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Abstract. This paper compares performance of a hidden Markodel (HMM) and a hybrid
HMM/ANN model in seismic events modeling. Obsemativariables are assumed to follow
a Poisson distribution. Parameters of the disc¢iete-two-state models are estimated on the basis
of data on seismic events that were recorded ianédrom 1991 to 1995. Then, on the basis of the
estimation results, the most likely sequencesaiéstof the hidden Markov chains are found and
forecasts for January 1996 are made. It is shoairtlile hybrid model fits better to the data.
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1 Introduction

Hidden Markov models (HMMs) are models with unobedr (hidden)
Markov chains. They were introduced in 1966 by Baamd Petrie [3]. Since then
HMMs have been widely used in speech recognitiott signal modeling [4, 9].
Nowadays it is believed that they are one of thet b@d most successful acoustic
models [10]. According to [2], HMMs have been apgliin time series analysis
since the mid 1970s.

Hybrid HMM/ANN models combine HMMs and artificialenral networks
(ANNSs). The hybrid models emerged in the beginrohthe 1990s and the goal was
to take advantage from the features of both HMM$ ANNSs. A variety of different
architectures and training algorithms have beerpgsed for these models [13].
There are, among other architectures, hybrid mosighsperceptrons and multilayer
perceptrons (HMM/MLP), radial basis function netk®r (HMM/RBF), self
organizing maps (HMM/SOM), recurrent neural netveo(kIMM/RNN) as well as
time delay neural networks (HMM/TDNN) [7]. Thoseunal networks play different
roles in hybrid models: they provide distributiomrameters, emulate HMMs,
transform observations into a form that is moretadé for HMMs, perform
guantization of signals in signal models and haraesother functions [13].
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So far their applications hardly go beyond speecognition and signal modeling.
There are, however, some papers on using the hgiwikls in time series analysis.
For example Rynkiewicz [11] presents a hybrid HMMMI model for time series
prediction.

Application of the hybrid models in time series lgss seems to be
promising as they could fit better to the data thiMs. Unlike in HMMs, in such
models the parameters of observation distributaresnot assumed to be constant. In
the hybrid models these parameters depend on t#hdops observations through
ANNSs. Thus an additional information on the prewonbservations is used what
cannot be done directly in HMMs. In this paper trexformance of a HMM and
a hybrid HMM/ANN model is compared in seismic eventodeling for Poland.

Modeling and forecasting earthquakes (and catdséopn general) is an
important issue as far as risk assessment is aweterUsually, the short-term
forecasts are based on phenomena which are thtwudfg associated with seismic
events, while the long-term forecasts assume @ldliature of earthquakes. One of
the biggest problems in this field consists infédet that it is usually difficult to find
out what caused an earthquake. One can observeiceigents in a given region but
it can be assumed that behind them there is ansenadd and changing seismic
activity of the region that influences occurrenédhmse events. Therefore, models
with unobserved Markov chains seem to be suitabeséismic events modeling.
The states of a hidden Markov chain could be retto as the states of different
(e.g. lower and higher) seismic activity.

2 Modds

2.1 Hidden Markov M odel

Let {C: t O N} be an irreducible homogeneous Markov chain lo@ $tate space
{1, 2} with transition probability matrix:

r= |:V11 V12:| — |:1_ Y1 Y1 :| (1)
Y1 Yo Y2 1- Y-

where for all statesandj and timed:

Yi = PC =jIC.=i)- (2)

As {C} is finite-state and irreducible there is a uniciationary distribution:

&'=[s, 51]:{"2 . } (3)
YitY, YitYe
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The stationary distribution is taken as the initatribution. The Markov chainG}
is unobserved.

Let {S: t O N} be such a random process that discrete randimables §: t
=1, ..., T} are mutually independent giverC{ t = 1, ..., T} and if C; =i then§
follows a Poisson distribution with a me&n

P(§ =5IC, =i)= = = SN 4

g
The probabilitiesty; = 1; do not depend on time.

On the contrary to the Markov chain, the proceS} i6 observed and thus
values of the variableS are called observations. This model definitiosimilar to
the definition given in [8].

Given the model, the probability of the observatisaquence i.e. the
likelihood function can be written as in [8]:

2 2 2
Lr =P(§=s,...5 =57 ):iZ_li Z_l--i-rz_l[(lﬂslil 27 i Tl OV i Vii iy )]

®)
Estimation of the model parameters can be perfortnednaximizing the

likelihood function. Another important function ige probability of the state
sequence conditioned on the observation sequefice [8

PGy =G =iy 1§ 75,08, =8y) = ol B0 - s)

Maximization of this function makes it possible fimd the most likely
sequence of states of the hidden Markov chain,ngflie observation sequence and
the estimated model.

As far as forecasts are concerned, there is a lugefoula for the expected
value of the next observati@.;, given the observation sequence [8]:

1
E(Sr S =88 =8) =8 1A(S)TA(S,) - Lr (sl 1 )
where i(s) =diag([,n,, ,7,]") and,,L =diag[\, A,])-

In case of a two-state Markov chain the first emteatime from stateto state
j is equal to ¥ and the first return time to stdtes equal to 1.

Atrtificial Intelligence
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2.2 Hybrid HMM/ANN M odéel

Let {C: t O N} be a hidden Markov chain as it was definedha previous
section and let$: t O N} be such a random process thaCif=i thenS follows
a Poisson distribution with a meai(s) wheres = [s., S.1]' IS a vector of two
observations prior t& andA;(s) is theith output of a neural network in cagés its
input. Hence, the conditional distribution @fcan be written as:

Ai(s) s
P =sIC, ==m, =S &L ®)
Unlike in the HMM, the probabilitiest; depend on time.

The neural network is called a match network as dtgputs replace
parameters of conditional observation distributidi®]. It is assumed to be
a perceptron with two units both in the input layerd in the output layer. The
architecture of this neural network is shown inufeg2.1.

X1

Xz

Figure 2.1. Architecture of a perceptron used in the hybridiglo

In the input layer there are linear units that hamddentity transfer function
Vi = fin(%) = X wherex, is an input received bith unit (x; = s., andx, = s.4). In the
output layer units are nonlinear and the transfacfion is the following:

alnx +a dlax =1 (9)

ae*™  dlax <1

Vi = fou(X) :{

wherea is a parameter such that] R, andx; is a total input that thith unit in this
layer receives from the units in the previous layer

2
% :zvvikyk-‘-l. (10)
k=1

According to (10), in the output layer the threshof a unit equals 1. Since
the transfer function is such that R, and it is assumed thaf(s) =y, for each
statei of the Markov chain, the valug(s) is real and positive and thus it can be
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a mean of a conditional Poisson distribution fokabyS. Therefore, no additional
constraints on neural network weights and distifmuparameters are needed in the
model estimation process. On the contrary to theilynodels, the HMMs lack that
advantage. As in case of the HMM, the proc&3si§ observed.

Parameters of the hybrid model can be estimatedether including weights
of the neural network and the estimation can bdopaed using the maximum
likelihood method [1, 12]. Both (5) and (6) areerfor the hybrid model as well as
for the HMM. The formula (7) is also valid for tigbrid model with the difference
that L =diag[\,(s;) A, (s)])-

Apart from match networks described in this segtithrere are transition
networks that can also be introduced into a hybmmtel. Outputs of a transition
network replace transition probabilities and thusse probabilities are not constant
[10]. Therefore, a hidden Markov chain is non-hoemgpus in the hybrid model
with a transition network.

Instead of one match or transition network, thear be a separate network
for each state of the hidden Markov chain. Suclwagts have the same architecture
for all states while their weights vary from stadestate [10].

In between the HMMs and the hybrid models thereotiner modifications of
the HMMs, namely models in whichiy; probabilities or transition probabilities
depend on some additional variables such as, &arce, previous observations [8].
Modeling those dependencies using neural netwarids to development of the
hybrid models (with match networks in the formeseand with transition networks
in the latter case).

3 Data

Seismic events in Poland have been recorded bynétwork of seismic
stations for many years. The magnitude of the aEmbievents does not exceed 6 on
the Richter scale. Most of these events are ntanecearthquakes but collapse ones
i.e. earthquakes in underground caves and minésmieevents occur mainly in
southern and south-western Poland.

The data used in this research come from the Bpeolnternational Data
Centre and were downloaded from the web page atlidgniew Zwoliski from the
Institute of Quaternary Research and Geoecologidatm Mickiewicz University
in Pozna [14]. The data concern number of seismic even#és tiere recorded
in Poland in successive months from January 1991Déxember 1995 (60
observations). Additionally, the data for Janua®®@ were used in order to compare
them ex-post with the forecast results. Only evevite magnitude 3 or more are
taken into consideration because they can be tremteare phenomena and modeled
using a Poisson distribution. Sample statisticat there calculated on the basis of
data used for the models estimation, are presémfédble 3.1.

Atrtificial Intelligence
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Table 3.1. Sample statistics

Statistic Value
Minimum 1
Maximum 15

Mean 6.897
Variance (variation
coefficient) 9.743 (45.3%)

Monthly numbers of seismic events with magnituder3more fluctuated
between 1 and 15. In the period under study there wn average 6.897 such events
a month. From the fact, that the sample mean doegqual the sample variance,
it could be concluded that there is overdispergiaine data [5]. However, in case of
the HMMs with Poisson distribution, overdispersisran acceptable phenomenon as
it can be shown that the mean ®fdoes not have to be equal to its variance [8].
It seems that in case of the hybrid models oveed&pn is not a problem, either.
Tolerance of overdispersion is a significant adagat of the HMMs as that
phenomenon is often observed in data.

4 Reaults

4.1 Estimation Results

On the basis of 58 observations (starting from Mat®91) both models
described in Chapter 2 are estimated. The obsensfior January and February
1991 are used as a neural network input in theithyhodel for March 1991. In the
hybrid model the parameter of the transfer function is assumed to equal 1ia75
the output layer.

The model parameters are estimated using the maxilikelihood method
and the likelihood function is maximized using génalgorithms. The likelihood
function value is greater in case of the hybrid ei¢8.0891.0%°) than in case of the
HMM (4.680 010°Y. The sum of squares is calculated as a sum odreguof
differences between the observations and the esghectiues of§ and once again
a better result is obtained for the hybrid modéb.839 in comparison with 565.352
for the HMM. Greater likelihood function value amearly 20% lower sum of
squares prove that the hybrid model fits betteh#odata.

The estimates of model parameters are shown ineTalil The estimates of
the parameterg; and y, are similar in both models (ca 0.02 and ca 0.06,
respectively). This results in similar estimateshaf transition probability matrix and
the stationary distributioas well as the first entrance and return times.
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Table4.1. Maximum likelihood estimates of the model pararsete

Parameter Hidden Markov model Hybrid HMM/ANN model

Y1 0.024 0.022

Y2 0.066 0.059

M 5.419 -

A2 9.372 -

Wig - 6.826

Wi, - -1.168

Wy - 105.944

Wy, - -20.659

The estimates of the stationary distribution eletmeand other model
characteristics are shown in Table 4.2. In cast®fhybrid model the estimates of
the parameters; anda, for the successive months are calculated as cutfuthe
neural network with the estimated weights. In baibdels the estimate of the
expected value df, equals ca 9 and is more than one and a half tgrester than
the estimate of the expected valuelgf(ca 5.5). Therefore, the first state of the
hidden Markov chain could be called the state efelo seismic activity and the
second state — the state of higher seismic actikityhe HMM the estimates of the
parameterd,; and, are by definition constant while in the hybrid rebdhey are
characterized by the relatively small variation%d.énd 12%).

Table4.2. Estimates of the model characteristics

Characteristic Hidden Markov model Hybrid HMM/ANN ohel
31 0.731 0.723
S 0.269 0.277
The first entrance time
from state 1 to state 2 40.917 44.484
The first entrance time
from state 2 to state 1 15.044 17.050
The first return time
to state 1 1.368 1.383
The first return time
to state 2 3.720 3.609
Expected value of; 5.419 5.730
Expected value of, 9.372 9.092
Variance of\, (variation
coefficient) 0 (0%) 0.852 (16.1%)
Variance of\, (variation
coefficient) 0 (0%) 1.220 (12.1%)
Expected value df 6.482 6.661*
Variance ofS
(variation coefficient) 9.554 (47.7%) 8.935 (45.4%)*

Atrtificial Intelligence
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From the estimates of the stationary distributilemeentsd; andd, it could be
concluded that according to both models, after rgléime the probability of
a Markov chain being in the state of lower seisamtivity equals ca 0.73 and is
nearly three times greater than the probabilitg dMarkov chain being in the state of
higher seismic activity (ca 0.27). Thus it appehet in Poland the dominating state
is the state of lower seismic activity.

The estimates of the first entrance times coulthterpreted in the following
way: if Poland is in the state of lower seismid\tt then the country is expected to
move to the state of higher seismic activity in endhan three years (over 40
months) while if Poland is in the state of higheismic activity then the country is
expected to move to the state of lower seismio/iagtin more than one year (over
15 months).

As far as the estimates of the first return timee a&oncerned, the
interpretation could be the following: if in a givenonth Poland is in the state of
lower seismic activity then next time such a mastbxpected to be in ca 1.4 months
(so itis likely that simply it will be the next mth) while if in a given month Poland
is in the state of higher seismic activity thentrtére such a month is expected to be
in ca 3.7 months.

From the long first entrance times and short rettimes it could be
concluded that in general periods of both higher lamwer seismic activity are rather
long in Poland.

Unlike in the HMM, in the hybrid model the estimatef the expected value
and variance of§ are not constant and therefore only their averadees can be
compared. The average estimates of the expectad aald variance & (ca 6.5 and
ca 9, respectively) are similar in both models anthe sample. As far as seismic
events with magnitude 3 or more are concernedplari®l one could expect ca 6.5
such events a month.

4.2 TheMost Likely Sequences of States of the Hidden Markov Chain

For both the HMM and the hybrid model, the moselyksequences of states
of the hidden Markov chain, given the observati@guence and the estimated
parameters, are found through maximization of threetion describing probability of
the state sequence conditioned on the observatipmesice. Finding such sequences
is called decoding [6]. As in the model estimatjmmocess, the target function is
maximized using genetic algorithms.

As the estimates are similar for both models, thostniikely sequences of
states of the hidden Markov chain are similar, tdbe observations and the
expected values @& given these sequences are shown in Figure 4.1héoHMM)
and in Figure 4.2 (for the hybrid model). Comparthgse figures, one can notice
that the expected values §fare generally closer to the observations in cdsheo
hybrid model than in case of the HMM. In fact thersof squares (calculated as
a sum of squares of differences between the ohs@ngaand the expected values of
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S given the most likely sequence of states) is c& 1dwer for the hybrid model
(287.209) than for the HMM (323.868).

In both cases the most likely sequence is suchthieaarkov chain is in the
second state only in ca 20 successive times gaftimm the 18 time. It could be
interpreted in the following way: Poland was likety the state of higher seismic
activity from April 1992 to the end of 1993, thegirning of 1994. In the rest of the
period under study Poland was likely in the statdowver seismic activity. As
expected, periods of both higher and lower seismiivity were quite long.
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Figure 4.1. Observations and the expected valueS &dr the most likely sequence of states
of the hidden Markov chain in the hidden Markov reod
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Figure 4.2. Observations and the expected valueS &dr the most likely sequence of states
of the hidden Markov chain in the hybrid HMM/ANN whel
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4.3 Forecasts

Using estimates of the model parameters and theredtion sequence makes
it possible to forecast the value of next obseora8.; (number of seismic events
with magnitude 3 or more in Poland in January 1989@frording to the HMM, the
conditional expected value &, equals 5.862 while according to the hybrid model,
it is equal to 6.028. In fact, in January 1996 ¢herere 7 seismic events with
magnitude 3 or more in Poland.

5 Conclusions

Using models with hidden Markov chains for seismi@nts modeling, one
can distinguish states of different seismic agtiwt a given region. On the basis of
data for Poland the states of lower and highermgeisctivity are distinguished.
Similarity between the estimates for the HMM ane #stimates for the hybrid
model suggests that in fact there could be sudbssta

In case of the hybrid model, this hypothesis ispsufed with different
estimates of expected values of distribution patarsefor different states of the
hidden Markov chain. Were those estimates the sBmall states, the hidden
Markov chain would play no role in the model. Thetarally, the following situation
seems possible: the neural network for one stailqovide such a good fit of the
model that the second state would not be needednang. In the described situation
the estimation results would deny the existenca bfdden Markov chain. Then it
could be concluded that the model specificatiomésrrect and instead of the hybrid
model, a neural network alone should be used. Henvthat is not a case in this research.

On the basis of the most likely sequences of statete hidden Markov
chain, it is shown that the state of lower seisagtivity is a dominating one and
periods of both higher and lower seismic activityPioland are generally long.

Although the estimates are similar for both mod#is, hybrid model fits the
data better than the HMM what demonstrates thatithyMM/ANN models can be
an efficient alternative for HMMs. The advantagetioé hybrid models over the
HMMs consists in their larger flexibility and thpsssibilities of getting a better fit.
That flexibility makes it possible, among other lgsas, to develop models of
nonstationary time series. Obviously, the more daated architecture, the larger
flexibility. However, it seems that applications tife hybrid models with more
complicated architectures might be limited with essity of using extremely long
time series. Moreover, estimation of a huge nundbgrarameters might be difficult
to perform in practice.
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