﬂimj’
i=1 .
hypermutmethod mutates clones fro@ and this way creates a set of mutated

clonesC*, affinity method evaluates mutated clones fr6t i.e. compares them
with ag and writes the evaluated affinities in vectpTT, selectmethod selects the

best mutated clonaeb” , insert method adds the best mutated clamg to the
memory @b,) if f(ah’)>f(ab,), replace method replaces patterns from the
reference sef\by, by their clones fronC* if the clone is better than its ancestor,
generatemethod randomly generates setdiew solutions Ab) and replace
method replaces the least fitted patterns fronreference sebby, by the new ones
from Ab,. Then the sequence of steps is finished and ¢hre-dbntrol returns to the
beginning of the loop. The detailed descriptiothef algorithm can be found in [2].

The affinity of the set of antibodies to tKeth class of antigens of sizeis
evaluated with the formula:

TotalAffirity (Ab, Ag*) = Zk:ZN:ah Oagf

[EE

where:
ah —i-th antibody formAb,
ag;< —j-th antigen from clasi,

and[] represents affinity measure (e.g. Hamming distamcany other).

3 Affinity Measures

In our study a set of affinity measures was takeo account [Nadler93]:
Russel and Rao,
Jaccard and Needham,
Kulzinski,
Sokal and Michener,
Rogers and Tanimoto,
. Yule,
and compared with a seventh measure which was artttandistance.
A measure is a mapping which for every two elements of the domain
returns a non-negative real valued numigey: (
P XXX - R,
The relation is called a measure if it is definathwhe following rules:
XOX(u=12..)
p&”,z”)=0 - x'=x,
ol x' )= plx . x*), (symmetry)
Al x )< ot )+ )
Some of the selected affinity measures do nosfyatie formal conditions of

the measure mentioned above. In spite of this iithén text we shall still call them
measures, even if probably the more appropriateenaould beaffinity function

oukrwnhpE
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All the measures applied in our tests are desdribelow. For the formal
description we shall use the following definitioftlee binary strings:

x,yofog",
and the following reference variables:
n 1 X =Y =1 n 1 X;=1Y,=0
a= s ’ = . b = . : - i i )
= G {O, otherwise ;E 4 { 0, otherwise
n 1, X, =0Y =1 n 1 X =Y, =0
= 4 /= ! ! d= - = i i
¢ ;y" Y { 0, otherwise ;l//. ¢ {O, otherwise

Note, that the totak+b+c+d is a constant value and equald.e. the length
of the binary string.

a) Russel and Rao: d) Sokal and Michener:
- a _a _a+d _a+d
atb+c+d n f -

“a+b+c+d n
b) Jaccard and Needham: e) Rogers and Tanimoto:

=2 a+d
arb+c “a+d+2(b+o)
¢) Kulzinski:
f) Yule:
_a
btotl ;= ad-bc
ad+bc

The last of the discussed measures was a Hamnstandedy:
N
d, = le X, 0O, ),

which could be denoted in termsafb, c, d as

d, =b+c

Properties of the selected measures were subjemtiro$pecial interest. We
especially considered the problem of equal oppdite of the binary strings
matching with these measures. For example, in chslamming distance it is clear
thatdy [0(0,..n) for every two strings of length. However it is not obvious for the
other measures. Therefore, we checked if the numbdifferent affinity values is
constant for all binary strings of the same lenfgththe six affinity measures. We
did a set of evaluation with 16-bit strings. Simplg evaluated how many different
affinity values can be obtained for each of the sneas for each of the strings
matched with all of the 16-bit strings. Thus foclkeaf the 65535 string a number of

65535 matches were performed. The results are mieskein the histograms
(Figure 3.1).

Artificial Intelligence
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Figure 3.1.Histograms of numbers of different distances féinaf measures:
a) Russel and Rao, b) Jaccard and Needham, c) KkyzidsSokal and Michener,
e) Rogers and Tanimoto, f) Yule
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In Figure 3.1 each bar in the histograms presentamaber of strings with
respective number of different matching values (thenber of different matching
values is on the X axis). For example, in the FégBul(a) it can be seen that there is
one string, where the number of different distarioes| the remaining 65535 strings
equals 1, there are 16 strings where the numbdiffefent distances equals 2, 120
strings where the number of different distancesakn@, etc. The histogram shows
that the measure does not treat the strings equhlly its properties change
respectively to the measured points.

Because of inequality in treating the strings bg flour of six selected
measures, a new transformation T operator was peapd7]. All the measures
except for Hamming were applied to the transformpaiils of binary strings. Before
the evaluation one of the patterns in the pair waslified by a transformation
operator T working as follow.

For every two patterns A, B {0, 1}";

u }A[i]=0=>((A{i]:1)D(B[i]=1-B[i]))

ic{oL...,n

The operator reduces the search space, i.e. fet af $5536 pairs of 8-bit
binary strings we obtained 256 different transfadrpairs. After transformation one
of the strings is always turned into a sequenadigifs “1”, while the other includes
information about differences between the inpungs. The operator is simple and
of low computational cost, however significantly difees properties of the measure
and improves their sensitivity.

The operator is applied just before matching. Eweatched pair of strings is
first turned into a new pair with the T operatoddhen the measure is applied to the
new pair of strings. However, the returned valuassigned to the original pair of
strings, i.e. the pair before transformation. Ftrtlae measures applied with T
transformation (except for Hamming) and for all 8%536 tested strings the number
of different distances to all the other strings was same and equal 17. Thus, it can
be said that for the measure with T transformagilbthe strings are treated equally.

When we use T transformation one of the resultsigngs is always
a sequence of digits “1”. It means tianever equals 0, so the valuesandd are equal
zero for all pairs of transformed binary stringseTefinitions of the measures changed:

a) Russel and RaoT: d) Sokal and MichenerT:
f —_a f= a
atb a+b

b) Jaccard and NeedhamT: e) Rogers and TanimotoT:

a

f= b f= a
|a' g a+2b
¢) KulzinskiT: f) YuleT: does not exist.
-_a
T b+l

Artificial Intelligence
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This way we finally obtained three affinity meassifor tests:

T1) f =2 T2);__a T3);__2 T4) Hamming distance.
atb b+1 a+2b

4 Testing Data Sets

For our experiments we selected a set of patteoms the UCI repository [5].

It was a set of letters represented by 10x12 bimaayrices. The set consisted of
1000 letters divided into 10 classes, each reptegddny 100 patterns. The set was
divided into two disjoint subsets: a training setla testing set where each of them
consisted of 50 patterns randomly selected frorh @d 0 classes. A set of patterns
from the class ‘A’ of the training set is presentedrigure 4.1.

The expected result of the algorithm is a seteof ¢lassifiers where each of
the classifiers represents one of the classesréeognizes positively” most of the
patterns from this class and “negatively” all thbevs. For a randomly generated set
of patterns the probability of proper recognitidrosld be close to 10%.
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Figure 4.1.A set of patterns from the class A (the letter A)he training set.
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5 Experiments

A subject of our interest was the process of bngdihe memory content
during the optimization process for different ainmeasures. The algorithm was
equipped with 10-cells memory buffer, each celldach of the classes of input data.
At the very beginning of each of experiments thanmey buffer was filled in with
randomly generated patterns. During subsequendatiber the content changed,
randomly generated patterns were exchanged bysogfegrerated with the algorithm.
We observed the content of the memory during afsexperiments with the selected
measures of affinity, each of the experiments wWithsame input data.

After few preliminary tests it was observed th#tthe applied measures
except for the Hamming measure converge to a stdtlef system patterns within
at most 1000 iterations. For the Hamming the systeaded more iterations — 3000
and more.

Studia Informatica vol. 1/2(7)2006



A Look Inside The Artificial Immune Algorithm Insal... 155

A sample set of system patterns stored in the mghbwffer for ten classes of
input patterns at the iterations: 1, 10, and 108@ioed during experiments with T2
measure is presented in Figure 5.1.

Figure 5.1.A set of classifiers for ten classes of input patieat the iterations: 1 (first row),
10 (second row), and 1000 (last row). The clagsifigere obtained with T2 measure

Note that at the 10-th iteration the set of paeronsisted of nine identical
patterns and one very close to them. It meansathidile beginning of the process the
algorithm tries to find just one solution which Whle common for all classes.
However, at the end of the optimization process dée consists of ten different
patterns like the ones in the last row in Figuie Bthere each of them is created for
recognizing patterns for the different class. Tésuits obtained with the remaining
affinity measures (except for the Hamming) lookenhilar, i.e. the number of
different patterns in the set was small at the tmdgg, and increased with the
progress of the process. This behaviour is predentBigure 5.2.

LR
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Figure 5.2.Number of different patterns in the memory bufféthvl2 measure applied.
X axis represents number of iteration

In case of Hamming distance the algorithm’s betavis different that for
the other measures. The algorithm needs moreidasato converge, and the number
of different patterns varies in time. The set dfteyn patterns for ten classes of input
patterns at the iterations: 1, 10, and 1000 obdthidaring experiments with
Hamming distance is presented in Figure 5.3.

Artificial Intelligence
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Figure 5.3. A set of system patterns for ten classes of inpiiepns at the iterations:
1 (first row), 10 (second row), and 1000 (last roW)e classifiers were obtained with
the Hamming distance.
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The initial set of randomly generated 10 differpatterns decreased to the
number of 4 different patterns after first tenaténs. Then the number went down
further and gained the level of one or two pattefitee number of different patterns
in the memory observed during a single run of tlee@ss is presented in Figure 5.4.

—
LLLJ% _J!
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Figure 5.4.Number of different patterns in the memory bufféthiHamming distance
applied. X axis represents number of iteration

It is definitely not a state of stagnation becatise number of different
patterns slightly varies in subsequent iteratiomsctv means that the algorithm is
still searching. On the other hand, in spite ofgbarching effort, the algorithm is not
able to find the appropriate set of patterns.

The next question was whether it is a typical beha of the algorithm with
Hamming distance or it is just a matter of the &tha’s parameters settings.
Further research showed that the algorithm was #@bleonverge however with
another set of parameters. In both cases descabeek, the algorithm converged to
a set of ten different patterns identifying classésnput data with the following
values: mutation probability =0.2%=2 andd=21. Figures presented above were
taken with different parameters: mutation probabii0.05,5=0.5 andd=2.

Another observation concerned with comparison cfasoares: T2 and
Hamming shows that the final set of patterns olethiat the end of experiments is
quite similar to each other except for the fact tihe patterns from one set are the
negative version of the others (Figure 5.5).
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Figure 5.5.A final set of patterns obtained at the end of expents for two affinity
measures: the T2 measure (first row) and the Hamuhistance (second row)

We also observed the accuracy of the classifeennkd with different affinity
measures. Detailed description of accuracy obtawdd Hamming distance is
presented in Table 5.1.

The numbers on the diagonal of the Table 5.1 sgmtecorrect recognitions
of the classifiers, while all the remaining numberscorrect ones. Looking at the
found patterns it can be seen that some of thematreery similar to the letters they
have to identify. It should be stressed that thétepas have been generated
respectively to the letters present in the inpuad&ome of them, e.g. patterns for
“C" or “D”, are easy to identify. Others, like paths for “A” or “G”, do not
resemble their letters at all. For the input datere patterns from different classes
differ from each other, the system patterns are diferent and easy to identify. In
our case, the bit map of size 10 by 12 is a vemypkd pattern and therefore the
presence of similarities between the letters iSmisrand natural.

Table 5.1.Hits of the classifiers generated with Hammingatise: rows represent different
classes of input data and columns: different cli@ssi

A C D E F G | L P R
A 21 0 2 0 6 0 9 0 11 1
C 2 25 0 1 0 22 0 0 0 0
D 0 0 38 0 3 0 0 0 9 0
E 2 3 2 20 2 0 2 14 5 0
F 2 0 0 0 26 0 0 0 22 0
G 1 22 0 1 0 26 0 0 0 0
| 10 0 0 0 0 0 40 0 0 0
L 2 0 0 2 0 0 8 38 0 0
P 0 0 2 0 0 0 3 0 45 0
R 0 0 2 0 1 0 2 1 23 21

Graphical presentation of the accuracy of thesdfi@ss learned with all the
tested measures are presented in Figure 5.6.

Artificial Intelligence
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R

Hamming distance

Figure 5.6. Accuracy of the classifiers learned with the testedsures

Below there is a comparison of hit ratios for fhmal set of system patterns

stored in memory buffer for the selected measuvetuated with the testing set of
input data (Table 5.2).

Table 5.2.Hit ratios of the system patterns generated wightéisted affinity measures

Measure | Avg.value| Bestvalug Worst valug
T1 50.44 56.8 36.4
T2 53.14 57.4 39.2
T3 46.76 55.2 30.2
Hamming 39.82 56.6 11.0

The last comparison shows distances of the clessio its classes as well as
the distances of the best pattern in the clashdaadst of patterns. In this case, the
best pattern is the pattern closest to the classifihe distance between the pattern
(or classifier) and its class is evaluated as e bf distances from the pattern to all

the patterns of this class. In Table 5.3 distafieeslamming distance are presented.
The tables for the other measures are similar.
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Table 5.3.Distances of the classifiers and selected patterns
to their classes for Hamming distance

Class A C D E F G | L P R
classif. 1000| 662 649 81( 570 876 801 P2 352 637
b. patt. 1280 718] 713 910 668 1006 1003 2 374 67

=
N

For every classifier the distance to its clasdaser or at least the same as for
the best pattern of the class. For the letter & tlistances are equal which means
that the classifier is identical to the best pattddowever, for most cases the
distance of the classifier is about 20% better tendistance from the best pattern
which is a quite significant difference. It canalse seen that the distances are not
the same i.e. the highest distance is for therl&&ewhile the lowest is for the letter
“L". This difference shows that the classes ofdettare not equal to each other,
simply some of them can be easier to recognizetti@aothers.

6 Conclusions

The best results were obtained for the T2 affimitgasure, while the worst
ones — for the Hamming distance. This confirms pravious observations about
difficulties with convergence of the algorithm whigie Hamming distance is applied
as the affinity measure. The hit ratio for the Hamgrdistance is significantly worse
than the ratios of the other measures (with T faangation included). The results
are not too impressive: a level of more than 50%asfect recognitions is of course
a better result than the statistical level of 1086case of randomly generated
patterns. The reason for this could be found in ghaperties of the input data,
especially in the similarity of some of the classdspatterns to each other and
therefore difficult to discriminate between clas¢eg. ‘F’ and ‘P’, or ‘G’ and ‘C’).
On the other side, the results showed that thiécgatiimmune system is able to cope
even with difficult input data, and that the deaisiof selection of appropriate
affinity measure is very significant for the qugliif the results.
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