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Abstract. The paper presents the results of comparison of three metaheuristics that currently 
exist in the problem of function optimization. The first algorithm is Particle Swarm Optimization 
(PSO) - the algorithm has recently emerged. The next one is based on a paradigm of Artificial 
Immune System (AIS). Both algorithms are compared with Genetic Algorithm (GA). The 
algorithms are applied to optimize a set of functions well known in the area of evolutionary 
computation. Experimental results show that it is difficult to unambiguously select one best 
algorithm which outperforms other tested metaheuristics. 
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1 Introduction 

There is a wide range of problems, which can be reduced to solving the 
problem of multivariable function.  Usually, solving this category of problems boils 
down to finding the optimum of a given function. Unfortunately, finding the 
optimum, especially in case of non-linear functions, may be very computationally 
complex, and in some cases it may sometimes be impossible to find it in an 
analytical way or when determinist methods are not known. In such case, various 
heuristics may be useful, which, however, do not always guarantee that the optimal 
solution be found. Nevertheless, they can find a solution close to the best one within 
a reasonably short period of time.  
 In the article we shall examine new algorithms: Particle Swarm Optimization 
(PSO) and Artificial Immune Systems (AIS) as an alternative to the classical Genetic 
Algorithm (GA).  
 An inspiration to invent a PSO metaheuristic was the ability of living 
creatures such as birds or fish to travel in groups (flocks of birds and schools of fish) 
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in harmony. Terminology concerning the “swarm” was proposed by Millonas [7] in 
his book, which describes the modelling of artificial life. Optimization of PSO 
comprises very simple notions and paradigms, which can easily be coded and 
simulated using a computer. The algorithm demands that basic mathematical 
operators be used and is not computationally expensive as regards memory usage 
and speed. Hence, PS is becoming increasingly popular, and numerous 
implementations, applications and modifications appear [3][12][13][14]. AIS, in 
turn, is built basing on rules governing the functioning of immune system of 
vertebrates. Mechanisms governing immune systems are used to build AIS, 
dedicated to data analysis, optimization, as well as the construction of anomaly 
detecting systems [15][16]. Recently, they have also become popular as regards 
numerous implementations, improvements and applications. In turn, GA is based on 
analogy with the evolution process found in nature, and is becoming increasingly 
popular and successful [2]. 
 The aim of the current study is thus not to check if one algorithm is in general 
,,better” than another one, but to analyze the behaviour of three different algorithms 
on a given set of optimization functions with a great number of variables, which are 
extremely difficult to solve, and to provide new insights on using these algorithms 
for the proposed objective functions. 
 We shall try to compare all the heuristics in the common testing environment 
of well-known functions, which constitute an experimental firing ground for many 
optimization methods. 
 The paper is organized in the following way. Next section presents PSO 
algorithm. Section 3 describes AIS and section 4 outlines GA. Section 5 presents  
a set of test functions and section 6 shows results of experiment study. Last section 
contains conclusion. 
 
2 Particle Swarm Optimization 
 
2.1 Description of functioning PSO 

Initial position of individuals is chosen at random from the solutions. Next,  
a single particle may move in the direction described by the equation: 
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where vt – speed of a molecule at time t; xt – position of a molecule at time t; yt – the 
best position found so far by a molecule for time t; y*t  – the best position fund so far 
by the neighbours for time t; c1, c2, c3 – weight coefficients defining the influence of 
each of the three elements of the compromise, which respectively define how much  
a molecule trusts: c1 – itself at time, c2 – its own experience, c3 – its neighbours and 
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their experience; [k]  –  k-th vector coordinates x, v and y of the length equal to the 
number of dimensions of the space of solutions.  
 Coefficients c1, c2, c3 are multiplied by random values r1, r2 and r3, which 
belong to <0,1> range and are defined for every generation.  
 The second line of the equation (1) means that the speed v is represented by 
the number defining the distance a molecule can travel in a time t=1 so we can add 
up the values of variables x and v assuming that their units are identical. 
 The value of the vector of speed is changeable, which prevents the travelling 
of an individual through a space of solutions, along the straight line. The change in 
the vector’s value is calculated in the following way: 
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where: vi – vector of speed of an individual in an iteration i; pi – the best position of  
a given individual (pbesti – value for the position pi); pg – position of the best 
individual in the whole population (gbest – its value). Moreover, parameters ρ1 and 
ρ2 may influence the vector of speed of a molecule. First of them influences  pi value, 
the second on pg. A change in these parameters changes the force of influence of the 
best values found so far on molecules. The direction of movement is influenced by 
the best position of a given individual (pi) and position of the best individual in the 
whole population (pg). 
 The speed of a molecule should be great enough to make it possible for  
a molecule to leave a local minimum and, at the same time, small enough to provide 
a division into search areas. It is recommended that the value be chosen in 
accordance to the problem in question [8]. It is done by introducing an additional 
parameter called inertia weight: 
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where к – coefficient, к є (0,1>; ρ – coefficient, which is the sum of ρ1 and ρ2. 
 A similar solution was proposed in paper [5], where the authors worked out  
a new method using Random Number Inertia Weight. Alternative methods of setting 
inertia weight by using a fuzzy variable [13][14], which give better results, are proposed. 
 
2.2 Particle Swarm Optimization – pseudocode 

Individual: x={x1, x2, ..., xN} (structure representing a solution) 
Population: S 
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Optimization criterion: function f(x) 
Initialize S 
DO 
 FOR every individual 
  Count the value of function 
  IF (f(xi)<pbesti) THEN pi=xi 
  IF (f(xi)<gbest) THEN pg=xi 

 
 END 
FOR every individual 
 Count the value of vector of speed 
 Count the position of particle 
END 
WHILE the maximum number of iteration or the smallest error it does not it be 

becomes reach 
Problem_solution = the best individual from S 
 
3 Artificial Immune System 

3.1 Description of functioning AIS 

The idea of the algorithm presented in this paper was originally proposed by 
L.N. de Castro and F. J. Von Zuben’a [4] who called it CLONALG. To use the 
algorithm, it was necessary to assume that it does not refer to a predetermined, public 
set of antigens because the set of antigens is constituted by unknown maxima of 
function f(x). As affinity of antibody p and antigen we shall take the value of 
function f(p). In the algorithm, an antibody is a vector of floating point numbers. 
 In each iteration of the algorithm, the function of adjustment is counted for 
every antibody. Next, n best antibodies are chosen from  population Ab to a new 
population of antibodies – Abn. Moreover, in each iteration of the algorithm, in the 
new population Abn the following operations are carried out sequentially for every 
antibody: 
 
Cloning: 
 The number of clones depends on the degree of adjustment, the higher the 
degree of adjustment (the value of function f) the larger the number of clones. The 
total number of clones is generated for all these n antibodies according to the 
following formula: 
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where: β – multiplying factor of the clones’ number, n – total number of individuals 
chosen for cloning, N – size of population. 
 E. g. for N=100 and β=1, the highest affinity (i=1) will produce 100 clones, 
while the second highest (i=2) affinity produces 50 clones, etc. 
 
Hipermutation: 
 For vector x=[x1,x2,...,xi]  output vector z=[z1,z2,...,zi]  is calculated from: 
 
zi=xi ± ∆x=X*α*Rand<0-1>,      (5) 
 
where: X – the absolute value from the range of the function in question;  
α – parameter defining the degree of mutation calculated from: 
 
α=exp(-ρ*D) ,        (6) 
 
where: ρ – mutation coefficient; D – fitness coefficient equal 1 –n/N; n – position of 
an antibody in a vector of solutions of the length N sorted according to affinity. 
 
Then from population Abn a few best individuals are chosen and they replace 
individuals with low adjustment in population Ab. 
 Finally, the result is the best antibody from population Ab. 
 
3.2 Artifical Immune System – pseudocode 

Antibody: x={x1, x2, ..., xN} (structure representing a solution) 
Initialize population Ab() (at random the N of antibodies); 
DO 
 FOR every antibody Ab 
  Count the function of adjustment; 
 END 
 Sort population Ab according to adjustment; 
 Choose n (n<N) the best antibodies from population Ab to a new population Abn. 
 FOR every antibody Abn 
  Cloning; 
  Hipermutation; 
  Count the function of adjustment; 
 END 
 Sort population Abn according to adjustment; 

 Choose the N-n new individuals from Abn and replace individuals with low 
adjustment in population Ab by them; 

WHILE the maximum number of iterations or the smallest error is not reached. 
Problem_solution = the best antibody from Ab. 
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4 Classical Genetic Algorithm 
 

4.1 Description of functioning GA 

In the algorithm we have an initial population P() consisting of properly chosen 
chromosomes, which are assessed by a known function of objective. In each iteration 
of the algorithm, called a generation, the algorithm sequentially performs three basic 
genetic operations: 

• Selection – selection of the fittest individual from a present population (the 
value of the function), there are three methods of selection: 

o roulette wheel selection, 
o tournament selection, 
o ranking selection, 

• Crossover (one point crossover) – exchange of genetic material between 
pairs of individuals coupled/matched during selection. A crossover point on 
the parent organism string is selected. All data beyond that point in the 
organism string is swapped between the two parent organisms. 

• Mutation – the change of value of a gene chosen at random in  
a chromosome. 

Next, new individuals are assessed – calculating the value of the function of 
objective. Evolutionary process lasts until the solution of the problem is reached at  
a satisfying level. Then, the best individual out of a given population P(t) is the 
result. 
 
4.2 Classical Genetic Algorithm – pseudocode 

Chromosome: x={x1, x2, ..., xN} (structure representing a solution) 
Population: P() 
Optimization criterion: function f(x) 
t = 0 
Initialize P(t) 
Evaluate P(t) 
WHILE termination condition NOT TRUE 
  t = t + 1 
  Select P(t) from P(t – 1) 
  Crossover in P(t) 
  Mutate in P(t) 
  Evaluate P(t) 
DO 
Problem_solution = the best chromosome from P(t) 
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5 Test function 

Five test functions were used to carry out the experiments. The functions to be 
minimized are presented below: 
 
5.1 Sphere model 

A continuous, convex, unimodal function 
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Figure 5.1. Sphere model 

 
 
     Griewank’s function 

A continuous, multimodal function 
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Figure 5.2. Griewank’s function 

 
     Rastrigin’s function 

A continuous, multimodal function 
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Figure 5.3. Rastrigin’s function 
 
     Rosenbrock’s function 

A continuous, unimodal function 
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Figure 5.4. Rosenbrock’s function 
 
     Schwefel’s function 

A continuous, unimodal function 
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Figure 5.5. Minimization of Schwefel’s function 
 
6 Experimental study 

The algorithms discussed (PSO, AIS and GA) were tested using functions 
presented in Chapter 5. In the experiments, which were carried out, the precision of 
results was lower than 10-6. Experiments were carried out for the following number 
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of variables n=5, 10, 20, 30 but the results were presented only for n=30. All the 
algorithms were run for 200 generations. 
 The experiments, which were not presented in this paper, aimed at setting 
parameters of the algorithms. Parameters (proper for each algorithm), which were 
set, are: size of population, total number of antibodies chosen for cloning, 
multiplying factor, degree of mutation, selection methods, probability of crossover, 
coefficients of molecule speed change. Each algorithm was run many times for 
different values of the parameters mentioned above, and the number of variables of 
optimized function was increased from n=5 to n=30. When regulating parameters, 
the computational cost of the algorithm was taken into consideration. The best 
results were memorized. On this basis, the mean value of the parameters, which gave 
the best results for a given function, was calculated. For the sake of the presentation, 
each experiment was repeated 25 times, with parameter values predefined, and the 
best result was presented for each generation. 
 For every algorithm the optimum values of parameters were well-chosen for 
every function separately. 
 For algorithm PSO the values of ρ1 and ρ2 were near or equal to 2 and the size 
of the population was about 50 individuals (only for Rastrigin’s function the 
population consisted of 100 individuals). 
 For AIS algorithm the total size of population for the all the functions tested 
consisted of 100 individuals. The number of antibodies chosen for cloning was equal 
100, only for Schwefel’s function the value was equal 70. The multiplying factor β 
for Rastrigin’s function was equal 10, for sphere model and Griewank’s function 
β=9, for Schwefel’s function β =7 and for Rosenbrock’s function β=6. 
 For GA the values of parameters were characterized by the greatest variety. 
The size of population ranged from 40 individuals for Griewank’s function to 90 for 
Rastring’s function. For Griewank’s, Rastring’s and Rosenbrock’s function, ranking 
method of selection proved to be the best one. Mutation coefficient was smaller than 
0,01. As for crossover coefficient, it did not exceed 0,8 (it was high – 0,95 only for 
Rosenbrock’s function). 
 Figures 6.1-6.5  show mean results of experiments. 
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Figure 6.1. Minimization of Sphere model 
 

 
 

Figure 6.2. Minimization of Griewank’s function 
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Figure 6.3. Minimization of Rastrigin’s function 
 
 
 
 

 

 
 

Figure 6.4. Minimization of Rosenbrock’s function 
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Figure 6.5. Minimization of Schwefel’s function 
  

It can easily be noticed that better results were obtained for PS than for AIS 
as far as regards finding the minimum for test functions. AIS only for one function 
(Griewank’s function) showed worse than PS. In addition, it is worth noticing that 
AIS took about 130 times longer to execute than that of PS, which results from 
computational complexity of the compared algorithms. AIS algorithm performs 
multiple loops over the whole population of antibodies (Ab i Abn), and at the same 
time, it carries out costly operations of reproduction (cloning, hipermutation) and 
sorting. It is also worth noting that PS is the fastest heuristic, because it comprises 
very simple notions and mathematic paradigms. GA is also a fast algorithm.  
 Moreover, it is worth noticing, that finding an optimum of a function in PS 
algorithm after not more than 30-50 generations decreases rapidly and stays on  
a certain level of values of the functions tested and further populations do not bring  
a noticeable improvement of the result. AIS behaves similarly, the algorithm  
 stabilizes after about 10-30 generations. GA behaves in a different way. As the 
number of generations increases, they gradually and linearly approach the optimum 
of the functions tested. The behaviour of heuristics does not depend on the type of  
the function (unimodal or multimodal function). 
 Chosen as a model GA, which proved the best using sphere model and 
Schwefel’s function, turned out to be the least efficient search method of finding 
minima of the three remaining test functions. Next generations (more than 200) will 
probably give better results. 
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7 Discussion and Conclusion 

 The particle swarm algorithm is usually discussed together with evolutionary 
strategies. However, there are numerous differences between them. Evolution results 
in the improvement of the objective function by means of selection. In this way, only 
the fittest individuals survive, and the weakest are eliminated. In particle swarms, all 
individuals survive, and the improvement is achieved by means of social 
interactions. In this way, individuals learn from one another. 
 Experiments carried out in the same testing environment proved that PS and 
GA are better than AIS in finding the minimum of multivariable function. 
Experiments showed, that for two functions (Rastrigin’s and Rosenbrock’s function) 
the best algorithm is PSO, for sphere model and Schwefel’s function the best 
heuristics is GA, for Griewank’s function the best algorithm is AIS. It is also worth 
noting that PS is the fastest heuristic among those presented in the paper. It results 
from the fact that no genetic operators are used in this method and the whole 
population is used in the next generation. However, this comparison is not purely 
linear because we do not take into consideration an important parameter – time of 
execution of one generation of the algorithm. In order to define linear effectiveness 
of optimization methods compared in this paper, experiments assessing time of 
execution of the algorithms should be carried out. Furthermore, it is possible to find 
the best available modifications improving the efficiency of the algorithms 
discussed, and carry out experiments again in order to establish the best method of 
optimization of the functions, e.g. introducing new crossover operator in algorithm 
AIS [9], modifications in PSO – alternative methods of setting inertia weight by 
using a fuzzy variable [13][14] or for GA – coevelutionary algorithms LCGA 
(Loosely Coupled Genetic Algorithm) [1][11], CCGA (Cooperative Coevolutionary 
Genetic Algorithm) [9][11]. 
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