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Abstract. In a dassgcal measurement the Shannon information is a natural measure of our
ignarance dou properties of a system. There, observation removes that ignarance in reveding
properties of the system which can be mnsidered to preexist prior to and independent of
observation. Because of the completely diff erent root of a quantum measurement as compared to
a dasscd measurement, conceptual difficulties arise when we try to define the information gain
in a guantum measurement using the notion of Shannon information. In contrast to clasdcd
measurements, quantum measurements, with very few exceptions, canna be daimed to reved
a property of the individual quantum system existing before the measurement is performed.
A mathematicd theory of computation that is based on quntum physicsis boundto be different.
They are the analogues for quantum computers to classcd logic gates for conventional digital
computers. Although gantum gates work on quhts in a much dfferent fashion from standard
eledronic drcuits, they only differ in their basic effedsin ore sense: reversibili ty.
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1 Introduction

In 1947, American computer enginee Howard Aiken' said that just six
eledronic digital computers would satisfy the mwmputing needs of the United States”.
Others have made similar errant predictions about the anournt of computing power
that would support our growing technologicad needs.

The large amourts of data generated by scientific reseach, the proliferation
of personal computers or the emergence of the Internet, are growing larger need for
more computing power. If, as Moore's Law states, the number of transistors on
a microprocesor continues to dauble every 18 months, the yea 2020 or 2030 will
find the circuits on a microprocessor measured on an atomic scde. And the logicd
next step will be to creae quantum computers, which will harness the power of
atoms and moleaules to perform memory and processng tasks.

In a dasscd measurement the Shannon information is a natural measure of
our ignorance about properties of a system. There, observation removes that
ignorance in reveding properties of the system which can be considered to preexist

* Howard Aiken and Grace Hopper designed the MARK series of computers at Harvard University. The
MARK series of computers began with the Mark | in 1944
2 This remark is also attributed to Thomas J. Watson, the president of IBM



78 Kosinski J.

prior to and independent of observation. Today's computers, like a Turing madine,
work by manipulating bits that exist in one of two states: a0 or a 1.

Becaise of the completely different root of a quantum measurement as
compared to a dasscd measurement, conceptual difficulties arise when we try to
define the information gain in a quantum measurement using the notion of Shannon
information. The reason is that, in contrast to classcd measurements, quantum
measurements, with very few exceptions, cannot be daimed to reved a property of
the individual quantum system existing kefore the measurement is performed.

Benjamin Schumacher discovered a way of interpreting quantum states as
information. A theorem is proven for quantum information theory that is analogous
to the noiseless coding theorem of classcd information theory (Schumacher, 1995).
In the quantum result, the von Neumann entropy of the density operator describing
an ensemble of pure quantum signal states is equal to the number of spin - 1/2
systems. (““quantum bits” or *qubits®’) necessary to represent the signal faithfully.
The theorem holds whether or not the signal states are orthogonal. Related results are
aso presented about the fidelity of quantum coding and abou representing
entangled® quantum states. Because aquantum computer can contain these multiple
states smultaneoudly, it has the potential to be millions of times more powerful than
today's most powerful supercomputers.

This superposition d qubits is what gives quantum computers their inherent
parall elism. According to physicist David Deutsch, this parall €lism all ows a quantum
computer to work on a million computations at once, while your desktop PC works
on one. A 30-qubit quantum computer would equal the processng power of
a mnventional computer that could run at 10 teraflops (trilli ons of floating-point
operations per second). Today's typicd desktop computers run at speeds measured in
gigaflops (hilli ons of floating-point operations per second).

2 Defining the Quantum Computer

A quantum bit, or qubit ['kju.bit] is a unit of quantum information. That
information is described by a state vedor in atwo-level quantum mechanicd system
which is formally equivalent to a two-dimensional vedor spaceover the complex
numbers. A qubit has some similaritiesto a dasdcd bit, but is overall very different.
Like abit, a qubit can have only two possbhle values - normally a 0 or a 1. The
difference is that whereas a bit must be dather 0 or 1, a qubit can be O, 1, or
a superposition of bath.

A qubit is often represented graphicdly by a sphere (Bloch sphere) with an
arrow in it°.

3 Schumadher states that the term qukit was invented in jest, during His conversations with Bill Wootters.
4 Two particles are cdled entangled if they share the same fuzzy quantum state, meaning reither of them
begins with definite properties sich as locaion a padarizaion (which can be though of as a particle's
spatial orientation).

5 In quantum mechanics, the Bloch sphere is a geometrical representation d the pure state spaceof atwo-
level quantum mechanicd system named after the physicist Felix Bloch. Alternately, it is the pure state
spaceof al quht quantum register.
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Figure 1. The Bloch sphere

The states a qubit may be measured in are known as basis gates (or vectors).
Asis the tradition with any sort of quantum states, Dirag, or bra-ket® notation is used
to represent them.

This means that the two computational basis gates are conventionally written as
[0Cand [1(pronounced: ket 0" and 'ket 1').

Arrow up correspondsto a dasdcd 1. Arrow down corresponds to a clasgcd
0. Arrow in between corresponds to a superposition o 1 and 0. Additionaly the
arrow may be rotated about the verticd axis.

Any state y can be written as a complex superposition of the ket vectors
[0Cand |15 moreover since phase fadors do na affed physicd state, we can take the
representation so that the coefficient of |0Clis real and non-negative. Thus y has
arepresentation as:
| wCE cos@ [0 €? sind |10 = cosd |0+ (cosg +i sin ¢) sin |10 (1)

Except in the cae y is one of the ket vedors |0Cor |10 the representation is
unique, i.e. the parameters ¢ and 6 uniquely spedfy a point on the unit sphere of
Eucli dean spaceR? - the point whose coordinates (x, y, ) are:

X = sin26xcos ¢

y = sin26xsin ¢ 2

z= co0s20
In this representation |0Cis mapped into (0, O, 1) and |1C0s mapped into (O, O, -1).

The State Space Postulate’ tell s us that we @n describe the most general state
|wOof asingle qubit by avedor of the form:

|yd= cos(8/2) [0+ €’sin (8/2) [10 (3)

1. Consder the andlogous stuation for adeterministic dasscd bit. The state of a dasscd
bit can be described by a single binary value y, which can be equal to either O or 1.

2. Next consider the dlightly more complicaed situation o a dasdcd bit whase
value is not known exadly, but is known to be dther O or 1 with corresponding

5 Braket notation is the standard ndaation for describing guantum states in the theory of quantum
mechanics. It can also be used to denote estrad vedors and linear functionals in pure mathematics. It is
so cdled because the inner product of two states is denoted by a bradket, (9| y [J consisting of a left part,
(9| cdled the bra, and aright part, |  [J cdled the ket. The notation was invented by Paul Dirac, and is
also knawn as Diracnotation.

" The state of a system is described by a unit vedor in a Hil bert space H.

Computer Techndogy
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probabiliti es py and p;. We might cdl this a probabili stic dasdcd bit. The state of
such a probabili stic bit is described by the probabiliti es py and p;, which satisfy
Po + p1 = 1 (refleding the fad that we know the bit hasto be either O or 1).

3. Now return to the state of a quantum bit, which is described by a complex unit
vedor |w(in a 2-dimensional Hilbert space Such a state vedor is often depicted
asapoint on the surfaceof a 3-dimensional sphere, known as the Bloch sphere.

[ =)

Po

Py

—t——t—,
- —

-
1

The state of a The probabilistic classcal bit —Herethe @ State of aquhit on
deterministic dassca | probabilities pp and p; of the bit being 0 | the Bloch sphere
bit can be represented | and 1, are represented by the position of

asone of two paints, | apoint on the line segment between the

labeled “0" and“1”. | pointsrepresenting 0 and 1.

Figure 2. The representation of classcal, probabilistic and quantum bits

The Turing machine, developed by Alan Turing in the 1930s, is a theoreticd
device that consists of tape of unlimited length that is divided into little squares.
Each square can either hold a symbad (1 or 0) or be left blank. A read-write device
reads these symbals and blanks, which gives the macdine its instructions to perform
a cetain program. Does this ourd famili ar? Well, in a quantum Turing machine, the
differenceis that the tape exists in a quantum state, as does the read-write head. This
means that the symbals on the tape can be either 0 or 1 or a superposition d 0 and 1;
in ather words the symbadls are bath 0 and 1 (and all pointsin between) at the same
time. While anormal Turing machine can only perform one cdculation at a time,
a quantum Turing machine can perform many cdculations at once.

The origina Turing machine was deterministic (DTM): the head would be dways
in a single state, which would uniquely determine which direction it would go into and
how far. There is a variant of the Turing machine, which is not deterministic. The head
may be in a state, which gives the macdine @rtain choices as to the diredion and length
of the next traverse. The dhoices are then made by throwing dice and passhbly applying
some weights to the outcome. A machine like that is called a probabilistic Turing
macine (PTM), and it turns out that it is more powerful than the deterministic Turing
madhine in the sense that anything computable with DTM is also computable with PTM
and wsudly faster. But both PTM and DTM are based onclasscd physics: the states of
the tape and of the heal are dways readable and writable, data can be dways copied,
everything is uniquely defined.

A mathematicd theory of computation that is based on quantum physics is
bound to be different. As you move from classcd physics to quantum physics there
isaqualitative change in concepts that has profound ramificaions.

So here'sabrief history of how quantum Turing machine came gout.

Sudia Informatica vol. 1(8)2007
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1973 - Benrett demondirates that areversible Turing maciine is possble (Bennett, 1973)
1980 - Benioff observes that since quantum medanicsis reversible a omputer based on

guantum medhanicd principles $ould be reversible too (Benioff, 1980).

1982 - Richard Feynman shows that no classcd Turing machine can simulate
guantum phenomena without an exponential slow down, and then dbserves

that a universal quantum simulator can (Feynman, 1982).

1985 - David Deutsch of Oxford University, UK, describes the first true quantum

Turing machine (Deutsch, 1985).

In the quantum Turing machine read, write, and shift operations are all
acomplished by quantum interadions. The tape itself exists in a quantum state &
does the head. In particular in placeof the Turing cdl on the tape that could hold
either 0 or 1, in quantum Turing machine there is a qubit, which can hdd a quantum
superpasition of 0 and 1 The quantum Turing machine can encode many inputs to
a problem simultaneously, and then it can perform cdculations on al the inputs at
the same time. This is cdled quantum parall elism. The tape of the quantum Turing
machine @an now be drawn as shown in figure on the next page (Meglicki, 1995):

a) initial condtions —
N A AN A S b
LN N N

b) as the machine evolves, the head moves smultaneously in three different
directions - the state of the machine becomes a superpasition of the three states
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Figure 3. The tape of the quantum Turing machine.

The madine evolves in many different diredions smultaneously. After some
time t its date is a superposition o all states that can be readied from the initial
condition in that time. In the quantum Turing machine read, write, and shift
operations are dl acoomplished by quantum interadions. The tape itself existsin a
quantum state & does the heal. In particular in placeof the Turing cel on the tape
that could hold either O or 1, in quantum Turing macdhine there is a qubit, which can
hold a quantum superposition of 0 and 1 The quantum Turing machine Gan encode
many inputs to a problem simultaneously, and then it can perform cdculations on all
the inputs at the same time. Thisis cdled quantum parall eli sm.

Quantum Turing madciine can be used to simulate the dasdcd Turing
machine and the probabili stic Turing machine too. But quantum Turing machine can
do more than that. For example it can generate truly random numbers, something
that clasgcd Turing machines cannot do.

Computer Techndogy
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Quantum parall elism is not easy to harness though. On measurement of final
results the wave function of the cmputer must coll apse, so that only a single result
is delivered. On the other hand, it turns out that it is possble to measure certain joint
properties of al the outputs.

3 Quantum gates

The theory of quantum computing is related to a theory of reversible
computing. A computation is reversible if it is aways possble to uniquely recover
the input, given the output. For example, the NOT operation is reversible, because if
the output bit is 0, you know the input bit must have been 1, and vice versa. On the
other hand, the AND operation is not reversible (seefigure below).
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Figure 4. The standard gates

A guantum gate or a quantum logic gate is a basic quantum circuit operating
on a smal number of qubits. They are the analogues for quantum computers to
clasdcd logic gates for conventional digital computers. Although quantum gates
work on qubits in a much different fashion from standard eledronic drcuits, they
only differ in their basic dfeds in one sense: reversibility. Both types of gates take
a bit, dter it, and give an output bit state. Quantum gates, however, have the
additional property of reversi bility8. The reversible AND gate keeps a copy of the
inputs and adds the and of X, and x; (denoted x; [0 X,) to the value in the additional
input bit. And note that by fixing the additional input bit to 0 and discarding the
copies of the xo and x; we @an simulate the non-reversible AND gate.
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Figure 5. Thereversible AND gate

8 The reason that quantum gates are reversible is that their mechanism of adion on qutits is through
Schroedinger evolution (which isreversible by virtue of being uritary).
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In classcd computation, one could choose to be more environmentally
friendly and uncompute redundant or junk information, and reuse the cleared-up
memory for another computation. However, simply discarding the redundant
information does not adually affed the outcome of the computation. In quantum
computation however, discarding information that is correlated to the bits we keep
can drasticdly change the outcome of a computation. For this reason, the theory of
reversible computation days an important role in the development of quantum
agorithms. In a manner very similar to the dasscd case, reversible quantum
operations can efficiently simulate non-reversible quantum operations (and
sometimes vice versa) so we generally focus attention on reversible quantum gates.
However, for the purposes of implementation or algorithm design, this is not always
necessry (e.g. one can cleverly configure spedal famili es of non-reversible gates to
efficiently simulate reversible ones).

Some universal classcd logic gates, such as the Toffoli gate’, provide
reversibility and can be diredly mapped orto quantum logic gates. Quantum logic
gates are represented by unitary matrices'®>. The most common quantum gates
operate on spaces of one or two quhits. This means that as matrices, quantum gates
can be described by 2 x 2 or 4 x 4 matrices with orthonormal rows. Because the
qubit is expressed as avedor, single qubit operators, or quantum gates, are expressed
as 2 x 2 matrices. In order to be a valid operator, the result must still conform to o +
B2 = 1. It turns out that any matrix which transforms a source vedor with that
property to aresult vector with that same property is sid to be unitary, that is H'H =
|, where:

H_Ea+bi c+diC q Ht_Ea—bi e-fiC 4
R+ fi g+hif & “R-di g-nif @

The requirement that the operator be unitary grealy restricts what can be
done in quantum computing. Most classca operations are not unitary; because we
can na get bad the origina value once the operation is performed. In fad, any
operation that takes two bits and produces one is not unitary. The aility to reverse
computation hes pradicd implications. This credes an explosion in the number of
bits required to perform computation, because the information recessary to reverse
al operations performed must be part of the computation.

The quantum equivalents of such classcd logic gates are achieved as smple

unitary operations on qubits - e.g. seetables below.

° This gate has a 3-bit input and ouptt. If the first two bits are set, it flips the third bit.
10 A square matrix U is a unitary matrix if U" = U, where U™ denotes the mnjugate transpose and U is
the matrix inverse. For example:

D 2—1/2 2—1/2 0 I:
A= g2ve 2 0 Clisaunitay matrix
H o 0 i F

Computer Techndogy
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Table 1. The NOT gate

Symbal or .
Ty The NOT gate is probably the most
= famili ar to those used to dealing with
1 clasgcal circuit diagrams. It simply
Matrix NOT= g OE inverts the values of the quiit. It also has

the dfect of exchangingaandbin
superpasitioned states, exchanging the
Inpu | Output probability that the quhkit will collapse to
|0Cwith the probability of collapseto (L0
|00 |10 and \ice versa (that is a0(H b|1Cbemmes
bj0+ g10).

Truth tablein
Dirac
notation

Table 2. The Hadamard gate

Symbad — H —
Arguably the most important gate
Matrix H= L 1 E in quantum computation is the
J2 -1C Walsh-Hadamard transformation
gate (or Hadamard gate for short).
Itsfunction as aone-bit gateisto
put the unsuperpasitioned qubit
into a superposition d the, |10and
|Ostates. As the quantum
Inpu Output computer derives much of its
power from superpositi on-based
) 1 adivities, this gate is crucial.
Truth tablein |00 | —= (0|10
Dirac \E
notation
1
[100 E (lo3- 110

Sudia Informatica vol. 1(8)2007
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Table 3. Phase shift gate

Symbal — B —
. 0
Matrix Shift = E
— l[
Inpu Output
Truth tablein
Diracnotation |0 100
|20 -110

Gates in this class operate on a
single qubit. They are represented
by 2 x 2 matrices of the form

0
R) :% o

This has the computational effed of
making two quhts that are in phase
with each other move into ancther
phase together.

Table 4. Square-roat NOT gate

Symbal

| ——
S Y Sl —
CERIE

Matrix

m:§+i

The root NOT gate is exactly
what it sounds like: the input
is ent throughtwo root NOT
gates to NOT the input as the

Inpu

Output

output. One avantage it has
is that, unlike the NOT and
CNOT gates, two root NOT

Truth table in |0

Diracnotation

110

1 1
Z (1+ D)oo = )0
2 2

1 1
—(1-)|0+ —(1+ )20
2 2

gates  can invert a
superpasitioned quht (that is,
the probabilities that the
qubit will collapse to 1 is
changed to the probability
that that the qubit will
collapse to 0).

Table 5. Controlled NOT gate

Symbal

Ly
Ly

by—— (=@ ¥

Also known as the XOR or
measurement gate, the cntrolled
NOT (or CNOT) gate takes two
quhbts as inpu, [xO and O The
result is the [xO qubit and an XOR
(O) of [xOand [yt If [xOvalue is O,
[yCremains the same; otherwise, |y[]
valueisflipped to its oppasite

Computer Techndogy
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g 00 OE
1 00
Matrix CNOT = C
0 01
010
Cortrol | Input | Output 1 Output 2
0 0 0 0
Truth table 0 1 0 1
1 0 1 1
1 1 1 0

4 Quantum algorithms

Since quantum agorithms dare some feaures with classcd probabili stic
algorithms, we will start with a comparison o the two algorithmic paradigms (Kaye,
et al., 2007).

A classcd probabili stic computation ading on aregister that can be in one of
four states labeled O, 1, 2, 3. The py; are the probabilities for the computation
proceeding from state O to state j in the first step. The gk represent the probabiliti es
for the computation proceeding from state j to state k in the second step.

Suppose we want to find the total probability that the computation ends up in
state 3 after the second step. (Fig. 6)

Figure 6. Finding the total probability in clasdca computation

This is cdculated by first determining the probability associated with each
computation ‘path’ that coud end up at the state 3, and then by adding the

Sudia Informatica vol. 1(8)2007
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probabiliti es for al such paths. There are four computation paths that can leave the
computation in state 3 after the first step. The computation can proceed from state 0
to state j and then from state j to state 3, for any of the four j O {0, 1, 2, 3}. The
probability assciated with any one of these paths is obtained by multiplying the
probability po; of the transition from state O to state j, with the probability g ; of the
transition from state j to state 3. The total probability of the computation ending up
in state 3 is given by adding these four possbiliti es. So we have:

prob(final outcomeis 3) = Z Po,;; 3 Q)
]

Another way of looking at this computation is to suppose the register consists
of two qubits, and let the labels O, 1, 2, 3 refer to the four basis gates |00, |010],
|1000, |11C) respectively. Then view ead o the transition probabiliti es as a squared
norm of a quantum probability amplitude, so that po; = |oo;* and gix = |Bjl> This
approach is shown in figure below, which can be viewed as a quantum computation
in which the state is measured after each step.

Figure 7. Finding the total probability in quantum computation

If we measured the state (in the computational basis) immediately after the
first step of the computation, the probability associated with outcome 2 would be;

prob(measuremerafterfirst stepgives3) =|a,| *=p,, (6)

Since we assume that the state is measured after each step, we would know
the intermediate state j, and thus we would know which computation path leading to
the final state 3 was taken. The total probability of arriving at the fina state 3 is
determined by adding the squared norm of the probability amplitude oag,fj3
asciated with ead path (i.e. we add the probabiliti es for the four paths, and not the
probability amplitudes). As before, the total probability of measuring outcome 3
after the second step is:

prob(final outcomeis 3) = ‘aovj ‘2‘,81-,3‘2 = ‘ao,jﬁjs‘z @)

In a fully quantum algorithm, we would na measure the state immediately
after the first step. This way the quantum probability amplitudes will have a chance

Computer Techndogy
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to interfere. For example, some negative anplitude could cancd with some positive
amplitude, significantly affeding the final probabiliti es assciated with a given
outcome. A quantum version of the algorithm above isill ustrated in figure below.

a0
. 16 g —

i 30" e

Figure 8. Fully quantum algorithm

This time the cdculation d the total probability associated with outcome 3 in
the measurement after the second step is different. Since there is no measurement
after the first step of the computation, we do not learn the path taken by the
computation to the fina state 3. That is, when we obtain the output 3, we will have
no information telling ws which of the four paths was taken. In this case, instead of
adding the probabiliti es associated with each of these four paths, we must add the
probability amplitudes. The probability of a measurement after the second step
giving the result 3 is obtained by taking the squared norm of the total probability
amplitude. Clasdcd probabilistic dgorithms can be easily simulated by quantum
algorithms. However, we know that naively repladng each quantum gate with
a probabilistic dasdcd gate can gve drasticdly different outcomes, and thus will
not work in general. And, there is no known general purpose dasdcd algorithm for
simulating quantum systems (and, in particular, quantum computers). As an example
we look at the Deutsch agorithm. The Deutsch algorithm is a very simple example
of a quantum algorithm based on the Quantum Fourier Transform’. The problem
solved by the Deutsch algorithm is the foll owing.

Suppose we are given a reversible drcuit for computing an unknown 1-hit
function f : {0, 1} — {0, 1}. We trea this reversible drcuit as a ‘black bax’ or
‘orad€’. This means that we can apply the circuit to oltain values of f(x) for given
inputs x, but we cannot gain any information about the inner workings of the drcuit
to lean about the function f. So determining f(0)f(1) is equivalent to determining
whether the function f is constant or balanced. How many queries to the orade for f
must be made dasscdly to determine f(0) O f(1)? Clealy the answer is 2.

Suppose we compute f(0) using one (classcd) query. Then the value of f(1)
could be 0, making f(0) O f(1) = O, or the value of f(1) could be 1, making f(0) O f(1)
= 1. Without making a second query to the orade to determine the value of f(1), we

™ The quantum Fourier transform is the discrete Fourier transform with a particular decompasition into
a product of simpler unitary matrices. Using this decomposition, the discrete Fourier transform can be
implemented as a quantum circuit consisting o Hadamard gates and controll ed phase shift gates.
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can make no conclusion about the value of f(0) O f(1). The Deutsch algorithm is
a quantum algorithm capable of determining the value of f(0) O f(1) by making only
a single query to a quantum orade for f. The given reversible drcuit for f can be
made into a quantum circuit, by repladng every reversible dasdcd gate in the given
circuit with the analogous unitary quantum gate. This quantum circuit can be
expressed as a unitary operator:

Ur : XOyO— [xOy O f(x0 )

Having creaed a quantum version d the circuit for f, we can supdy quantum
bits as inpus. We define U so that if we set the second input qulbit to be in the state
[yC= |00 then [xC= |0Ciin the first input quiit will give |0 O f(0)C= [f(0)Uin the second
output bit, and [xO= |10in the first input qubt will give |f(1) 0 So we can think o
[XO= |00as a quantum version of the (classcd) input bit 0, and [xO= |10as a quantum
verson d theinput bit 1. Of course, the state of the input qubit can be some superpasition
of |0Cand |LLIA circuit, implementing the Deutsch algorithmis siown bel ow.
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Figure 9. A circuit implementing the Deutsch algorithm

For the Deutsch problem we ae ultimately not interested in individual values
of f(x), but wish to determine the value of f(0) O f(1).

The Deutsch algorithm ill ustrates how we @n use quantum interference to
obtain such global information about the function f, and haw this can be done more
efficiently than is possble dasscadly.

Table 6. Some problems lved with quantum agorithms

Inpu: A black-box for computing an unknown functionf :
{0,1} n— {0, 1}.

Promise: f is either a cnstant or a balanced function.

Problem: Determine whether f is constant or balanced by making
queriestof.

Inpu: A bladk-box for computing an unknavn function f :
{0, 1} n — X, where X is some finite set.

Simon's Problem | Promise: Thereexistsastrings=sS, . . . S, so that f(x) = f(y) if
and oy if x=yorx=yQs.

Problem: Determine the string s by making queriesto f

The Deutsch—
Jozsa Problem
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1 N 2ri

Phase Estimation | Input: The state T Zf,zole w]| y>
Problem V2

Problem: Obtain a good estimate of the phase parameter o.
Eigenvaue Inpu: A quantum circuit implementing an operator U, and an
Estimation eigenstate [y with correspondng eigenvalue ™.
Problem Problem: Obtain a good estimate for .

- Inpu:  Integersa and N such that GCD(a,N) =1 (i.e. ais

grrggerli:ndmg relatively prime to N).

Problem: Find the order of amoduo N.

Inpu:  Aninteger N.
Integer Problem: Output positive integerspy, p2, - - - ,P1, 1, F2, -+« 41
Fadorizaion where the p; are distinct primes and
Problem = nt n" "

N=p!p....p
. - '[. * . .
The Discrete Inpu: Elementsbanda=b'in Zp,wheretlsanlnteger from
Logarithm {0,1,...,r—1} and r isthe order of a.
Problem Problem: Findt. (The number t is called the discrete logarithm of b
with respect to the base a.)

The Search Inpu: ?_t;lgd;}bnoiu{f(l;orl ;:omputlng an unknown function
Problem Problem: Find an input x 0 {0, 1} n such that f(x) = 1.

5 Qubit Control

Quantum computers also utili ze another asped of quantum mechanics known
as entanglement. One problem with the idea of quantum computers is that if you try
to look at the sub-atomic particles, you could bump them, and thereby change their
value. If you look at a qubit in superposition to determine its value, the qult will
asame the value of either 0 or 1, but not both (effedively turning your spiffy
guantum computer into a mundane digital computer).

To make apradicd quantum computer, scientists have to devise ways of
making measurements indiredly to preserve the system's integrity. Entanglement
provides a potential answer. In quantum physics, if you apply an ouside forceto two
atoms, it can cause them to become en-tangled, and the second atom can take on the
properties of the first atom. So if left alone, an atom will spin in al diredions. The
instant it is disturbed it chooses one spin, or one value; and at the same time,
the second entangled atom will choose an opposite spin, or value. Qubits represent
atoms, ions, photons or eledrons and their respedive control devices that are
working together to ad as computer memory and a processor. All quantum
computation exploits the quantum nature of an eledron's spin or a photon's polarity.
Quantum theory dictates that until these properties are adually observed, they are
indeterminate: the spin of an eledron, for instance can be "up" or "down," or
a owmbination o the two.

We @n control the microscopic particles that ad as qubits in quantum
computers by using some antrol devices, eg.:
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- lon traps - using opticd or magnetic fields (or a combination of both) to
trap ions.

- Opticd traps - using light wavesto trap and control particles.

- Quantum dots are made of semicondwctor material and are used to contain
and manipulate dedrons.

5.1. lon-trap

This technology uses eledric and magnetic fields to isolate a barged particle
from its environment - a prerequiste for exploiting the temperamenta quantum
properties of eectrons. Although ion traps are just one technology for building a quantum
computer, they have the longest history - thefirst trap was built in Morroe's lab*? in 1995
- andthey've advanced the furthest. But most ion traps are difficult to fabricate, consisting
of a ceramic insulator and gold contacts for conducting an eledricd current. Mornroe's
team built their chip aut of insulating layers of dloys of duminum, gallium, and arsenide,
with semiconducting layers of gallium and arsenide - al easy to deposit on a chip wsing
aconventional process call ed molecular beam epitaxy.*

The chip is placed in a vacuum, which then gets injeded with a vapor of
cadmium ions. When the appropriate voltages are applied to the eledrodes,
a camium ion with a free eledron becomes trapped, floating ketween the
cantilevers above the etched hde. In order to adually use the gaom's free éedron for
computation, the ion must be probed by a laser beam that reads the dedron's in
state. Putting multi ple traps on ore chip presents difficulties, because a the number
of traps increase, it becomes more difficult for a laser to read the state of an
individual eledron without interfering with the state of other eledrons.
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Figure 10. Examples of ion traps (FOCUS Centre, 2006): a) ring-fork quadrupde trap,
b) three-layer linear trap, ) GaAs chip linea trap, d.) two-needle quadrupol e trap,
e) four-rod linea trap.

12 Christopher Monroe's research group at the University of Michigan Department of Physics and FOCUS
Physics Frontier Center.

3 Thisfirst ion-trap chip builds on a quantum computing roadmap that Monroe, David Kielpinski at MIT,
and David J. Wineland at NIST published in Naturein 2002
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5.2. Optical traps

Optical traps exploit the momentum of laser light to manipulate individual objeds
— ot just beads, but dso cdls, organelles, and even atoms. After years of work, the Bell
Labsgroupfoundthey coud hold aclear bead in pgace with asinge, tightly focused laser
beam, a surprisingly simple configuration nav known as opticd tweezrs. If the bead
starts to drift away, the laser light is deflected, and the particle is pushed in the oppasite
direction, bad towards the focus. The result isthat the beal is held gently in place, as if
by tiny springs. When the experimenter moves the light beam, the beal follows, so
opticd tweezers can move objects aroundlike their nonopticd namesake.

lLaser Beam

Figure 11. The model of optical tweezers. The incominglight isfocused dowvn to atight spat
and the forces that act on the sphere ae such that the centre moves towards this focus. The
'F'sin the diagram indicate the forces on the sphere

LASER BEAM
B r. B
&
7
|
Corr
LEVITATION

TRAP TWEEZERS TRAP

Figure 12. The example of opticd trap (Ashkin, 1997): a) Geometry of levitation trap.
b) Origin of backward restoring force F for sphere located below tweezers focus f

Opticd tweezes use light to manipulate microscopic objeds as snall as
asingle aom. The radiation presaure from a focused laser beam is able to trap small
particles. In the biologicd sciences, these instruments have been used to apply forces
in the pN-range and to measure displacements in the nm range of objeds ranging in
sizefrom 10 nm to over 100 mm.
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The techniques of opticd trapping and manipulation of neutral particles by
lasers provide unique means to control the dynamics of small particles.

5.3. Quantum dots

Quantum dats are tiny nanocrystals that glow when stimulated by an external
source such as ultraviolet (UV) light. They are unique dass of semiconductor
because they are so small, ranging from 2-10 nanometers (10-50 atoms) in dameter.
In natural bulk semiconductor material, an extremely small percentage of eledrons
occupy the conduction band the overwhelming mgjority of eledrons occupy the
valenceband, filli ng it aimost compl etely.

The only way for an eledron in the valence band to jump to the conduction
band is to acquire enough energy to crossthe band gap**, and most eledronsin buk
simply do not have enough energy to do so. It is also established that eledrons in
natural semiconductor bulk that have been raised into the conduction band will stay
there only momentarily before faling badk aaoss the bandgep to their natural,
valence aergy levels. As the dedron fals back down across the band gap,
eledromagnetic radiation with a wavelength corresponding to the energy it loses in
the transition is emitted.

Becaise quantum dots eledron energy levels are discrete rather than
continuous, the addition or subtradion of just afew atoms to the quantum dot has the
effed of atering the boundaries of the bandgap. Changing the geometry of the
surface of the quantum dot also changes the bandgap energy, owing again to the
small size of the dot, and the dfeds of quantum confinement. As with bulk
semiconductor material, eledrons tend to make transitions nea the edges of the
bandgap. However, with quantum dats, the size of the bandgap is controlled simply
by adjusting the size of the dat. (Evident Technologies, 2007)

gidik

semiconductar

Figure 13. A tunable bandgap

14 A sufficiently strong stimulus will cause avalence band electron to take residence in the mndiction
band, causing the aedion d a positively charged hde in the valence band. The raised eledron and the
hole taken as a pair are cdled an exdton. Excitons have a average physicd separation ketween the
eledron and hde, referred to as the Exciton Bohr Radius this physicd distance is different for ead
material.
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Quantum dots are small semi-conductor or metal islands with a diameter that
is snal enough to make their charging energy greaer than kgT where kg is
Boltzmann's constant and T is the operating temperature. The charging energy is the
potential energy neealed to overcome the dedrostatic repulsion from the other
eledrons in the dot — or in other words, the energy required to add an eledron to
adot. If this energy is greaer than the thermal energy of the environment (kgT), dots
can trap individual charges.

Electrons .
Quantum Dots

Quantum Dots V\

Quantum Dots

Electron Electron

P=+1 P=-1
(Binary 1) (Binary 0)

Figure 14. Cell pdarizations and representations of binary 1 and binary 0 (Shikla, 2004

Exadly two mohile dedrons are loaded into cdls and can move to dfferent
quantum dots by means of eledron tunneling. Tunneling paths are represented by the
lines conneding the quantum dats in figure below. Coulombic repulsion will cause
“classcd” models of the dedronsto occupy only the corners of the cél, resulting in
two spedfic polarizations. These polarizations are configurations where dedrons are
as far apart from one another as posdble, in an energeticdly minimal position,
without escaping the confines of the cédl.

6 Today's Quantum Computers

Quantum computers could one day replace silicon chips, just like the
transistor once replaced the vacuum tube. But for now, the technology required to
develop such a quantum computer is beyond our read. Most research in quantum
computing is still very theoreticd. The most advanced quantum computers have not
gone beyond manipulating more than 16 qubits, meaning that they are afar cry from
pradicd applicaion. Several key advancements have been made in quantum
computing in the last few years. Seetable below:

Table 7. The history of quantum computation growth

1998 Los Alamos and MIT researchers managed to spread a single qubit acossthree
nuclear spins in each moleaule of a liquid solution of aanine or
trichloroethylene moleaules. Spreading aut the qubit made it harder to corrupt,
alowing researchers to use entanglement to study interactions between states as
an indirect method for analyzing the quantum information.

2000 In March, scientists at Los Alamos National Laboratory announced the development
of a7-qubit quantum computer within asingle drop of liquid. The quantum computer
uses nuclear magnetic resonance (NMR) to manipuate particles in the atomic nuclel
of molecules of transcrotonic add, asimple fluid consisting of molecules made up of
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six hydrogen and four carbon atoms. The NMR is used to apply electromagnetic
puses, which force the particles to line up. These particles in postions parale or
counter to the magnetic field alow the quantum computer to mimic the information-
encoding of bitsin dgita computers.

2001 Scientists from IBM and Stanford University successully demonstrated Shor's

Algorithm on a quantum computer. Shor's Algorithm is a method for finding the
prime factors of numbers (which plays an intrinsic role in cryptography). They
used a 7-quhit computer to find the factors of 15. The cmputer correctly
deduced that the prime fadors were 3 and 5.

2005 The Ingtitute of Quantum Optics and Quantum Information at the University of

Innsbruck an-nounced that scientists had created the first qubyte, or series of 8
quhits, using iontraps.

2006 Scientists in Waterloo and Massachusetts devised methods for quantum cortrol

on a 12-qubit system. Quantum control becomes more mmplex as systems
employ more qulhits.

2007 Canadian startup company D-Wave demonstrated a 16-qukit quantum computer.

The computer solved a sudoku puzze and other pattern matching problems. The
company claims it will produce practical systems by 2008 Skeptics believe
pradical quantum computers are still decades away, that the system D-Wave has
created isn't scaleable, and that many of the daims on D-Wave's Web site are
simply impossble (or at least impossble to know for certain given our
understanding of quantum mechanics).
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Erratum

In the Studia Informatica, Vol. 1/2(7) 2006 the foll owing corredions should
be noted. (1) Table of contents as a name of page 3 (instead of polish version),
(2) The Tabu Search approad in coherent co-synthesis of multiprocessor systems,
seoond author Czajkowski K. name was misgelled, (3) header on even pages from
36 to 44, both authors Drabowski M., Czajkowski K. names were misgelled,
(4) Method of Logicd Synthesis of Integrated Circuits in basis K-PLA, Novikov S,,
the figures from 1 to 10 were pass over — this Studia Informatica, Vol. 1(8) 2007
includes report under the title of Many-valued gates for reducing the chip-area
of integrated circuits (by Novikov S.) as extended version of mentioned above with
the same figures identicdly numbered.

We apologize for these mistakes.



