STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

On Undecidability of Non-monotonic Logic

Marek A. Suchenek®
! Department of Computer Science, California Statevémsity Dominguez Hills
1000 East Victoria Street, Carson, California, 9Q74.S.A.

Abstract. The degree of undecidability of nonmonotonic loggcinvestigated. A proof is
provided that arithmetical but not recursively emuable sets of sentences definable by
nonmonotonic default logic are elementsiaf; but notZ, nor M, for somen = 1 in Kleene-
Mostowski hierarchy of arithmetical sets.
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1 Introduction

While first-order logic is often thought of as therrect” (whatever it means)
logic for classical mathematics, nhonmonotonic logeems to have gained more
acceptance in Artificial Intelligence. First-ordearovability relation is semi-
decidable but, in general, undecidable, that isepkfor monadic languages, it is in
class>; \ A;. It turns out that similar relation in nonmonototogic that, in addition
of deriving consequences of asserted axioms, ie @blderive conclusions from
a non-provability of certain sentences is more aitlddle than the first-order logic is.

For instance, the monadic case of logic of miniewathilment (think of it as
a O-fragment of monadic first-order logic with semastirestricted to models that
are relation-minimal) has a nonmonotonic consegae®tation that is not even
semi-decidable, or, more specifically, it is insdadl, \ X; (see [3] page 382 for
a proof). Its prioritized (and more adequate forafaplications) variant is even more
undecidable; its relation of satisfaction in atinmodel, clearly a decidable (@,
that is) kind of relation for any first-order logimay fall into clas$1, \ 2, (see [4]
page 277 for a proof).

In this paper, we will prove that arithmetical noa- sets (not i, that is) of
sentences definable by nonmonotonic default loggcedements of\,.; but notZ,
nor M, for somen = 1.
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2 TheKleene- Mostowski hierarchy

We will follow notation from [1] and [2].
The Kleene-Mostowski hierarchy of arithmetical dstdefined as usual:

Definition 2.1

>, =My = {all recursive relations}.

>.+1 = {all projections of elements &t,}.

My = {all complements of elements Bf,}.

Fina”y, An+1 = Zn+1 n |_|n+1. O

In particular,A; is the set of all recursive relations (sometineferred to as
decidable relations); is the set of all r.e. relations (sometimes ref@ro as semi-
recursive relations), and, is the set of all co-r.e. relations (sometimeenrefd to as
co-semirecursive relations).

Definition 2.2
A k-ary relationX is anupper limitof ak+1-ary relatiorR (notation:
X = lim n o R(N)) if, and only if,x 0 X = (Ch O w)(COm= n) x 0 R(m).
A k-ary relation X is a total limit of a k+1l-ary relationR (notation:
X = lim ,_, . R(n)) if, and only if, bothX = lim ,_,., R(n) and X = lim ,_ . R(n).

A relation X is asymptotically decidable if, and only K, is a total limit of
some recursive relation.

Any such a recursive relation is called an asynptobmputation ofX.
[m]

Theorem 2.3 (due to Shoenfield and Kleene)

The following are equivalent:
1. Xis asymptotically decidable
2. X<pK (thatis,Xis Turing-reducible to the halting 96t= {e | ¢.(€)!})
3. XOA, o

Example 2.4

K K is asymptotically decidable but not r.e. nor @-(that is, K > K 00\

(Z1 O My)), where 20 (A < B) if, and only if, xdO Aand X + 10 (A < B) if, and
only if, x 0 B. a
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Fact 2.5
A, is closed under set-theoretic operations. o

3 Nonmonotonic L ogics

In this section we will focus on the undecidabilidf nonmonotonic logics
that are based on the concept of default, the Bedadefault logics whose relations
of consequence may fall outsidel®f O >; even in the purely propositional case. In
what follows, we will use some standard terminol@md definitions from default
logic, a brief account of which can be found in [5]

Let T be a (recursive) set of first-order sentences,- the first-order
provability relation, andCn(T) - the set of first-order consequenced of

3.1 Nonmonotonic rules of inference

The rules of nonmonotonic inference allow for dewy conclusion from non-
provability of some sentences. They, typically, davform of:

THO | ..

T

The intentional meaning of the above rule igh i§ not provable fronT and ... then
infer Y. While the seCn(T) of first-order consequences ofis r.e. inT, the set of
first-order nonmonotonic consequencestaé usually not, for a similar reason the
set K< K K is notr.e.; it may need an oracle f@n(T) .

In the case of default logics, the nonmonotonicseguence operation is
usually defined in terms of fixed-points of a comtbus consequence operator.

Let D be a (recursive) set of the following nonmonotomiles of inference,
referred to aslefaults

O 10| ... [ Oy

X
Let the consequence operatbs(T, E) of T under the first-order consequences and
rules fromD relative toE be defined by:

THO [, OE]| ...|U,OE

X O ®p(T, E)

Artificial Intelligence
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Definition 3.1.1
The nonmonotonic closure dfrelative todp is a seE that
1. containsT
2. s closed under first-order (propositional, modat.) consequence
3. is a solution of the equation
®p(T,E) =E.

Fact 3.1.2
Operatordy(T, E) is:
1. monotone w.r.tT (that is, forT O T', ®p(T, E) O Op(T', E))

2. non-monotone w.r.E (but monotone w.r.tE)
3. continuous w.r.t. both arguments(because all defaules of inference are
finitary). o

Since one can express completeness using a rezgedivf defaults, despite its
seemingly simplicity the degree of undecidabilitfy monmonotonic logic with
a recursive set of axioms may be enormously high.

Example 3.1.3
Let D consist of all rules of the form

true | O

W

wherey is a first-order sentence.Hfis a consistent solution of the equation
Pp(PAE)=E

(where PA is the set of axioms of Peano Arithmetic) tHens not arithmetical
(a classic result due to Godel). a

Theorem 3.1.4

For any recursivd, recursive set of default3, and every nonmonotonic closuge
of T relative toD, if E is arithmetical and not iB; then

EOA 1\ (&, O M) for somen= 1.

Proof is based on an observation that since all operatimvolved in the
definition of ® can be reduced to intersections of E with r.es, g8 setE defined
by the above fixed-point equation, unless a membierz;, cannot be more
undecidable thark .

Indeed, leE be arithmetical. Len be the smallest number such tRdi ¥, O
M,. We have:
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X O ®p(T, E) if, and only if, Opy... 0, [B;...0, b <Yy,.. P> O E and
<0,,...8y> is a proof ofp from T and

¢ [OWr]...| O,
—0bD

X

if, and only if,(x Oy x 0 Cn(T) and y[I E' & f(x,y, x) O D,
wheref is a recursive function. Hence, by the recursivmerability of Cn(T) and
the recursiveness @, ®p(T, E), and, thereforek;, is the intersection of an r.e. set

with E " and with a recursive set.
AssumeE O X, \ M, wheren = 2, that is,E O N, \ Z,. Now, sinceE and

E " have the same degree of undecidability, it folldiat E is the intersection of
all,\ X -set with a>;-set, which is if1, - a contradiction.

AssumeE O M, BecauseE O %, any projection of E is in Z, So,
E=®y(T,E) 00X, HenceEO 2, n M, = A,. m

Note. If, for instanceD is empty then its nonmonotonic closlEecoincides
with Cn(T), which for some recursivEis in2;\ Iy (r.e. but non-recursive, that is).

3.2 Asymptotic computation of E

Let E O A, that is, letE = lim , _, ,, f(n) for some recursive relatioh By the
continuousness of the operat®p, Pp(T, E) = lim , ., ., ®p(T, f(n)). Therefore,
Op(T, f(n)) is an asymptotic computation Bfas well.

Example 3.2.1: Autoepistemic Logic

Autoepistemic logic allows for a modal operator(which is not related to the
operator® used in the definition of defaults in this papiegtead of quantifiers. Its
nonmonotonic rules of inference are:

true | oY
—|\:\—|LIJ

wherey is a first-order sentence. The operatois also closed under consequences
of modal logicS5, in particular, closed under the monotonic rule

¢

=0
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If follows that foro-free recursive seft, the nonmonotonic closure ®frelative the
above is im\; (in A, if Cn(T) is recursive). More specifically, it is recursive

Cn(T) > Cn(T). Therefore, any asymptotic computation f(n) GH(T) <

Cn(T) yields, by the continuousness of the operatpran asymptotic computation

Op(T, f(n)) of the closure.

However, if T contains sentences with occurrencesoofhen the above
closure may or may not be . Of course, if it is not i\, then, by the Theorem
3.1.4, ifitis arithmetical then it is iy, ; \ (Z, 0 M,) for somen= 2. o
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