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Abstract: An interesting and little explored way to undenstalata is based on prototype rules
(P-rules). The goal of this approach is to findirpl similarity (or distance) functions and
position of prototypes to which unknown vectors eompared. In real applications similarity
functions frequently involve different types ofrdttites, such as continuous, discrete, binary or
nominal. Heterogeneous distance functions thatmaaylle such diverse information are usually
based on probability distance measure, such asv#iee Difference Metrics (VDM). For
continuous attributes calculation of probabilitiexjuires estimations of probability density
functions. This process requires careful seleatibseveral parameters that may have important
impact on the overall classification of accuracy.

In this paper, various heterogeneous distance ihmttased on VDM measure are presented,
among them some new heterogeneous distance fusidiased on different types of probability
estimation. Results of many numerical experimentis such distance functions are presented on
artificial and real datasets, and quite simple [Bsrufor several heterogeneous databases
extracted.

Keywords: Prototype rules, probability estimation, heteragers distance functions, similarity-
based methods, classification, data mining.

1 Introduction

Many important problems in artificial intelligencemay be reduced to
classification problems. Despite the problem, thistill a very active research area.
Many different approaches to classification haverb@roposed, including such
popular methods as artificial neural networks omppart vector machines.
Unfortunately their possible applications are laxit because they usually act as
black boxes, and it is impossible to understandr tbecisions in logical terms
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(however, it is possible to visualize them [1]).rBome inputs their decisions may
be unpredictable, leading to disastrous conseqsendas constitutes the reason
why they may be dangerous to use in decision stippgstems that require
transparency of decisions. If some understandinglaié is demanded, machine
learning algorithms for logical rule extraction amsed [2]. The challenge is to
generate a set (or multiple sets) of rules that bél reliable, accurate and easy to
understand by humans. Although the need for rutedalescriptions is generally
acknowledged, many methods create too many rulés tad complex conditions,
which, in effect, results in incomprehensible dggwns of data. In such
a case it may be better to use reliable pattemwgrétion classifiers rather than rules.

Statistical approaches based on the “divide-amdiger” idea lead to
univariate decision trees that generate crisp logies operating on each attribute
separately. The most popular examples are Quini@a4:s, Breiman’'s CART [3] or
SSV tree algorithms [4]. Expressive power of crigfes (C-rules) is rather limited,
therefore fuzzy rules (F-rules), generated by nieamy systems [5] are frequently
used, although they may sometimes generate ratimeplex description of the data
that is hard to understand, even though a simp#p @et of rules exists [2]. An
alternative is offered by recently introduced ptgpe-based rules (P-rules) [6, 7].
The F-rules and P-rules may be transformed intd edler and allow to express
more interesting concepts than crisp logic rulespdeiments showed that both
approaches are usually capable of generating higldgurate, yet small and
understandable sets of rules.

To specify F-rules the shape of membership funstioas to be defined, and
parameters determining rule properties have todtienated from the data. For P-
rules the type of distance measure has to be dkfifibe usual choice is the
Euclidean distance function or more generally thekdvsky's family of distance
functions. However, in practical applications inist always the best solution. In real
world, most datasets have mixed types of attriburéth some real-valued, some
discrete, and some symbolic or nominal ones. Foh gilata, Euclidian distance
functions are not directly applicable. In caseyhbolic features results will depend
on the method of conversion from nominal to numertues. This problem also
plays a role in fuzzy rules, where it is sometimes clear what type of a specific
membership function is appropriate.

Mixed types of attributes may be used in heteregar distance functions
that use different types of measures for differgmtes of attributes, combining
information contained in their differences. Thipeyof functions are usually based
on probability distance measures, such as the Valfierence Metric (VDM) [8],
adopted for continuous attributes by estimatingophility density function for real
feature values. The process of estimation reqtireselection of several parameters
that may have an important influence on overalsifecation accuracy. This is the
subject of this paper.
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Section 2 describes relations between F-rules Rundles, and advantages
which may be derived from this relation. In secti@ndifferent heterogeneous
distance function based on VDM measure are predeection 4 presents some
new heterogeneous distance functions based onrdliffetypes of probability
estimation. Numerical experiments on artificial ardl data are presented in section
5, and, in section 6, the summary of results i®givand some conclusions are
drawn.

2  F-rules versus P-rules

Classical crisp logical rules are quite easy toeusiind, seem to be natural to
most people, are easy to apply, and, thereforeinavéde use in decision support
and similar applications. However, if the goal & understand real-world data
collected from some experiments crisp rules magrofail, because a large number
of these rules with many conditions may be neededking it impossible to
understand the structure of the data. F-rules ande® are much more flexible and
a smaller number of such rules may be sufficiehusl also more robust and easier
to understand.

The process of learning F-rules starts with selgahe shape of membership
functions (MF), their initial position separatelyrfeach feature as well as selecting
appropriate fuzzy operators like T-norms, aggregatoperators and inference
scheme [5]. In the second step of the learningge®algorithms tune the spread and
position of each membership function and try tesehppropriate combination of
these functions to extract fuzzy if-then rules. Isotethods are often based on neural
adaptation algorithms, and therefore are calledaiurzy systems.

In P-rules the goal is to optimize the positiorpodtotypes to which unknown
vectors will be compared using previously chosestagice function or similarity
measure. Two different types of P-rules exist. tFitse nearest neighbour rules
(NNR), where the distance is calculated betweennawk case and all the
prototypes, and the prototype that is most simidarsed in the condition part of the
rule, claiming that the output class is the samthaslass of the nearest prototype:

IF P'=argmin D (X, P,)THEM C(X) = C(P)
a=lL

whereX is the input vectorP, is one of the L prototypes, andR}(is a function
returning the label of the vectd®. These rules are discriminative, and for two
prototypes from different classes define a decisigmerplane between them.

P-rules of the second type are threshold ruleg (¥tkere each prototype has
associated threshold value defining subspace dfagictn and all vectors that fall
into this subspace have output label that is theesas this prototype label.

IP D(X, P) < Tr THEN C(X) = C(P)
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where Tr is threshold value. These rules provideedags of parts of the feature
space.

F-rules, and more precisely their MF, have foujamanterpretations [8]. One
of the most popular and natural interpretationsstio explain MF as a degree to
which elements of univers¢ are similar to or typical of a fuzzy setdefined by its
MF. From this perspective, F-rules seem to be xiapease of similarity-based
learning (SBL) [10]. This observation leads to ngevspectives in both fields: SBL
and Fuzzy Modelling. New distance functions maydeeived from membership
functions, and vice versa [6,7]. The simplest examip transformation between
additive distance functions, which is equivalenatproduct of MF using exponential
transformation function:

m

D(x,y)* = ;Wi (x -y )
Fu= exp(D(x,y)z): ex;{iwi (xi =i )2} = Ijexp(wi (xi =i )2)
Fu= ﬁ #i(x); ﬂi(Xi)zexF’(V\’i (xi _yi)z)

=

The main weakness of F-rules is the difficulty timeir application to
heterogeneous datasets. Theoretically, fuzzy saisatso be defined for arbitrary
features, however most of the neurofuzzy systemsNEFCLASS, ANFIS) do not
support symbolic or non ordered attributes, anddaefamed only for real input values
[5]. The problem with automatic construction of Mies nominal attributes may be
solved using the SBL approach. Probability-basstadce functions, such as VDM
metrics, may be defined for any type of featurew] they may be combined with
real-valued features in heterogeneous distancetifunsc (HDF) [11]. They are
described in the next two sections.

3 Heterogeneous Distance Functions

In most similarity based systems, such as the seamighbour [3], Radial
Basis Function networks, or self-organizing map&],[IMinkovsky’s distance
function are used, sometimes in rotated coordisgstems, or, for example the
Mahalanobis distance function. Unfortunately, ttyise of distance functions does
not support symbolic and nominal features thataditen found in real applications.
On the other hand, the Value Difference Metrics W)and similar metrics [8] give
very good results for symbolic attributes, but gsiib directly with continuous
attributes is impossible. To construct prototypeeduh rules for datasets with
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different types of attributes both types of sinitlafunctions should be combined in
a heterogeneous distance function [11].

VDM distance measure is based on calculation dferdinces between
posterior probabilities:

VDM(X,Y) = Svdm(x,,y,) (1)

vdm(x,, y,)* = ;(D(Ci %) = P(C; | V) 2
where probabilities are estimated by frequencies:
NX.:
p(Ghg)=—2 3)
Nxg

X andY are input vectord\x, is a number of instances in a training set withieaf
X, for the attributen, Nx, is the same al, but for the clas€;, n is the number of
classes andm is the number of attributes. P-rules use heteregesn distance
functions (HDF) for features of mixed types. Ondha simplest ways leading to the
HDF is the combination of the Euclidean and VDM riost called the
Heterogeneous Value Difference Metric (HVDM) [10]:

HVDM(xy) = | 3 d3(xa Ya) (4)
a=1

1, X or y areunknown
da(x,y) =

where

n_vdmy(x,y) aisdiscreteor nominal )
n_difa(x,y) aiscontinues

For the nominal dataX,y) assumes one of the forms:
N1:

NINXg;  Nyg;
n_vdmg(x,y) = 3 —aL -—2al
_vdmg (x,Y) ZIN Nys

N2:
n (6)
n_vdmg (x.y) =) 3, |8~

N3:

n

d Y) =
n_vdmg(x,y) \/nDEl

2
NXai _ Nyaj
Nxa  Nya

and for continuous data

n_vdm, (x,y) :% (7
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whereo is the standard deviation for the attribat& he Euclidean distance used by
HVDM for continuous features is normalized by stamtideviation of the attribute
to reduce the influence of the outliers.

Three different forms of VDM distance with diffeite normalization
technique are used, and the decision which oneldhio® chosen depends on
a designer of the system. The main problem usin@M\is normalization, because
it is very difficult to balance different terms the overall distance metric. This
problem does not occur for the Value Difference fidevhere posterior probabilities
are estimated for both discrete and continuousifeat However, in such a case the
estimation of probability density for continuousfieres is a big problem. Martinez
and Willson [10] also described Discretized Valudfddence Metric (DVDM) and
Interpolated Value Difference Metric (IVDM ).

DVDM is based on discretization process, and fontiouous attributes
a simple constant width discretization method isdusDVDM is defined by the
equation:

m -« .
DVDM(x,y)? = az_lvdnh(dls%(xa),dlsoa(ya))z 8)
Wherediscis a discretization function defined as:
X—ming

discy(Xg) = { Wy

X if xisdiscrete

J+1 if xiscontinous

9)

min, is the minimum of attributa andw, is a parameter describing the number of
discretization bins. However, the upper part ofaigun (9) can be replaced by
a different form of discretization algorithm.

IVDM is very similar to DVDM, but to improve thecauracy of posterior
probability estimates a simple linear interpolatisnised. IVDM is defined by:

m
IVDM(x,y) = X indm, (X5, Yg) (10)
a=1
vdmy, (X5, Yg) aisdiscrete
ivdm, (X5, Ya) =9 n 2 11
"aa: v ,Zip .(x)—p (y)‘ aiscontinous (1)
i=1 al al
where
X —mid
LX) = o+ au O
Pai(¥)= Paiu Midy o 47 -Midy | 12)

(Dai,u+1 - paiu)
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Here py, and pyu+1 are posterior probabilities calculated in the reddf the
discretized rangas and u+1, u=disc(x) and mid,, and mid, ., are middles of
discretized ranges and nexu+1, for which actuak, fulfil inequality.

4 New Heterogeneous Distance Functions

The main problem in the application of VDM distanmeasure to continuous
attributes is to obtain appropriate shape of pasterobabilities. For discrete or
symbolic features they can easily be computed uBeguencies, Eq. (3), but for
continuous attributes it will not work. Two simpiechniques were presented in the
previous section, but a better algorithm used fetednining posterior probabilities
may lead to a better overall results. These nevhoast are based on equation (11),
but with a different density estimation technique.

4.1 Gaussian Value Difference Metric

Kernel smoothing techniques, for example Gaussiaooshing kernels, allow
to calculate the posterior probability as:

M; [{ X 2
P(C %) =| Xex —(ij
j=1 ag

where M; is the number of all vectors from the same classo is the width of
Gaussian functions, ambrmis the normalization factor calculated by:

n| M [{ X 2
norm=1 Y| Y ex —[a‘j (14)
k=1| j=1 ag

4.2  Local Value Difference Metric (LVDM)

Chorm (13)

Very simple and very fast technique for estimatingbability is based on the
Local Value Difference Metric (LVDM). This methodses local calculation of
probability density surrounding the query data poin this method, probability is
calculated by the equation (3), but the valu&gf is the number of points in class

' idt
G in the range limited t{xa— W'itha Xg W'Zha , andNx, is similarly calculated

in this range for all classe®Vidth, is a parameter defining a range of widths for
attributea.
4.3 Parzen Value Difference Metric (PVDM)

Another solution for density estimation is based tbe Parzen Window
technique [3] where a rectangle window is movedths step through the whole
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range of attributea, and probability is calculated as a mean valualbfvindow
probabilities where occurs:

_ 1% Ny(x)
PCIX=Z £ {5 (15)
widthy,

whereZ is number of windowszZ = step, ' b is the index of first window whene

occurs,N(xy) is the number of data points #th window that belong to clasg,
NL(X;) is summed over all classesidth, is the window width for attribute, and
step is the size of the window movement.

5 Numerical Experiments

Experiments were performed on artificial and reatad The artificial data
were generated to check the quality of probabé#timations, and the influence of
the parameters used on the probability estimatmuracy. Two artificial datasets
were generated for this purpose. First datasettivaddimensions, 3 classes, with
vectors for each class generated from a normaildlision. The second dataset also
had two dimensions and 3 classes, but data veaters generated using uniform
distribution. In both datasets classes were pbrtiaderlapping.

In the second set of experiments P-rules werergtat using probabilistic
distance functions for several datasets taken frloenUCI repository of machine
learning datasets [13]. For these experiments réiffedatasets were selected with
different types of attributes: continuous, discrsigmbolic and nominal.

All tasks were carried out with SBPS software systespecially developed
for that purpose. SBPS is a similarity based ru#laegating system that allows for
defining different types of distance functions tbfferent attributes and combining
the results obtained with each feature into a fivaue. SBPS system includes
several prototype selection and optimization athams, which are used to simplify
and improve initial rules. To compare the resultsamed in different experiments
only Fuzzy C-means algorithm for prototype selattémd LVQ algorithm for their
optimization have been used [12].

5.1 Artificial datasets

Artificial datasets were created to verify the dyabf five methods for
probability estimation, compare them with a heterspus distance function, and
evaluate the influence of parameters of these mdstlom the final classification
results. For the first artificial dataset with naindistribution of samples in each
class optimal border shape can be obtained usiotidéan distance function. These
results determine a basis to judge and comparétyedlprobability estimation and
classification for other functions. In this testlyorone prototype per class was
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generated. To reduce the influence of randomnedssarify generalization 10-fold
crossvalidation test was performed. Results predeimt Tab. 1 show balanced
accuracy for each method.

Table 1.Balanced accuracy for different methods of proligbéistimation
obtained on artificial datasets

HVDM GVDM LVDM VDM DVDM
sig 0.2 | sig 0.5 ] sig 0.7fjwidth O.Jwidth O0.Jwidth O Jwidth O.JCW 10 JCW 5 CW 10] CW 5
-
3 Bal. > A o A N > o 3 A > o o
2 © ? Y Q X ® > Y > X3 @
§ ace | © & & ® © © ® ® & > © S
o~
3 Bal. o > A > N A % o > o A >
& ) > © > N " > N \J ® v >
g Acc | & & £y BN ® ® ® ® ® ES & @
PVDM
Step 0.1 Step 0.01 Step 0.05
wo.2 |woa Jwos Jwo7 | wo2 | woal| woe| wor] woz| woas|l woe wo.q
-
] Bal. A S % A o Y o o A
2 © 2 > Y N @ N @
2 Acc [ & o & o B B o o o> o> o o°
o

5.2 Real datasets

The 6 types of VDM distance functions have alsonttested on real datasets
to verify theoretical considerations. Several detmsvith different types of attributes
were selected from the UCI repository: Flag, Gldsis, Lancet and the Pima
Indians. Since the aim was to obtain maximum badnaccuracy for all these
distance measures, we have used the algorithmofostrmictive rule generation to
maximize classifier abilities.

The constructive algorithm for generation of Pemuldoes not favour any
distance function because it adds a new prototyfbe class with lowest accuracy,
maximizing overall balanced accuracy calculatedaamean value of individual
accuracies. In all cases, the algorithm was stogfied 10 iterations, generating at
most 10 prototypes per class.
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Table 2.Balanced accuracy for different methods of proligbéistimation
obtained on real datasets

flag glass iris lancet pima
HVDM Bal. Acc Bal. Acc Bal. Acc Bal. Acc Bal. Acc
18,95¢ 37,772 96.00C 90.,22¢ 73.74C
GVDM
sig 0.z 23,22¢ 48,94¢ 96,00C 89,99¢ 71,81¢
sig 0.t 30,20¢ 55,367 96,667 89,771 71,401
sig 0.7 28,43¢ 46,86¢ 96,667 89,771 71,38¢
mear 27,292 50,394 96,444 89,84¢ 71,53¢
std 3,62¢ 4,431 0,38E 0,12€ 0,244
LVDM
width 0.2 25,62¢ 47,77¢ 96,00C 90,10: 72,88¢
width 0.4 27,70¢ 44,147 96,667 89,99¢ 72,04¢
width 0.€ 26,562 48,97¢ 95,332 89,99¢ 71,49¢C
width 0.7 26,87¢ 42,054 94,00C 89,771 71,67¢€
mear 26,692 45,73¢ 95,50C 89,967 72,02¢
std 0.861 3,202 1.13¢ 0,137 0.61C
PVDM
WO0.2 St0.: 30,10¢4 39,722 96,667 90,10: 71,617
W 0.4 St0.: 26,562 42,63¢ 96,667 89,99¢ 71,504
W 0.6 St0.: 24,37¢ 49,702 95,332 89,771 70,531
WO0.7 St0.: 27,39¢€ 49,20¢ 96,667 89,87¢ 71,03«
W 0.2 St0.0: 29,47¢ 46,35¢ 96,00C 90,00¢ 71,82C
W 0.4 St0.0: 25,62¢ 45,694 96,00C 89,99¢ 71,46¢
WO0.6 St0.0: 24,37¢ 58,04¢ 96,667 89,771 71,23¢
WO0.7 St0.0: 27,082 48,07¢ 96,667 89,771 71,041
WO0.2 St0.0! 28,542 46,31¢ 96,00C 90,10: 71,38¢
W 0.4 St0.0! 26,25C 44,34t 96,00C 89,99¢ 71,482
WO0.6 St0.0! 24,37¢ 56,141 96,00C 89,771 70,97C
W0.7St0.0¢ 27,81¢% 56,37¢ 96,667 89,771 71,55¢
mear 26,832 48,557 96,27¢ 89,91: 71,307
std 1,952 5717 0.,44€ 0,132 0,35E
IVDM
CW 10 26,56¢ 46,984 96,00C 90,22¢ 70,81¢
CW 5 26,042 48,651 96,667 90,117 72,37¢
mear 26,302 47,817 96,332 90,171 71,597
std 0,36¢€ 1,17¢ 0,471 0,077 1,101
DVDM
CWw 10 26,97¢ 43,81C 97,33:% 90,32t 71,081
CWwW 5 27,082 50,63¢ 94,667 90,33¢C 70,142
mear 27,031 47,222 96,00C 90,327 70,61z
std 0,074 4.82¢€ 1,88€ 0,003 0,664

Because of the normalization problem of differeistahce functions, all continuous
features in all datasets were standardized andrtbemalized to the interval [0,1].

The highest balanced accuracy for each combinafigrarameters for all datasets is
presented in Table 2.
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6 Discussion of results and conclusions

The “no free lunch” theorem [3] says that no singlgorithm for data
analysis may always be the winner, and the requltsented in Tab. 2 certainly
confirm it. For artificial data the GVDM algorithreeems to be better than other
estimation methods. It could be expected thatalyerithm should give a very good
results for this type of artificial data, with higtensity of points, generating the
smoothest estimated probability distributions, $lection of appropriate parameters
has significant influence on the estimations.

Results on real datasets show that choosing coatgotithm parameters is
now very important and selection of single bestatice function is impossible. In
Table 2 the highest accuracies, marked in boldeapfor different methods for each
dataset. The GVDM distance does not work so well,neometimes giving large
variance of results for different parameters ofbatality estimation algorithms.
These results, unfortunately, do not lead to arfinitie conclusion about what type
of distance should be used or which values of patars are the best. If some values
of estimation parameters are wrongly chosen, castofi probability distribution
may be very jagged and important information algata may be lost.

Some general conclusions about appropriate valfiestimation parameters
may be reached. For LVDM distance it is imposstblselect accurate window size,
for example, for the Flag dataset the most appatgwalue is 0.4, but on the Glass
dataset for the same value almost the worst resialt® been obtained; still the
standard deviation of the accuracy for LVDM is eatemall for all datasets, making
this method rather insensitive to the choice opasameters.

Much better but less stable results were obtaingd VDM algorithm.
Although for all dataset®=0.5 leads to the best or nearly the best restiits,
variance of these results is larger. DVDM and IVIDMthods were tested only with
two significantly different parameter values, b differences in accuracy is rather
small for these methods. The Parzen window PVDMrétlgm tends to prefer small
step sizes, with the best results achieved with 8t85 and 0.01, while the step size
of 0.1 led to the worst results; also a wider wivds preferred, about 0.6-0.7.

The comparison between different methods is notclear, calculations
performed on some datasets show that even the esmpVDM measure may
sometimes give good results. This situation oceungen a gap between different
classes is very small, and the more advanced gabsithat use smoothing usually
lead to an increased number of errors; it is egfilgcmportant for datasets with
small number of training vectors.

An interesting extension of the work described heeg be done by replacing
VDM metric function with another probability distee metrics, such as the
Minimum Risk Metric (MRM) or Short and Fukunga met(SFM) [8]. Also other
kernel smoothing techniques should be analyzed @wdpared. A significant
influence of more advanced discretization algorghmay be expected. These
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methods will be analyzed in the near future. Tihnalfgoal is to create the simplest
and most accurate P-rules for any kind of data.
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