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Abstract. This paper compares performance of a hidden Markov model (HMM) and a hybrid 
HMM/ANN model in seismic events modeling. Observation variables are assumed to follow  
a Poisson distribution. Parameters of the discrete-time two-state models are estimated on the basis 
of data on seismic events that were recorded in Poland from 1991 to 1995. Then, on the basis of the 
estimation results, the most likely sequences of states of the hidden Markov chains are found and 
forecasts for January 1996 are made. It is shown that the hybrid model fits better to the data. 
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1 Introduction 
 

Hidden Markov models (HMMs) are models with unobserved (hidden) 
Markov chains. They were introduced in 1966 by Baum and Petrie [3]. Since then 
HMMs have been widely used in speech recognition and signal modeling [4, 9]. 
Nowadays it is believed that they are one of the best and most successful acoustic 
models [10]. According to [2], HMMs have been applied in time series analysis 
since the mid 1970s.  

Hybrid HMM/ANN models combine HMMs and artificial neural networks 
(ANNs). The hybrid models emerged in the beginning of the 1990s and the goal was 
to take advantage from the features of both HMMs and ANNs. A variety of different 
architectures and training algorithms have been proposed for these models [13]. 
There are, among other architectures, hybrid models with perceptrons and multilayer 
perceptrons (HMM/MLP), radial basis function networks (HMM/RBF), self 
organizing maps (HMM/SOM), recurrent neural networks (HMM/RNN) as well as 
time delay neural networks (HMM/TDNN) [7]. Those neural networks play different 
roles in hybrid models: they provide distribution parameters, emulate HMMs, 
transform observations into a form that is more suitable for HMMs, perform 
quantization of signals in signal models and have some other functions [13].  



8 Bijak K.  

Studia Informatica vol. 1/2(7)2006 

So far their applications hardly go beyond speech recognition and signal modeling. 
There are, however, some papers on using the hybrid models in time series analysis. 
For example Rynkiewicz [11] presents a hybrid HMM/MLP model for time series 
prediction. 

Application of the hybrid models in time series analysis seems to be 
promising as they could fit better to the data than HMMs. Unlike in HMMs, in such 
models the parameters of observation distributions are not assumed to be constant. In 
the hybrid models these parameters depend on the previous observations through 
ANNs. Thus an additional information on the previous observations is used what 
cannot be done directly in HMMs. In this paper the performance of a HMM and  
a hybrid HMM/ANN model is compared in seismic events modeling for Poland. 

Modeling and forecasting earthquakes (and catastrophes in general) is an 
important issue as far as risk assessment is concerned. Usually, the short-term 
forecasts are based on phenomena which are thought to be associated with seismic 
events, while the long-term forecasts assume cyclical nature of earthquakes. One of 
the biggest problems in this field consists in the fact that it is usually difficult to find 
out what caused an earthquake. One can observe seismic events in a given region but 
it can be assumed that behind them there is an unobserved and changing seismic 
activity of the region that influences occurrence of those events. Therefore, models 
with unobserved Markov chains seem to be suitable for seismic events modeling. 
The states of a hidden Markov chain could be referred to as the states of different 
(e.g. lower and higher) seismic activity. 

 
2 Models 
 
2.1 Hidden Markov Model 
 
Let {Ct: t ∈ N} be an irreducible homogeneous Markov chain on the state space  
{1, 2} with transition probability matrix: 
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where for all states i and j and times t: 
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As {Ct} is finite-state and irreducible there is a unique stationary distribution: 
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The stationary distribution is taken as the initial distribution. The Markov chain {Ct} 
is unobserved. 

Let {St: t ∈ N} be such a random process that discrete random variables {St: t 
= 1, …, T} are mutually independent given {Ct: t = 1, …, T} and if Ct = i then St 
follows a Poisson distribution with a mean λi: 
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The probabilities tπsi = πsi do not depend on time. 

On the contrary to the Markov chain, the process {St} is observed and thus 
values of the variables St are called observations. This model definition is similar to 
the definition given in [8]. 

Given the model, the probability of the observation sequence i.e. the 
likelihood function can be written as in [8]: 
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Estimation of the model parameters can be performed by maximizing the 
likelihood function. Another important function is the probability of the state 
sequence conditioned on the observation sequence [8]: 
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Maximization of this function makes it possible to find the most likely 

sequence of states of the hidden Markov chain, given the observation sequence and 
the estimated model. 

As far as forecasts are concerned, there is a useful formula for the expected 
value of the next observation ST+1, given the observation sequence [8]: 
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In case of a two-state Markov chain the first entrance time from state i to state 
j is equal to 1/γi and the first return time to state i is equal to 1/δi. 
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2.2 Hybrid HMM/ANN Model 
 

Let {Ct: t ∈ N} be a hidden Markov chain as it was defined in the previous 
section and let {St: t ∈ N} be such a random process that if Ct = i then St follows  
a Poisson distribution with a mean λi(st) where st = [st-2 st-1]' is a vector of two 
observations prior to St and λi(st) is the ith output of a neural network in case st is its 
input. Hence, the conditional distribution of St can be written as: 
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Unlike in the HMM, the probabilities tπsi depend on time. 

The neural network is called a match network as its outputs replace 
parameters of conditional observation distributions [10]. It is assumed to be  
a perceptron with two units both in the input layer and in the output layer. The 
architecture of this neural network is shown in Figure 2.1. 

 

 
Figure 2.1. Architecture of a perceptron used in the hybrid model 

 
In the input layer there are linear units that have an identity transfer function 

yk = fin(xk) = xk where xk is an input received by kth unit (x1 = st-2 and x2 = st-1). In the 
output layer units are nonlinear and the transfer function is the following: 
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where α is a parameter such that α ∈ R+ and xi is a total input that the ith unit in this 
layer receives from the units in the previous layer: 
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According to (10), in the output layer the threshold of a unit equals 1. Since 

the transfer function is such that yi ∈ R+ and it is assumed that λi(st) = yi for each 
state i of the Markov chain, the value λi(st) is real and positive and thus it can be  
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a mean of a conditional Poisson distribution followed by St. Therefore, no additional 
constraints on neural network weights and distribution parameters are needed in the 
model estimation process. On the contrary to the hybrid models, the HMMs lack that 
advantage. As in case of the HMM, the process {St} is observed. 

Parameters of the hybrid model can be estimated altogether including weights 
of the neural network and the estimation can be performed using the maximum 
likelihood method [1, 12]. Both (5) and (6) are true for the hybrid model as well as 
for the HMM. The formula (7) is also valid for the hybrid model with the difference 
that ))]'()(([diag= 211+ TTT ssL λλ . 

Apart from match networks described in this section, there are transition 
networks that can also be introduced into a hybrid model. Outputs of a transition 
network replace transition probabilities and thus those probabilities are not constant 
[10]. Therefore, a hidden Markov chain is non-homogeneous in the hybrid model 
with a transition network. 

Instead of one match or transition network, there can be a separate network 
for each state of the hidden Markov chain. Such networks have the same architecture 
for all states while their weights vary from state to state [10]. 

In between the HMMs and the hybrid models there are other modifications of 
the HMMs, namely models in which tπsi probabilities or transition probabilities 
depend on some additional variables such as, for instance, previous observations [8]. 
Modeling those dependencies using neural networks leads to development of the 
hybrid models (with match networks in the former case and with transition networks 
in the latter case).  

 
3 Data 
 

Seismic events in Poland have been recorded by the network of seismic 
stations for many years. The magnitude of the recorded events does not exceed 6 on 
the Richter scale. Most of these events are not tectonic earthquakes but collapse ones 
i.e. earthquakes in underground caves and mines. Seismic events occur mainly in 
southern and south-western Poland. 

The data used in this research come from the Prototype International Data 
Centre and were downloaded from the web page of dr. Zbigniew Zwoliński from the 
Institute of Quaternary Research and Geoecology at Adam Mickiewicz University  
in Poznań [14]. The data concern number of seismic events that were recorded  
in Poland in successive months from January 1991 to December 1995 (60 
observations). Additionally, the data for January 1996 were used in order to compare 
them ex-post with the forecast results. Only events with magnitude 3 or more are 
taken into consideration because they can be treated as rare phenomena and modeled 
using a Poisson distribution. Sample statistics, that were calculated on the basis of 
data used for the models estimation, are presented in Table 3.1. 
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Table 3.1. Sample statistics 
 

Statistic Value 
Minimum 1 
Maximum 15 

Mean 6.897 
Variance (variation 

coefficient) 
 

9.743 (45.3%) 
 

Monthly numbers of seismic events with magnitude 3 or more fluctuated 
between 1 and 15. In the period under study there were on average 6.897 such events 
a month. From the fact, that the sample mean does not equal the sample variance,  
it could be concluded that there is overdispersion in the data [5]. However, in case of 
the HMMs with Poisson distribution, overdispersion is an acceptable phenomenon as 
it can be shown that the mean of St does not have to be equal to its variance [8].  
It seems that in case of the hybrid models overdispersion is not a problem, either. 
Tolerance of overdispersion is a significant advantage of the HMMs as that 
phenomenon is often observed in data.  
 
4 Results 
 
4.1 Estimation Results 
 

On the basis of 58 observations (starting from March 1991) both models 
described in Chapter 2 are estimated. The observations for January and February 
1991 are used as a neural network input in the hybrid model for March 1991. In the 
hybrid model the parameter α of the transfer function is assumed to equal 1.275 in 
the output layer. 

The model parameters are estimated using the maximum likelihood method 
and the likelihood function is maximized using genetic algorithms. The likelihood 
function value is greater in case of the hybrid model (8.089 ⋅ 10-60) than in case of the 
HMM (4.680 ⋅ 10-61). The sum of squares is calculated as a sum of squares of 
differences between the observations and the expected values of St and once again  
a better result is obtained for the hybrid model: 460.839 in comparison with 565.352 
for the HMM. Greater likelihood function value and nearly 20% lower sum of 
squares prove that the hybrid model fits better to the data. 

The estimates of model parameters are shown in Table 4.1. The estimates of 
the parameters γ1 and γ2 are similar in both models (ca 0.02 and ca 0.06, 
respectively). This results in similar estimates of the transition probability matrix and 
the stationary distribution as well as the first entrance and return times. 
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Table 4.1. Maximum likelihood estimates of the model parameters 
 

Parameter Hidden Markov model Hybrid HMM/ANN model 
γ1 0.024 0.022 
γ2 0.066 0.059 
λ1 5.419 - 
λ2 9.372 - 
w11 - 6.826 
w12 - -1.168 
w21 - 105.944 
w22 - -20.659 

 
The estimates of the stationary distribution elements and other model 

characteristics are shown in Table 4.2. In case of the hybrid model the estimates of 
the parameters λ1 and λ2 for the successive months are calculated as outputs of the 
neural network with the estimated weights. In both models the estimate of the 
expected value of λ2 equals ca 9 and is more than one and a half times greater than 
the estimate of the expected value of λ1 (ca 5.5). Therefore, the first state of the 
hidden Markov chain could be called the state of lower seismic activity and the 
second state – the state of higher seismic activity. In the HMM the estimates of the 
parameters λ1 and λ2 are by definition constant while in the hybrid model they are 
characterized by the relatively small variation (16% and 12%). 

  
Table 4.2. Estimates of the model characteristics 

 
Characteristic Hidden Markov model Hybrid HMM/ANN model 

δ1 0.731 0.723 
δ2 0.269 0.277 

The first entrance time 
from state 1 to state 2 

 
40.917 

 
44.484 

The first entrance time 
from state 2 to state 1 

 
15.044 

 
17.050 

The first return time  
to state 1 

 
1.368 

 
1.383 

The first return time 
to state 2 

 
3.720 

 
3.609 

Expected value of λ1 5.419 5.730 
Expected value of λ2 9.372 9.092 

Variance of λ1 (variation 
coefficient) 

 
0 (0%) 

 
0.852 (16.1%) 

Variance of λ2 (variation 
coefficient) 

 
0 (0%) 

 
1.220 (12.1%) 

Expected value of St 6.482 6.661* 
Variance of St  

(variation coefficient) 
 

9.554 (47.7%) 
 

8.935 (45.4%)* 
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From the estimates of the stationary distribution elements δ1 and δ2 it could be 
concluded that according to both models, after a long time the probability of  
a Markov chain being in the state of lower seismic activity equals ca 0.73 and is 
nearly three times greater than the probability of a Markov chain being in the state of 
higher seismic activity (ca 0.27). Thus it appears that in Poland the dominating state 
is the state of lower seismic activity. 

The estimates of the first entrance times could be interpreted in the following 
way: if Poland is in the state of lower seismic activity then the country is expected to 
move to the state of higher seismic activity in more than three years (over 40 
months) while if Poland is in the state of higher seismic activity then the country is 
expected to move to the state of lower seismic activity in more than one year (over 
15 months). 

As far as the estimates of the first return times are concerned, the 
interpretation could be the following: if in a given month Poland is in the state of 
lower seismic activity then next time such a month is expected to be in ca 1.4 months 
(so it is likely that simply it will be the next month) while if in a given month Poland 
is in the state of higher seismic activity then next time such a month is expected to be 
in ca 3.7 months. 

From the long first entrance times and short return times it could be 
concluded that in general periods of both higher and lower seismic activity are rather 
long in Poland. 

Unlike in the HMM, in the hybrid model the estimates of the expected value 
and variance of St are not constant and therefore only their average values can be 
compared. The average estimates of the expected value and variance of St (ca 6.5 and 
ca 9, respectively) are similar in both models and in the sample. As far as seismic 
events with magnitude 3 or more are concerned, in Poland one could expect ca 6.5 
such events a month. 
 
4.2 The Most Likely Sequences of States of the Hidden Markov Chain 
 

For both the HMM and the hybrid model, the most likely sequences of states 
of the hidden Markov chain, given the observation sequence and the estimated 
parameters, are found through maximization of the function describing probability of 
the state sequence conditioned on the observation sequence. Finding such sequences 
is called decoding [6]. As in the model estimation process, the target function is 
maximized using genetic algorithms. 

As the estimates are similar for both models, the most likely sequences of 
states of the hidden Markov chain are similar, too. The observations and the 
expected values of St given these sequences are shown in Figure 4.1 (for the HMM) 
and in Figure 4.2 (for the hybrid model). Comparing these figures, one can notice 
that the expected values of St are generally closer to the observations in case of the 
hybrid model than in case of the HMM. In fact the sum of squares (calculated as  
a sum of squares of differences between the observations and the expected values of 
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St given the most likely sequence of states) is ca 10% lower for the hybrid model 
(287.209) than for the HMM (323.868). 

In both cases the most likely sequence is such that the Markov chain is in the 
second state only in ca 20 successive times starting from the 16th time. It could be 
interpreted in the following way: Poland was likely in the state of higher seismic 
activity from April 1992 to the end of 1993, the beginning of 1994. In the rest of the 
period under study Poland was likely in the state of lower seismic activity. As 
expected, periods of both higher and lower seismic activity were quite long. 
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Figure 4.1. Observations and the expected values of St for the most likely sequence of states 
of the hidden Markov chain in the hidden Markov model 
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Figure 4.2. Observations and the expected values of St for the most likely sequence of states 

of the hidden Markov chain in the hybrid HMM/ANN model 
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4.3 Forecasts 
 

Using estimates of the model parameters and the observation sequence makes 
it possible to forecast the value of next observation ST+1 (number of seismic events 
with magnitude 3 or more in Poland in January 1996). According to the HMM, the 
conditional expected value of ST+1 equals 5.862 while according to the hybrid model, 
it is equal to 6.028. In fact, in January 1996 there were 7 seismic events with 
magnitude 3 or more in Poland. 
 
5 Conclusions 
 

Using models with hidden Markov chains for seismic events modeling, one 
can distinguish states of different seismic activity of a given region. On the basis of 
data for Poland the states of lower and higher seismic activity are distinguished. 
Similarity between the estimates for the HMM and the estimates for the hybrid 
model suggests that in fact there could be such states.  

In case of the hybrid model, this hypothesis is supported with different 
estimates of expected values of distribution parameters for different states of the 
hidden Markov chain. Were those estimates the same for all states, the hidden 
Markov chain would play no role in the model. Theoretically, the following situation 
seems possible: the neural network for one state could provide such a good fit of the 
model that the second state would not be needed any more. In the described situation 
the estimation results would deny the existence of a hidden Markov chain. Then it 
could be concluded that the model specification is incorrect and instead of the hybrid 
model, a neural network alone should be used. However, that is not a case in this research. 

On the basis of the most likely sequences of states of the hidden Markov 
chain, it is shown that the state of lower seismic activity is a dominating one and 
periods of both higher and lower seismic activity in Poland are generally long.   

Although the estimates are similar for both models, the hybrid model fits the 
data better than the HMM what demonstrates that hybrid HMM/ANN models can be 
an efficient alternative for HMMs. The advantage of the hybrid models over the 
HMMs consists in their larger flexibility and thus possibilities of getting a better fit. 
That flexibility makes it possible, among other analyses, to develop models of 
nonstationary time series. Obviously, the more complicated architecture, the larger 
flexibility. However, it seems that applications of the hybrid models with more 
complicated architectures might be limited with necessity of using extremely long 
time series. Moreover, estimation of a huge number of parameters might be difficult 
to perform in practice.  
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