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Abstract:  An interesting and little explored way to understand data is based on prototype rules 
(P-rules). The goal of this approach is to find optimal similarity (or distance) functions and 
position of prototypes to which unknown vectors are compared. In real applications similarity 
functions frequently involve different types of attributes, such as continuous, discrete, binary or 
nominal. Heterogeneous distance functions that may handle such diverse information are usually 
based on probability distance measure, such as the Value Difference Metrics (VDM). For 
continuous attributes calculation of probabilities requires estimations of probability density 
functions. This process requires careful selection of several parameters that may have important 
impact on the overall classification of accuracy.  
In this paper, various heterogeneous distance function based on VDM measure are presented, 
among them some new heterogeneous distance functions based on different types of probability 
estimation. Results of many numerical experiments with such distance functions are presented on 
artificial and real datasets, and quite simple P-rules for several heterogeneous databases 
extracted. 
 
Keywords: Prototype rules, probability estimation, heterogeneous distance functions, similarity-
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1 Introduction 

Many important problems in artificial intelligence may be reduced to 
classification problems. Despite the problem, this is still a very active research area. 
Many different approaches to classification have been proposed, including such 
popular methods as artificial neural networks or support vector machines. 
Unfortunately their possible applications are limited, because they usually act as 
black boxes, and it is impossible to understand their decisions in logical terms 
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(however, it is possible to visualize them [1]). For some inputs their decisions may 
be unpredictable, leading to disastrous consequences. This constitutes the reason 
why they may be dangerous to use in decision support systems that require 
transparency of decisions. If some understanding of data is demanded, machine 
learning algorithms for logical rule extraction are used [2]. The challenge is to 
generate a set (or multiple sets) of rules that will be reliable, accurate and easy to 
understand by humans. Although the need for rule-based descriptions is generally 
acknowledged, many methods create too many rules with too complex conditions, 
which, in effect, results in incomprehensible descriptions of data. In such  
a case it may be better to use reliable pattern recognition classifiers rather than rules. 
 Statistical approaches based on the “divide-and-conquer” idea lead to 
univariate decision trees that generate crisp logic rules operating on each attribute 
separately. The most popular examples are Quinlan’s C4.5, Breiman’s CART [3] or 
SSV tree algorithms [4]. Expressive power of crisp rules (C-rules) is rather limited, 
therefore fuzzy rules (F-rules), generated by neurofuzzy systems [5] are frequently 
used, although they may sometimes generate rather complex description of the data 
that is hard to understand, even though a simple crisp set of rules exists [2]. An 
alternative is offered by recently introduced prototype-based rules (P-rules) [6, 7]. 
The F-rules and P-rules may be transformed into each other and allow to express 
more interesting concepts than crisp logic rules. Experiments showed that both 
approaches are usually capable of generating highly accurate, yet small and 
understandable sets of rules.  
 To specify F-rules the shape of membership functions has to be defined, and 
parameters determining rule properties have to be estimated from the data. For P-
rules the type of distance measure has to be defined. The usual choice is the 
Euclidean distance function or more generally the Minkovsky’s family of distance 
functions. However, in practical applications it is not always the best solution. In real 
world, most datasets have mixed types of attributes, with some real-valued, some 
discrete, and some symbolic or nominal ones. For such data, Euclidian distance 
functions are not directly applicable. In case of symbolic features results will depend 
on the method of conversion from nominal to numeric values. This problem also 
plays a role in fuzzy rules, where it is sometimes not clear what type of a specific 
membership function is appropriate. 
 Mixed types of attributes may be used in heterogeneous distance functions 
that use different types of measures for different types of attributes, combining 
information contained in their differences. This type of functions are usually based 
on probability distance measures, such as the Value Difference Metric (VDM) [8], 
adopted for continuous attributes by estimating probability density function for real 
feature values. The process of estimation requires the selection of several parameters 
that may have an important influence on overall classification accuracy. This is the 
subject of this paper. 
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 Section 2 describes relations between F-rules and P-rules, and advantages 
which may be derived from this relation. In section 3 different heterogeneous 
distance function based on VDM measure are presented. Section 4 presents some 
new heterogeneous distance functions based on different types of probability 
estimation. Numerical experiments on artificial and real data are presented in section 
5, and, in section 6, the summary of results is given, and some conclusions are 
drawn. 
 
2 F-rules versus P-rules 

Classical crisp logical rules are quite easy to understand, seem to be natural to 
most people, are easy to apply, and, therefore, are in wide use in decision support 
and similar applications. However, if the goal is to understand real-world data 
collected from some experiments crisp rules may often fail, because a large number 
of these rules with many conditions may be needed, making it impossible to 
understand the structure of the data. F-rules and P-rules are much more flexible and  
a smaller number of such rules may be sufficient. Thus, also more robust and easier 
to understand.  
 The process of learning F-rules starts with selecting the shape of membership 
functions (MF), their initial position separately for each feature as well as selecting 
appropriate fuzzy operators like T-norms, aggregation operators and inference 
scheme [5]. In the second step of the learning process algorithms tune the spread and 
position of each membership function and try to select appropriate combination of 
these functions to extract fuzzy if-then rules. Such methods are often based on neural 
adaptation algorithms, and therefore are called neuro-fuzzy systems. 
 In P-rules the goal is to optimize the position of prototypes to which unknown 
vectors will be compared using previously chosen distance function or similarity 
measure. Two different types of P-rules exist. First, the nearest neighbour rules 
(NNR), where the distance is calculated between unknown case and all the 
prototypes, and the prototype that is most similar is used in the condition part of the 
rule, claiming that the output class is the same as the class of the nearest prototype:  
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where X is the input vector, Pa  is one of the L prototypes, and C(P) is a function 
returning the label of the vector P. These rules are discriminative, and for two 
prototypes from different classes define a decision hyperplane between them.  
 P-rules of the second type are threshold rules (TR) where each prototype has 
associated threshold value defining subspace of activation and all vectors that fall 
into this subspace have output label that is the same as this prototype label. 
 

IP D(X, P) < Tr THEN C(X) = C(P) 
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where Tr is threshold value. These rules provide coverings of parts of the feature 
space.  
 F-rules, and more precisely their MF, have four major interpretations [8]. One 
of the most popular and natural interpretations tries to explain MF as a degree to 
which elements of universe X are similar to or typical of a fuzzy set F defined by its 
MF. From this perspective, F-rules seem to be a special case of similarity-based 
learning (SBL) [10]. This observation leads to new perspectives in both fields: SBL 
and Fuzzy Modelling. New distance functions may be derived from membership 
functions, and vice versa [6,7]. The simplest example is transformation between 
additive distance functions, which is equivalent to a product of MF using exponential 
transformation function: 
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 The main weakness of F-rules is the difficulty in their application to 
heterogeneous datasets. Theoretically, fuzzy sets can also be defined for arbitrary 
features, however most of the neurofuzzy systems (ex. NEFCLASS, ANFIS) do not 
support symbolic or non ordered attributes, and are defined only for real input values 
[5]. The problem with automatic construction of MFs for nominal attributes may be 
solved using the SBL approach. Probability-based distance functions, such as VDM 
metrics, may be defined for any type of features, and they may be combined with 
real-valued features in heterogeneous distance functions (HDF) [11].  They are 
described in the next two sections. 
 
3 Heterogeneous Distance Functions 

In most similarity based systems, such as the nearest neighbour [3], Radial 
Basis Function networks, or self-organizing maps [12], Minkovsky’s distance 
function are used, sometimes in rotated coordinate systems, or, for example  the 
Mahalanobis distance function. Unfortunately, this type of distance functions does 
not support symbolic and nominal features that are often found in real applications. 
On the other hand, the Value Difference Metrics (VDM) and similar metrics [8] give 
very good results for symbolic attributes, but using it directly with continuous 
attributes is impossible. To construct prototype-based rules for datasets with 
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different types of attributes both types of similarity functions should be combined in 
a heterogeneous distance function [11]. 
 VDM distance measure is based on calculation of differences between 
posterior probabilities:  
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where probabilities are estimated by frequencies: 
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X and Y are input vectors, Nxa is a number of instances in a training set with value of 
xa for the attribute a, Nxai is the same as Na but for the class Ci, n is the number of 
classes and m is the number of attributes. P-rules use heterogeneous distance 
functions (HDF) for features of mixed types. One of the simplest ways leading to the 
HDF is the combination of the Euclidean and VDM metrics, called the 
Heterogeneous Value Difference Metric (HVDM) [10]: 
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where σ  is the standard deviation for the attribute a. The Euclidean distance used by 
HVDM for continuous features is normalized by standard deviation of the attribute 
to reduce the influence of the outliers. 
 Three different forms of VDM distance with different normalization 
technique are used, and the decision which one should be chosen depends on  
a designer of the system. The main problem using HVDM is normalization, because 
it is very difficult to balance different terms in the overall distance metric. This 
problem does not occur for the Value Difference Metric where posterior probabilities 
are estimated for both discrete and continuous features. However, in such a case the 
estimation of probability density for continuous features is a big problem. Martinez 
and Willson [10] also described Discretized Value Difference Metric (DVDM) and 
Interpolated Value Difference Metric (IVDM ).  
 DVDM is based on discretization process, and for continuous attributes  
a simple constant width discretization method is used. DVDM is defined by the 
equation: 
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mina is the minimum of attribute a and wa is a parameter describing the number of 
discretization bins. However, the upper part of equation (9) can be replaced by  
a different form of discretization algorithm.  
 IVDM is very similar to DVDM, but to improve the accuracy of posterior 
probability estimates a simple linear interpolation is used. IVDM is defined by: 
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Here paiu and pai,u+1 are posterior probabilities calculated in the middle of the 
discretized range u and u+1, u=disc(x) and midau and mida,u+1 are middles of 
discretized ranges u and next u+1, for which actual xa fulfil inequality. 
 
4 New Heterogeneous Distance Functions 

The main problem in the application of VDM distance measure to continuous 
attributes is to obtain appropriate shape of posterior probabilities. For discrete or 
symbolic features they can easily be computed using frequencies, Eq. (3), but for 
continuous attributes it will not work. Two simple techniques were presented in the 
previous section, but a better algorithm used for determining posterior probabilities 
may lead to a better overall results. These new methods are based on equation (11), 
but with a different density estimation technique. 
 
4.1 Gaussian Value Difference Metric 

Kernel smoothing techniques, for example Gaussian smoothing kernels, allow 
to calculate the posterior probability as: 
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where Mi is the number of all vectors from the same class Ci, σ is the width of 
Gaussian functions, and norm is the normalization factor calculated by:  
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4.2 Local Value Difference Metric (LVDM) 

Very simple and very fast technique for estimating probability is based on the 
Local Value Difference Metric (LVDM). This method uses local calculation of 
probability density surrounding the query data point. In this method, probability is 
calculated by the equation (3), but the value of Nxai is the number of points in class 

Ci in the range limited to 
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in this range for all classes. Widtha is a parameter defining a range of widths for 
attribute a.  
 
4.3 Parzen Value Difference Metric (PVDM) 

Another solution for density estimation is based on the Parzen Window 
technique [3] where a rectangle window is moved by the step through the whole 
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range of attribute a, and probability is calculated as a mean value of all window 
probabilities where x occurs: 

∑=
+

+=

Zb

bz aZ

aiZ
ai xN

xN

Z
xCp

1 )(

)(1
)|(    (15) 

where Z is number of windows, 
a

a

step
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Z = , b is the index of first window where x 

occurs, Niz(xa) is the number of data points in z-th window that belong to class Ci, 
Nz(xa) is summed over all classes, widtha is the window width for attribute a, and 
stepa is the size of the window movement.  
 
 
5 Numerical Experiments 

Experiments were performed on artificial and real data. The artificial data 
were generated to check the quality of probability estimations, and the influence of 
the parameters used on the probability estimation accuracy. Two artificial datasets 
were generated for this purpose. First dataset had two dimensions, 3 classes, with 
vectors for each class generated from a normal distribution. The second dataset also 
had two dimensions and 3 classes, but data vectors were generated using uniform 
distribution. In both datasets classes were partially overlapping.   
 In the second set of experiments P-rules were generated using probabilistic 
distance functions for several datasets taken from the UCI repository of machine 
learning datasets [13]. For these experiments different datasets were selected with 
different types of attributes: continuous, discrete, symbolic and nominal. 
 All tasks were carried out with SBPS software system especially developed 
for that purpose. SBPS is a similarity based rule generating system that allows for 
defining different types of distance functions for different attributes and combining 
the results obtained with each feature into a final value. SBPS system includes 
several prototype selection and optimization algorithms, which are used to simplify 
and improve initial rules. To compare the results obtained in different experiments 
only Fuzzy C-means algorithm for prototype selection and LVQ algorithm for their 
optimization have been used [12]. 
 
5.1 Artificial datasets 

Artificial datasets were created to verify the quality of five methods for 
probability estimation, compare them with a heterogeneous distance function, and 
evaluate the influence of parameters of these methods on the final classification 
results. For the first artificial dataset with normal distribution of samples in each 
class optimal border shape can be obtained using Euclidean distance function. These 
results determine a basis to judge and compare quality of probability estimation and 
classification for other functions. In this test only one prototype per class was 
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generated. To reduce the influence of randomness and verify generalization 10-fold 
crossvalidation test was performed. Results presented in Tab. 1 show balanced 
accuracy for each method.  

 
Table 1. Balanced accuracy for different methods of probability estimation  

obtained on artificial datasets 
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5.2 Real datasets 

The 6 types of VDM distance functions have also been tested on real datasets 
to verify theoretical considerations. Several datasets with different types of attributes 
were selected from the UCI repository: Flag, Glass, Iris, Lancet and the Pima 
Indians. Since the aim was to obtain maximum balanced accuracy for all these 
distance measures, we have used the algorithm for constructive rule generation to 
maximize classifier abilities.  

 The constructive algorithm for generation of P-rules does not favour any 
distance function because it adds a new prototype to the class with lowest accuracy, 
maximizing overall balanced accuracy calculated as a mean value of individual 
accuracies. In all cases, the algorithm was stopped after 10 iterations, generating at 
most 10 prototypes per class.  
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Table 2. Balanced accuracy for different methods of probability estimation 
 obtained on real datasets 

 
flag glass ir is lancet pim a

HV DM Bal. Acc Bal. Acc Bal. A cc Bal. Acc Bal. Acc
18,958 37,772 96,000 90,228 73,740

GV DM
sig 0.2 23,229 48,948 96,000 89,994 71,815
sig 0.5 30,208 55,367 96,667 89,777 71,401
sig 0.7 28,438 46,865 96,667 89,777 71,386
m ean 27,292 50,394 96,444 89,849 71,534
std 3,628 4,431 0,385 0,126 0,244

LVDM
w idth 0.2 25,625 47,778 96,000 90,103 72,886
w idth 0.4 27,708 44,147 96,667 89,994 72,049
w idth 0.6 26,563 48,978 95,333 89,994 71,490
w idth 0.7 26,875 42,054 94,000 89,777 71,676
m ean 26,693 45,739 95,500 89,967 72,025
std 0,861 3,202 1,139 0,137 0,619

PV DM
W 0.2 St0.1 30,104 39,722 96,667 90,103 71,613
W 0.4 St0.1 26,563 42,639 96,667 89,994 71,504
W 0.6 St0.1 24,375 49,702 95,333 89,777 70,531
W 0.7 St0.1 27,396 49,206 96,667 89,876 71,034
W 0.2 St0.01 29,479 46,359 96,000 90,005 71,820
W 0.4 St0.01 25,625 45,694 96,000 89,994 71,468
W 0.6 St0.01 24,375 58,046 96,667 89,777 71,234
W 0.7 St0.01 27,083 48,075 96,667 89,777 71,041
W 0.2 St0.05 28,542 46,319 96,000 90,103 71,386
W 0.4 St0.05 26,250 44,345 96,000 89,994 71,482
W 0.6 St0.05 24,375 56,141 96,000 89,777 70,970
W 0.7St0.05 27,813 56,379 96,667 89,777 71,555
m ean 26,832 48,552 96,278 89,913 71,303
std 1,953 5,717 0,446 0,133 0,355

IVDM
CW  10 26,563 46,984 96,000 90,225 70,818
CW  5 26,042 48,651 96,667 90,117 72,375
m ean 26,302 47,817 96,333 90,171 71,597
std 0,368 1,179 0,471 0,077 1,101

DV DM
CW  10 26,979 43,810 97,333 90,325 71,081
CW  5 27,083 50,635 94,667 90,330 70,142
m ean 27,031 47,222 96,000 90,327 70,612
std 0,074 4,826 1,886 0,003 0,664

 

 
Because of the normalization problem of different distance functions, all continuous 
features in all datasets were standardized and then normalized to the interval [0,1]. 
The highest balanced accuracy for each combination of parameters for all datasets is 
presented in Table 2. 
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6 Discussion of results and conclusions 

The “no free lunch” theorem [3] says that no single algorithm for data 
analysis may always be the winner, and the results presented in Tab. 2 certainly 
confirm it. For artificial data the GVDM algorithm seems to be better than other 
estimation methods. It could be expected that this algorithm should give a very good 
results for this type of artificial data, with high density of points, generating the 
smoothest estimated probability distributions, but selection of appropriate parameters 
has significant influence on the estimations. 

Results on real datasets show that choosing correct algorithm parameters is 
now very important and selection of  single best distance function is impossible. In 
Table 2 the highest accuracies, marked in bold, appear for different methods for each 
dataset. The GVDM distance does not work so well now, sometimes giving large 
variance of results for different parameters of probability estimation algorithms. 
These results, unfortunately, do not lead to any definite conclusion about what type 
of distance should be used or which values of parameters are the best. If some values 
of estimation parameters are wrongly chosen, contours of probability distribution 
may be very jagged and important information about data may be lost.  
 Some general conclusions about appropriate values of estimation parameters 
may be reached. For LVDM distance it is impossible to select accurate window size, 
for example, for the Flag dataset the most appropriate value is 0.4, but on the Glass 
dataset for the same value almost the worst results have been obtained; still the 
standard deviation of the accuracy for LVDM is rather small for all datasets, making 
this method rather insensitive to the choice of its parameters.  

Much better but less stable results were obtained with GVDM algorithm. 
Although for all datasets σ=0.5 leads to the best or nearly the best results, the 
variance of these results is larger. DVDM and IVDM methods were tested only with 
two significantly different parameter values, but the differences in accuracy is rather 
small for these methods. The Parzen window PVDM algorithm tends to prefer small 
step sizes, with the best results achieved with step 0.05 and 0.01, while the step size 
of 0.1 led to the worst results; also a wider window is preferred, about 0.6-0.7. 

The comparison between different methods is not so clear, calculations 
performed on some datasets show that even the simplest DVDM measure may 
sometimes give good results. This situation occurs when a gap between different 
classes is very small, and the more advanced techniques that use smoothing usually 
lead to an increased number of errors; it is especially important for datasets with 
small number of training vectors. 

An interesting extension of the work described here may be done by replacing 
VDM metric function with another probability distance metrics, such as the 
Minimum Risk Metric (MRM) or Short and Fukunga metric (SFM) [8]. Also other 
kernel smoothing techniques should be analyzed and compared. A significant 
influence of more advanced discretization algorithms may be expected. These 



30 Blachnik M., Duch W.  

Studia Informatica  vol. 1/2(7)2006 

methods will be analyzed in the near future. The final goal is to create the simplest 
and most accurate P-rules for any kind of data.  
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