
STUDIA INFORMATICA
Nr 1/2(7) Systemy i technologie informacyjne 2006

Function optimization using metaheuristics

Marek Pilski 1, Franciszek Seredyński1,2,3

1 Institute of Computer Sciences, University of Podlasie,
Sienkiewicza 51, 08-110 Siedlce, Poland

2 Polish-Japanese Institute of Information Technology,
Koszykowa 86, 02-008 Warsaw, Poland

3 Institute of Computer Science, Polish Academy of Sciences,
Ordona 21, 01-237 Warsaw, Poland

Abstract. The paper presents the results of comparison of three metaheuristics that currently
exist in the problem of function optimization. The first algorithm is Particle Swarm Optimization
(PSO) - the algorithm has recently emerged. The next one is based on a paradigm of Artificial
Immune System (AIS). Both algorithms are compared with Genetic Algorithm (GA). The
algorithms are applied to optimize a set of functions well known in the area of evolutionary
computation. Experimental results show that it is difficult to unambiguously select one best
algorithm which outperforms other tested metaheuristics.

Keywords. Particle Swarm Optimization, Artificial Immune System, Genetic Algorithm,
function optimization.

1 Introduction

There is a wide range of problems, which can be reduced to solving the
problem of multivariable function. Usually, solving this category of problems boils
down to finding the optimum of a given function. Unfortunately, finding the
optimum, especially in case of non-linear functions, may be very computationally
complex, and in some cases it may sometimes be impossible to find it in an
analytical way or when determinist methods are not known. In such case, various
heuristics may be useful, which, however, do not always guarantee that the optimal
solution be found. Nevertheless, they can find a solution close to the best one within
a reasonably short period of time.
 In the article we shall examine new algorithms: Particle Swarm Optimization
(PSO) and Artificial Immune Systems (AIS) as an alternative to the classical Genetic
Algorithm (GA).
 An inspiration to invent a PSO metaheuristic was the ability of living
creatures such as birds or fish to travel in groups (flocks of birds and schools of fish)

78 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

in harmony. Terminology concerning the “swarm” was proposed by Millonas [7] in
his book, which describes the modelling of artificial life. Optimization of PSO
comprises very simple notions and paradigms, which can easily be coded and
simulated using a computer. The algorithm demands that basic mathematical
operators be used and is not computationally expensive as regards memory usage
and speed. Hence, PS is becoming increasingly popular, and numerous
implementations, applications and modifications appear [3][12][13][14]. AIS, in
turn, is built basing on rules governing the functioning of immune system of
vertebrates. Mechanisms governing immune systems are used to build AIS,
dedicated to data analysis, optimization, as well as the construction of anomaly
detecting systems [15][16]. Recently, they have also become popular as regards
numerous implementations, improvements and applications. In turn, GA is based on
analogy with the evolution process found in nature, and is becoming increasingly
popular and successful [2].
 The aim of the current study is thus not to check if one algorithm is in general
,,better” than another one, but to analyze the behaviour of three different algorithms
on a given set of optimization functions with a great number of variables, which are
extremely difficult to solve, and to provide new insights on using these algorithms
for the proposed objective functions.
 We shall try to compare all the heuristics in the common testing environment
of well-known functions, which constitute an experimental firing ground for many
optimization methods.
 The paper is organized in the following way. Next section presents PSO
algorithm. Section 3 describes AIS and section 4 outlines GA. Section 5 presents
a set of test functions and section 6 shows results of experiment study. Last section
contains conclusion.

2 Particle Swarm Optimization

2.1 Description of functioning PSO

Initial position of individuals is chosen at random from the solutions. Next,
a single particle may move in the direction described by the equation:







+=

−+−+=
++

+

][][][

])[][(])[][(][][
11

*
332211

1

kvkxkx

kxkyrckxkyrckvrckv
ttt

tttttt

, (1)

where vt – speed of a molecule at time t; xt – position of a molecule at time t; yt – the
best position found so far by a molecule for time t; y*t – the best position fund so far
by the neighbours for time t; c1, c2, c3 – weight coefficients defining the influence of
each of the three elements of the compromise, which respectively define how much
a molecule trusts: c1 – itself at time, c2 – its own experience, c3 – its neighbours and

 Functrion optimization using metaheuristics 79

Artificial Intelligence

their experience; [k] – k-th vector coordinates x, v and y of the length equal to the
number of dimensions of the space of solutions.
 Coefficients c1, c2, c3 are multiplied by random values r1, r2 and r3, which
belong to <0,1> range and are defined for every generation.
 The second line of the equation (1) means that the speed v is represented by
the number defining the distance a molecule can travel in a time t=1 so we can add
up the values of variables x and v assuming that their units are identical.
 The value of the vector of speed is changeable, which prevents the travelling
of an individual through a space of solutions, along the straight line. The change in
the vector’s value is calculated in the following way:

)))1(())1(()1(()(21 −−+−−+−= txptxptvtv igiiii ρρχ , (2)

where: vi – vector of speed of an individual in an iteration i; pi – the best position of
a given individual (pbesti – value for the position pi); pg – position of the best
individual in the whole population (gbest – its value). Moreover, parameters ρ1 and
ρ2 may influence the vector of speed of a molecule. First of them influences pi value,
the second on pg. A change in these parameters changes the force of influence of the
best values found so far on molecules. The direction of movement is influenced by
the best position of a given individual (pi) and position of the best individual in the
whole population (pg).
 The speed of a molecule should be great enough to make it possible for
a molecule to leave a local minimum and, at the same time, small enough to provide
a division into search areas. It is recommended that the value be chosen in
accordance to the problem in question [8]. It is done by introducing an additional
parameter called inertia weight:

()














 −−−
=

2

4
2

1 2 ρρρ
κχ
abs

abs

, (3)

where к – coefficient, к є (0,1>; ρ – coefficient, which is the sum of ρ1 and ρ2.
 A similar solution was proposed in paper [5], where the authors worked out
a new method using Random Number Inertia Weight. Alternative methods of setting
inertia weight by using a fuzzy variable [13][14], which give better results, are proposed.

2.2 Particle Swarm Optimization – pseudocode

Individual: x={x1, x2, ..., xN} (structure representing a solution)
Population: S

80 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

Optimization criterion: function f(x)
Initialize S
DO
 FOR every individual
 Count the value of function
 IF (f(xi)<pbesti) THEN pi=xi
 IF (f(xi)<gbest) THEN pg=xi

 END
FOR every individual
 Count the value of vector of speed
 Count the position of particle
END
WHILE the maximum number of iteration or the smallest error it does not it be

becomes reach
Problem_solution = the best individual from S

3 Artificial Immune System

3.1 Description of functioning AIS

The idea of the algorithm presented in this paper was originally proposed by
L.N. de Castro and F. J. Von Zuben’a [4] who called it CLONALG. To use the
algorithm, it was necessary to assume that it does not refer to a predetermined, public
set of antigens because the set of antigens is constituted by unknown maxima of
function f(x). As affinity of antibody p and antigen we shall take the value of
function f(p). In the algorithm, an antibody is a vector of floating point numbers.
 In each iteration of the algorithm, the function of adjustment is counted for
every antibody. Next, n best antibodies are chosen from population Ab to a new
population of antibodies – Abn. Moreover, in each iteration of the algorithm, in the
new population Abn the following operations are carried out sequentially for every
antibody:

Cloning:
 The number of clones depends on the degree of adjustment, the higher the
degree of adjustment (the value of function f) the larger the number of clones. The
total number of clones is generated for all these n antibodies according to the
following formula:

∑
=








 ⋅=
n

i

c
i

N
roundN

1

β , (4)

 Functrion optimization using metaheuristics 81

Artificial Intelligence

where: β – multiplying factor of the clones’ number, n – total number of individuals
chosen for cloning, N – size of population.
 E. g. for N=100 and β=1, the highest affinity (i=1) will produce 100 clones,
while the second highest (i=2) affinity produces 50 clones, etc.

Hipermutation:
 For vector x=[x1,x2,...,xi] output vector z=[z1,z2,...,zi] is calculated from:

zi=xi ± ∆x=X*α*Rand<0-1>, (5)

where: X – the absolute value from the range of the function in question;
α – parameter defining the degree of mutation calculated from:

α=exp(-ρ*D) , (6)

where: ρ – mutation coefficient; D – fitness coefficient equal 1 –n/N; n – position of
an antibody in a vector of solutions of the length N sorted according to affinity.

Then from population Abn a few best individuals are chosen and they replace
individuals with low adjustment in population Ab.
 Finally, the result is the best antibody from population Ab.

3.2 Artifical Immune System – pseudocode

Antibody: x={x1, x2, ..., xN} (structure representing a solution)
Initialize population Ab() (at random the N of antibodies);
DO
 FOR every antibody Ab
 Count the function of adjustment;
 END
 Sort population Ab according to adjustment;
 Choose n (n<N) the best antibodies from population Ab to a new population Abn.
 FOR every antibody Abn
 Cloning;
 Hipermutation;
 Count the function of adjustment;
 END
 Sort population Abn according to adjustment;

 Choose the N-n new individuals from Abn and replace individuals with low
adjustment in population Ab by them;

WHILE the maximum number of iterations or the smallest error is not reached.
Problem_solution = the best antibody from Ab.

82 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

4 Classical Genetic Algorithm

4.1 Description of functioning GA

In the algorithm we have an initial population P() consisting of properly chosen
chromosomes, which are assessed by a known function of objective. In each iteration
of the algorithm, called a generation, the algorithm sequentially performs three basic
genetic operations:

• Selection – selection of the fittest individual from a present population (the
value of the function), there are three methods of selection:

o roulette wheel selection,
o tournament selection,
o ranking selection,

• Crossover (one point crossover) – exchange of genetic material between
pairs of individuals coupled/matched during selection. A crossover point on
the parent organism string is selected. All data beyond that point in the
organism string is swapped between the two parent organisms.

• Mutation – the change of value of a gene chosen at random in
a chromosome.

Next, new individuals are assessed – calculating the value of the function of
objective. Evolutionary process lasts until the solution of the problem is reached at
a satisfying level. Then, the best individual out of a given population P(t) is the
result.

4.2 Classical Genetic Algorithm – pseudocode

Chromosome: x={x1, x2, ..., xN} (structure representing a solution)
Population: P()
Optimization criterion: function f(x)
t = 0
Initialize P(t)
Evaluate P(t)
WHILE termination condition NOT TRUE
 t = t + 1
 Select P(t) from P(t – 1)
 Crossover in P(t)
 Mutate in P(t)
 Evaluate P(t)
DO
Problem_solution = the best chromosome from P(t)

 Functrion optimization using metaheuristics 83

Artificial Intelligence

5 Test function

Five test functions were used to carry out the experiments. The functions to be
minimized are presented below:

5.1 Sphere model

A continuous, convex, unimodal function

∑
=

=
n

i
ixxf

1

2
1 ;)(,nRx∈ (7)

minimum x*=(0, 0, ..., 0), f1(x*)=0

Figure 5.1. Sphere model

 Griewank’s function

A continuous, multimodal function

∑ ∏
= =

+






−=
n

i

n

i

i
i

i

x
xxf

1 1

2
2 ;1cos

4000

1
)(,nRx∈ (8)

minimum x*=(0, 0, ..., 0), f2(x*)=0

84 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

Figure 5.2. Griewank’s function

 Rastrigin’s function

A continuous, multimodal function

()∑
−

+⋅−=
n

i
ii xxxf

1

2
3 ;10)2cos(10)(π ,nRx∈ (9)

minimum x*=(0, 0, ..., 0), f3(x*)=0

Figure 5.3. Rastrigin’s function

 Rosenbrock’s function

A continuous, unimodal function

;))1()(100()(
1

22
1

2
4 ∑

=
+ −+−=

n

i
iii xxxxf ,nRx∈ (10)

minimum x*=(1, 1, ..., 1), f4(x*)=0

 Functrion optimization using metaheuristics 85

Artificial Intelligence

Figure 5.4. Rosenbrock’s function

 Schwefel’s function

A continuous, unimodal function

∑ ∑
= =











=

n

i

i

j
jxxf

1

2

1
5 ;)(,nRx∈ (11)

minimum x*=(0, 0, ..., 0), f5(x*)=0

Figure 5.5. Minimization of Schwefel’s function

6 Experimental study

The algorithms discussed (PSO, AIS and GA) were tested using functions
presented in Chapter 5. In the experiments, which were carried out, the precision of
results was lower than 10-6. Experiments were carried out for the following number

86 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

of variables n=5, 10, 20, 30 but the results were presented only for n=30. All the
algorithms were run for 200 generations.
 The experiments, which were not presented in this paper, aimed at setting
parameters of the algorithms. Parameters (proper for each algorithm), which were
set, are: size of population, total number of antibodies chosen for cloning,
multiplying factor, degree of mutation, selection methods, probability of crossover,
coefficients of molecule speed change. Each algorithm was run many times for
different values of the parameters mentioned above, and the number of variables of
optimized function was increased from n=5 to n=30. When regulating parameters,
the computational cost of the algorithm was taken into consideration. The best
results were memorized. On this basis, the mean value of the parameters, which gave
the best results for a given function, was calculated. For the sake of the presentation,
each experiment was repeated 25 times, with parameter values predefined, and the
best result was presented for each generation.
 For every algorithm the optimum values of parameters were well-chosen for
every function separately.
 For algorithm PSO the values of ρ1 and ρ2 were near or equal to 2 and the size
of the population was about 50 individuals (only for Rastrigin’s function the
population consisted of 100 individuals).
 For AIS algorithm the total size of population for the all the functions tested
consisted of 100 individuals. The number of antibodies chosen for cloning was equal
100, only for Schwefel’s function the value was equal 70. The multiplying factor β
for Rastrigin’s function was equal 10, for sphere model and Griewank’s function
β=9, for Schwefel’s function β =7 and for Rosenbrock’s function β=6.
 For GA the values of parameters were characterized by the greatest variety.
The size of population ranged from 40 individuals for Griewank’s function to 90 for
Rastring’s function. For Griewank’s, Rastring’s and Rosenbrock’s function, ranking
method of selection proved to be the best one. Mutation coefficient was smaller than
0,01. As for crossover coefficient, it did not exceed 0,8 (it was high – 0,95 only for
Rosenbrock’s function).
 Figures 6.1-6.5 show mean results of experiments.

 Functrion optimization using metaheuristics 87

Artificial Intelligence

 1

 10

 100

 1000

 0 50 100 150 200

F
(x

)

generation

Sphere function (n=30)

“PS”
“AIS”
“GA”

Figure 6.1. Minimization of Sphere model

Figure 6.2. Minimization of Griewank’s function

 1

 10

 100

 0 50 100 150 200

F
(x

)

generation

Griewank's function (n=30)

"PS"

"AIS"
"GA"

88 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

Figure 6.3. Minimization of Rastrigin’s function

Figure 6.4. Minimization of Rosenbrock’s function

 100

 1000

 0 50 100 150 200

F
(x

)

generation

Rastrigin's function (n=30)

"PS"
"AIS"
"GA"

 100

 1000

 10000

 0 50 100 150 200

F
(x

)

generation

Rosenbrock's function (n=30)

"PS"
"AIS"
"GA"

 Functrion optimization using metaheuristics 89

Artificial Intelligence

Figure 6.5. Minimization of Schwefel’s function

It can easily be noticed that better results were obtained for PS than for AIS
as far as regards finding the minimum for test functions. AIS only for one function
(Griewank’s function) showed worse than PS. In addition, it is worth noticing that
AIS took about 130 times longer to execute than that of PS, which results from
computational complexity of the compared algorithms. AIS algorithm performs
multiple loops over the whole population of antibodies (Ab i Abn), and at the same
time, it carries out costly operations of reproduction (cloning, hipermutation) and
sorting. It is also worth noting that PS is the fastest heuristic, because it comprises
very simple notions and mathematic paradigms. GA is also a fast algorithm.
 Moreover, it is worth noticing, that finding an optimum of a function in PS
algorithm after not more than 30-50 generations decreases rapidly and stays on
a certain level of values of the functions tested and further populations do not bring
a noticeable improvement of the result. AIS behaves similarly, the algorithm
 stabilizes after about 10-30 generations. GA behaves in a different way. As the
number of generations increases, they gradually and linearly approach the optimum
of the functions tested. The behaviour of heuristics does not depend on the type of
the function (unimodal or multimodal function).
 Chosen as a model GA, which proved the best using sphere model and
Schwefel’s function, turned out to be the least efficient search method of finding
minima of the three remaining test functions. Next generations (more than 200) will
probably give better results.

 1000

 10000

 100000

 1e+006

 0 50 100 150 200

F
(x

)

generation

Schwefel's function (n=30)
"PS"
"AIS"
"GA"

90 Pilski M., Serdyński F.

Studia Informatica vol. 1/2(7)2006

7 Discussion and Conclusion

 The particle swarm algorithm is usually discussed together with evolutionary
strategies. However, there are numerous differences between them. Evolution results
in the improvement of the objective function by means of selection. In this way, only
the fittest individuals survive, and the weakest are eliminated. In particle swarms, all
individuals survive, and the improvement is achieved by means of social
interactions. In this way, individuals learn from one another.
 Experiments carried out in the same testing environment proved that PS and
GA are better than AIS in finding the minimum of multivariable function.
Experiments showed, that for two functions (Rastrigin’s and Rosenbrock’s function)
the best algorithm is PSO, for sphere model and Schwefel’s function the best
heuristics is GA, for Griewank’s function the best algorithm is AIS. It is also worth
noting that PS is the fastest heuristic among those presented in the paper. It results
from the fact that no genetic operators are used in this method and the whole
population is used in the next generation. However, this comparison is not purely
linear because we do not take into consideration an important parameter – time of
execution of one generation of the algorithm. In order to define linear effectiveness
of optimization methods compared in this paper, experiments assessing time of
execution of the algorithms should be carried out. Furthermore, it is possible to find
the best available modifications improving the efficiency of the algorithms
discussed, and carry out experiments again in order to establish the best method of
optimization of the functions, e.g. introducing new crossover operator in algorithm
AIS [9], modifications in PSO – alternative methods of setting inertia weight by
using a fuzzy variable [13][14] or for GA – coevelutionary algorithms LCGA
(Loosely Coupled Genetic Algorithm) [1][11], CCGA (Cooperative Coevolutionary
Genetic Algorithm) [9][11].

References

1. Bouvry P., Arbab F., Seredyński F., (2000). Distributed Evolutionary
Optimization in Mainfold; Rosenbrock’s Function Case Study, Information
Sciences 122(2-4), pp. 141-159.

2. Goldberg D.E., (1995). Algorytmy genetyczne i ich zastosowania, WNT,
Warszawa.

3. James Kennedy, Russell C. Eberhart (1999). The Particle Swarm: Social
Adaptation in Information – Processing Systems in Corn D., Dorigo M., Glover
F. (eds), New ideas in optimization, McGraw-Hill Publishing Company,
London.

4. Leonardo N. de Castro, Fernando J. Von Zuben (2002). Learning and
Optimization Using the Clonal Selection Principle, IEEE Transaction on
Evolutionary Computation, vol. 6. no. 3.

 Functrion optimization using metaheuristics 91

Artificial Intelligence

5. Liping Zhang, Huanjun Yu, and Shangxu Hu, (2003). A New Approach to
Improve Particle Swarm Optimization, GECCO 2003.

6. Michalewicz Z., (1996). Genetic Algorithms + Data Structures = Evolution
Programs, Springer.

7. Millonas M.M., (1994). Swarm, phase transitions, and collective intelligence,
Artificial Life III, Addison-Wesley, Reading MA.

8. Parsopoulos K.E. and Vrahatis M.N., (2002). Recent approaches to global
optimization problems through particle swarm optimisation, Natural Computing 1.

9. Pilski M., Seredyński F., (2005). Applying Modern Heuristics In Function
Optimization. Proceedings of Artificial Intelligence Studies, Vol. 2 (25)/2005
University of Podlasie, Siedlce.

10. Potter M.A., De Jong K.A., (1994). A Cooperative Coevolutionary Aproach to
Function Optimization, LNCS 866, Springer.

11. Seredyński F., Zomaya A.Y., (2003). Parallel and Distributed Computing with
Coevolutionary Algorithms, Springer.

12. Shi Y. and Eberhart R., (1997). A modified particle swarm optimiser, IEEE Int.
Conf. on Evolutionary Computation.

13. Shi Y. and Eberhart R., (2000). Experimental study of particle swarm
optimization, Proc. SCI2000 Conference, Orlando, FL.

14. Shi Y. and Eberhart R., (2001). Fuzzy adaptive particle swarm optimization,
Proceedings of the 2001 Congress on Evolutionary Computation.

15. Wierzchoń S.T., (2002). Algorytmy immunologiczne w działaniu: optymalizacja
funkcji niestacjonarnych, www.ipipan.waw.pl/~stw/ais/pubs/SzI2001.pdf

16. Wierzchoń, S.T., (2001). Sztuczne systemy immunologiczne. Teoria
i zastosowania, Akademicka Oficyna Wydawnicza EXIT, Warszawa.

