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1 Introduction

Bayesian networks (BN), used at least since theoitapt publications of
Pearl [Pearl:88], have been considered as a rapatEs of the joint probability
distribution in multiple variables. They consist twfo essential parts: the directed
acyclic graph (DAG), representing (or intended épresent) causal relationships
among the variables (being nodes of the graph),camdlitional probability tables
representing conditional distribution of the vat@ahode given its parents. The joint
probability distribution is expressed by the foraul

P04 s Xn' X1y 0%) = [Tke.n PO [(X2re-0%) L pa(Xy),
where | is the projection operator, and pg(Xs the set of parents of Xn the
DAG. (see Fig.1)

This point of view proved to be very fruitful rdsog in development of
many algorithms for knowledge acquisition from dasawell as numerous practical
applications of reasoning algorithms for BNs, indigal and technical diagnosis,
assistant programs for complex editor programs etc.

O

Figure 1. A sample Bayesian network structure (DAG)
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However, also a different point of view is possjblelated to so-called
dynamic Bayesian networks [Ghahramani:98], [Zou:@#}ich represent evolution
of a system over time.

The cyclicity of a DAG generated by an automatedvidedge extraction
algorithm was considered either to be a fault efdlgorithm, or a deficiency of the
data collection process — it was assumed that sompertant variables remained
uncovered. Models of hidden variables were congtdjcwhich, however, cannot
explain some phenomena, that may occur in the data.

For this reason, we attempt here to introduce cyBhyesian networks in
a systematic way, grounding them in an interpretedif a Markov process.

In section 2 we will recall the Markov process agwhbed BNs into it.
In section 3 we will define the cyclic Bayesianwetks. Section 4 contains some
remarks on reasoning in cyclic BNs. Section 5 ma&esoutline of a possible
approach to learning such networks from data. Tpepends with some remarks of
general nature in section 6.

2 Bayesian Network As State Transition

In probability theory, a stochastic process has Ntegkov property if the
conditional probability distribution of future stest of the process, given the present
state, depends only upon the current state, iis.donditionally independent of the
past states (the path of the process) given theeptestate. A process with the
Markov property is usually called a Markov processMarkov chain.

The transition matrix P of a Markov chain is a sguenatrix, where Pis
equal to the probability of making the transitioarh a state i to a state j, in one step.

A square matrix with real, non-negative entriesereheach row sums up to 1,
is called a row-stochastic matrix. By definitiomch transition matrix of a Markov
chain is row-stochastic and vice versa.

Let GM(S,T) denote a directed graph correspondimgatMarkov chain
defined in the following way. The set S repres¢ésset of all the states of Markov
Chain M and for i,j in S there is a directed edggiq T if and only if there is a non-
zero transition probability of changing the stater i to j in a single step.

We say that a Markov chain M is irreducible if @srresponding graph GM is
strongly connected (for every two nodes i andijgh®a directed path fromi to j in GM).

We say that a Markov chain M is aperiodic if itegn GM has the following
property: the greatest common divisor of lengthaliafycles in this graph is equal to 1.

A stationary distribution d of a Markov chain M tvithe transition matrix P
is a probability vector over the set of states &tisatisfies the condition d=P*d }.

If Markov chain over a finite set of states is dlueible and aperiodic, the
stationary distribution exists and is unique [Motiwa995].

! en.wikipedia.org/wiki/Markov_process
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Now let us consider a set of states S such thdt ete s from S is an n-
dimensional vector over a set of variables Xz{%,....,X;}. Now pa state would
have the form (xXs,....,X,) X is a value of the variab.

Now let the state transition from state;,Xx,....,X,) to state (X,x2',.....Xy)
have the form

PO, Xn' X, %0) = Tketn PO [(Xa,-0%) EpaXd),
where! is a projection operator and pg(Xs the set of parents of variablg K a dag D
A symbolic transformation of the dag from Fig. latdlarkov chain model is visible
in Fig. 2. In Fig. 3 we see that by chaining mudtigteps of a Markov chain we
obtain a network where we can recognize the streatfl the original dag. Notice
further, that if we extend the Markov chain reprgagon to “infinity”, then there
will still exist only finite length directed pathean trace infinite directed paths (with
head-to-tail meeting points only).
Obviously, if the conditional probabilities are albn-zero, then the stationary
distribution d will be given by the probability digoution defined by the Bayesian
network with dag D, and conditional probabilitiesH (X,...,%) | pa(X)), that is

d=[Tk=1..n P&l (X1,---,%0) L pa(Xy)) -

In this way, we have defined a Bayesian networkritistion in terms of
a stationary distribution of a Markov chain.
State attime t +1

O

O O
State at time t
Figure 2. Markov chain view of a BN

State at time t +2

O

o O

State at time
Figure 3. A BN becomes visible in a longer Markov chain
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We could also define a Markov chain connectingestdX;,X,, ..., X ...,%)
with state differing by one variable only (%', ...,X\’,....,Xy) with state transition
probability:

PO, oo Xk oo Xl X2y oo nXreeeXn) = POK (X1, L pa&)),

(A proper definition of transition to the same stit needed).

Again the same stationary distribution is achiewgih the same condition
for irreducibility.

Note that both above-mentioned concepts of Markwirc BN are basis for
some well-known sample generation algorithms.

State at time t +2

O

o O

State at time t
Figure 4.d-separation idea in a Markov chain

An important concept in BNs is the concept of desafion. If two variables
are d-sparated by a set of other variables, thesethtwo are conditionally
independent given the others. A d-separation misaighere is no path between the
nodes such that no tail-to-head or tail-to-tail @dgeeting node belongs to the other
set and each head-to-head meeting node eitherdsetorthe other set itself or has a
(direct or indirect) successor therein.

Returning to the first concept of a Markov chaipresentation of s sequence
(Fig. 3) we can easily translate this concept eoNfarkov chain representation as in
Fig. 4. If we extend the graph to infinity, the epsration property in the “infinite”
graph will still hold.
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3 Cyclic Bayesian Networks

In the traditional view, the philosophy of Dags wataightforwardly
grounded on our basic epistemological assumptiongiing can be the cause of
itself, neither directly nor indirectly.

But in the context of the interpretation of BN &rms of a Markov chain, it
makes sense to drop the assumption of acyclicitghé. The state of a variable is
not influenced by itself, but rather the futuretstis influenced by the past one.

Cyclic Bayesian networks are usually consideredfaasty results of BN
learning from data [Guyader:01]. Either structulmhitations of the learning
algorithm (e.g. Pearl’'s algorithm learning only ptiees even if the real distribution
is more complex), or presence of hidden variabdeg. (in case of PC algorithm of
Spirtes, Glymour and Scheines) may lead to emergiyges in the network
structure (Fig. 5).

Figure 5. A simple effect of a hidden variable when recovg®N structure from data.
The dark node is a hidden variable. The cycle whel@dbsent, if the structure discovery
algorithm were conscious of it

Procedures, such as the Cl and FCI algorithms afteSp Glymour and
Scienes have been developed to detect potentddhidariables.

However, there are probability distributions thahiot be described in this
way even with the concept of hidden (latent) vdaabIf we drop the acyclicity
condition, the Markov chain interpretation of a layBN may be the same as for the
classical case, that is:

Py X0 X100 %) = [en..n PO [(Xae-00%0) L pA(K)),

O
O

Figure 6.A sample cyclic Bayesian network structure

Obviously, the joint probability distribution wilbe considered as the
respective stationary distribution. The interestimgperty would be the conditional
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independence of non-neighbours in the cycle visiblthe picture (Fig. 6, 7) given
the other two elements of the cycle. This phenomexamnot be explained by hidden

variable hypotheses.
State at time t +1

M

State at time t

Figure 7. Markov chain view of a cyclic BN

Note that if we create an “infinite” Markov chaiapresentation of a cyclic
BN (Fig. 8), we do not see the cyclicity directin fact we obtain a dag). But the
cyclicity becomes visible because we can traceitefidirected paths (with head-to-

tail meeting points only).
State at time t +5

®)

State at time t

Figure 8. A longer Markov chain of a cyclic BN
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4 Reasoning in Cyclic Bayesian Networks

The fundamental problem with reasoning in cycliy&san networks is that
the joint probability distribution is not given diqitly, but is rather an asymptotic
limit of a multi-stage process.

Therefore, when reasoning with cyclic BN, we wouddy on the Markov

chain interpretation. In fact, one can exploit masting reasoning techniques
based e.g. on Gibbs’ sampling.

State at time t +5

O

State at time t
Figure 9.d-separation in a Markov chain of a cyclic BN

An important issue when reasoning about BNs isdtiete if there holds the
relationship of d-separation.

In Fig. 9 we presented a longer Markov chain tireguence for the cyclic
BN in Fig. 7. We can now extend the concept of plasation for a cyclic BN as
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being defined as d-separation in the infinite dhg Markov chain time sequence.
For practical purposes, the actual sequence mdyriited to twice the number of
edges in the cyclic BN because no (undirected) pathbe longer than the number
of edges.

O (@)

Figure 10.Reducing cycle length in a Bayesian network strectur

Note also, that by the technique of the edge revese can theoretically
shorten any cycle in the cyclic BN until it consistf only one node, for which the
transformation to a non-cycle is apparently trivi@ig. 10) This is, however, an
illusive tactic except for very simple networks,chase all the parents of a node
moved out of the cycle remain parents of some nwodehe cycle, so that
occasionally a very large number of variables magdition the left nodes of the
cycle.

5 Issues When Learning Cyclic Bayesian Networks

Basic problems with learning of cyclic BN from daitas in the difficulty of
finding a proper counterpart of the well-known cepit of d-separation, on which
many approaches rely.lIt is, however, very helpéukéep in mind, that if proper
structure is found, then the conditional probabditof child on parents will be
directly reflected in the stationary distribution,Sin fact, when the actual
distribution reflects the stationary one, we caa smtistical independence tests as
indicators of d-separation.

It seems that no complexities would arise for maximbased on Bayesian
methods of structure recovery.

6 Final remarks

In this investigation, we have pointed to posdieis of handling the concept
of cyclic Bayesian networks within the framework Mfarkovian processes. The
potential and application areas behind this newd kihBNs are still to be carefully
explored. But we can state for sure that this cpnseems to be mathematically
sound.
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