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1 Introduction 

Bayesian networks (BN), used at least since the important publications of 
Pearl [Pearl:88], have been considered as a representation of the joint probability 
distribution in multiple variables. They consist of two essential parts: the directed 
acyclic graph (DAG), representing (or intended to represent) causal relationships 
among the variables (being nodes of the graph), and conditional probability tables 
representing conditional distribution of the variable node given its parents. The joint 
probability distribution is expressed by the formula: 

P(x1‘,...,xn‘|x1,...,xn) =  ∏k=1…n P(xk‘ |(x1,...,xn) ↓pa(Xk)), 
where  ↓ is the projection operator, and pa(Xk) is the set of parents of Xk in the 
DAG. (see Fig.1) 

This point of view proved to be very fruitful  resulting in development of 
many algorithms for knowledge acquisition from data as well as numerous practical 
applications of reasoning algorithms for BNs, in medical and technical diagnosis, 
assistant programs for complex editor programs etc.  

 
 

 
Figure 1. A sample Bayesian network structure (DAG) 
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However, also a different point of view is possible, related to so-called 
dynamic Bayesian networks [Ghahramani:98], [Zou:05], which represent evolution 
of a system over time.  

The cyclicity of a DAG generated by an automated knowledge extraction 
algorithm was considered either to be a fault of the algorithm, or a deficiency of the 
data collection process – it was assumed that some important variables remained 
uncovered. Models of hidden variables were constructed, which, however, cannot 
explain some phenomena, that may occur in the data.  

For this reason, we attempt here to introduce cyclic Bayesian networks in  
a systematic way, grounding them in an interpretation of a Markov process.  

In section 2 we will recall the Markov process and embed BNs into it.  
In section 3 we will define the cyclic Bayesian networks.  Section 4 contains some 
remarks on reasoning in cyclic BNs. Section 5 makes an outline of a possible 
approach to learning such networks from data. The paper ends with some remarks of 
general nature in section 6.  

 
2 Bayesian Network As State Transition   

 
In probability theory, a stochastic process has the Markov property if the 

conditional probability distribution of future states of the process, given the present 
state, depends only upon the current state, i.e. it is conditionally independent of the 
past states (the path of the process) given the present state. A process with the 
Markov property is usually called a Markov process1 or Markov chain. 

The transition matrix P of a Markov chain is a square matrix, where Pij is 
equal to the probability of making the transition from a state i to a state j, in one step. 

A square matrix with real, non-negative entries, where each row sums up to 1, 
is called a row-stochastic matrix. By definition, each transition matrix of a Markov 
chain is row-stochastic and vice versa. 

Let GM(S,T) denote a directed graph corresponding to a Markov chain 
defined in the following way. The set S represents the set of all the states of Markov 
Chain M and for i,j in S there is a directed edge (i,j) in T if and only if there is a non-
zero transition probability of changing the state from i to j in a single step.  

We say that a Markov chain M is irreducible if its corresponding graph GM is 
strongly connected (for every two nodes i and j there is a directed path from i to j in GM). 

We say that a Markov chain M is aperiodic if its graph GM has the following 
property: the greatest common divisor of lengths of all cycles in this graph is equal to 1.  

A stationary distribution d of a Markov chain M with the transition matrix P 
is a probability vector over the set of states S which satisfies the condition d=P*d }. 

If Markov chain over a finite set of states is irreducible and aperiodic, the 
stationary distribution exists and is unique [Motwani:1995]. 

                                                           
1 en.wikipedia.org/wiki/Markov_process 
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Now let us consider a set of states S such that each state s from S is an n-
dimensional vector over a set of variables X={X1,X2,….,Xn}. Now pa state would 
have the form (x1,x2,….,xn) xk is a value of the variable Xk.  

Now let the state transition from state  (x1,x2,….,xn) to state  (x1‘,x2‘,….,xn‘) 
have the form  

P(x1‘,...,xn‘|x1,...,xn) =  ∏k=1…n P(xk‘ |(x1,...,xn) ↓pa(Xk)), 
where ↓ is a projection operator and pa(Xk) is the set of parents of variable Xk in a dag D   
A symbolic transformation of the dag from Fig. 1 to a Markov chain model is visible 
in Fig. 2. In Fig. 3 we see that by chaining multiple steps of a Markov chain we 
obtain a network where we can recognize the structure of the original dag.  Notice 
further, that if we extend the Markov chain representation to “infinity”, then there 
will still exist only finite length directed paths can trace infinite directed paths (with 
head-to-tail meeting points only). 
Obviously, if the conditional probabilities are all non-zero, then the stationary 
distribution d will be given by the probability distribution defined by the Bayesian 
network with dag D, and conditional probabilities P(xk |(x1,...,xn) ↓pa(Xk)), that is  

d=∏k=1…n P(xk|(x1,...,xn) ↓pa(Xk)) . 
 

In this way, we have defined a Bayesian network distribution in terms of  
a stationary distribution of a Markov chain.  

State at time t

State at time t +1

 
Figure 2. Markov chain view of a BN 

 

State at time t

State at time t +2

 
Figure 3. A BN becomes visible in a longer Markov chain 
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We could also define a Markov chain connecting state  (x1,x2, …,xk,….,xn) 
with state differing by one variable only  (x1,x2‘,…,xk‘,….,xn‘) with state transition 
probability:   

 
P(x1,…,xk‘,...,xn|x1, …,xk,...,xn) =  P(xk‘ |(x1,...,xn) ↓pa(Xk)), 

 
(A proper definition of transition to the same state is needed).  
Again the same stationary distribution is achieved, with the same condition 

for  irreducibility. 
Note that both above-mentioned concepts of Markov chain BN are basis for 

some well-known sample generation algorithms. 
 

State at time t

State at time t +2

 
 

Figure 4. d-separation idea in a   Markov chain 
 

An important concept in BNs is the concept of d-separation. If two variables 
are d-sparated by a set of other variables, then these two are conditionally 
independent given the others. A d-separation means that there is no path between the 
nodes such that no tail-to-head or tail-to-tail edge meeting node belongs to the other 
set and each head-to-head meeting node either belongs to the other set itself or has a 
(direct or indirect) successor therein.  

Returning to the first concept of a Markov chain representation of s sequence 
(Fig. 3) we can easily translate this concept to the Markov chain representation as in 
Fig. 4. If we extend the graph to infinity, the d-separation property in the “infinite” 
graph will still hold.  
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3 Cyclic Bayesian Networks  
 

In the traditional view, the philosophy of Dags was straightforwardly 
grounded on our basic epistemological assumptions: nothing can be the cause of 
itself, neither directly nor indirectly.  

But in the context of the interpretation of BN in terms of a Markov chain, it 
makes sense to drop the assumption of acyclicity of BNs. The state of a variable is 
not influenced by itself, but rather the future state is influenced by the past one.  

Cyclic Bayesian networks are usually considered as faulty results of BN 
learning from data [Guyader:01]. Either structural limitations of the learning 
algorithm (e.g. Pearl’s algorithm learning only poly-trees even if the real distribution 
is more complex), or presence of hidden variables (e.g. in case of PC algorithm of 
Spirtes, Glymour and Scheines) may lead to emerging cycles in the network 
structure (Fig. 5).  

 

 
Figure 5. A simple effect of a hidden variable when recovering BN structure from data.  

The dark node is a hidden variable. The cycle would be absent, if the structure discovery 
algorithm were conscious of it 

 
Procedures, such as the CI and FCI algorithms of Spirtes, Glymour and 

Scienes have been developed to detect potential hidden variables.  
However, there are probability distributions that cannot be described in this 

way even with the concept of hidden (latent) variables. If we drop the acyclicity 
condition, the Markov chain interpretation of a cyclic BN may be the same as for the 
classical case, that is: 

P(x1‘,...,xn‘|x1,...,xn) =  ∏k=1…n P(xk‘ |(x1,...,xn) ↓pa(Xk)), 
 

 

 
Figure  6. A sample cyclic Bayesian network structure 

 
Obviously, the joint probability distribution will be considered as the 

respective stationary distribution. The interesting property would be the conditional 
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independence of non-neighbours in the cycle visible in the picture (Fig. 6, 7) given 
the other two elements of the cycle. This phenomenon cannot be explained by hidden 
variable hypotheses.   

State at time t

State at time t +1

 
Figure 7. Markov chain view of a cyclic BN 

 
Note that if we create an “infinite” Markov chain representation of a cyclic 

BN (Fig. 8), we do not see the cyclicity directly (in fact we obtain a dag). But the 
cyclicity becomes visible because we can trace infinite directed paths (with head-to-
tail meeting points only).  

State at time t

State at time t +5

 
 

Figure 8. A longer Markov chain  of a cyclic BN 
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4 Reasoning in Cyclic Bayesian Networks  

 
The fundamental problem with reasoning in cyclic Bayesian networks is that 

the joint probability distribution is not given explicitly, but is rather an asymptotic 
limit of a multi-stage process.  

Therefore, when reasoning with cyclic BN, we would rely on the Markov 
chain interpretation. In fact, one can exploit many existing reasoning techniques 
based e.g. on Gibbs’ sampling. 

 

State at time t

State at time t +5

 
Figure 9. d-separation in a Markov chain   of a cyclic BN 

 
An important issue when reasoning about BNs is detection if there holds the 

relationship of d-separation.  
In Fig. 9 we presented a longer Markov chain time sequence for the cyclic 

BN in Fig. 7. We can now extend the concept of d-separation for a cyclic BN as 
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being defined as d-separation in the infinite dag of a Markov chain time sequence.  
For practical purposes, the actual sequence may be limited to twice the number of 
edges in the cyclic BN because no (undirected) path can be longer than the number 
of edges.  

 

 

      

 

 
Figure 10. Reducing cycle length in a  Bayesian network structure 

 
Note also, that by the technique of the edge reversal we can theoretically 

shorten any cycle in the cyclic BN until it consists of only one node, for which the 
transformation to a non-cycle is apparently trivial. (Fig. 10)  This is, however, an 
illusive tactic except for very simple networks, because all the parents of a node 
moved out of the cycle remain parents of some node in the cycle, so that 
occasionally a very large number of variables may condition the left nodes of the 
cycle.  

 
5 Issues When Learning Cyclic Bayesian Networks  

 
Basic problems with learning of cyclic BN from data lies in the difficulty of 

finding a proper counterpart of the well-known concept of d-separation, on which 
many approaches rely.It is, however, very helpful to keep in mind, that if proper 
structure is found, then the conditional probabilities of child on parents will be 
directly reflected in the stationary distribution.So, in fact, when the actual 
distribution reflects the stationary one, we can use statistical independence tests as 
indicators of d-separation.  

It seems that no complexities would arise for maximum based on Bayesian 
methods of structure recovery.  
 
6 Final remarks 

 
In this investigation, we have pointed to possibilities of handling the concept 

of cyclic Bayesian networks within the framework of Markovian processes. The 
potential and application areas behind this new kind of BNs are still to be carefully 
explored. But we can state for sure that this concept seems to be mathematically 
sound.    
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