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Abstract.  In a classical measurement the Shannon information is a natural measure of our
ignorance about properties of a system. There, observation removes that ignorance in revealing
properties of the system which can be considered to preexist prior to and independent of
observation. Because of the completely different root of a quantum measurement as compared to
a classical measurement, conceptual diff iculties arise when we try to define the information gain
in a quantum measurement using the notion of Shannon information. In contrast to classical
measurements, quantum measurements, with very few exceptions, cannot be claimed to reveal
a property of the individual quantum system existing before the measurement is performed.
A mathematical theory of computation that is based on quantum physics is bound to be different.
They are the analogues for quantum computers to classical logic gates for conventional digital
computers. Although quantum gates work on qubits in a much different fashion from standard
electronic circuits, they only differ in their basic effects in one sense: reversibili ty.
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1 Introduction

In 1947, American computer engineer Howard Aiken1 said that just six
electronic digital computers would satisfy the computing needs of the United States2.
Others have made similar errant predictions about the amount of computing power
that would support our growing technological needs.

The large amounts of data generated by scientific research, the proli feration
of personal computers or the emergence of the Internet, are growing larger need for
more computing power. If, as Moore's Law states, the number of transistors on
a microprocessor continues to double every 18 months, the year 2020 or 2030 will
find the circuits on a microprocessor measured on an atomic scale. And the logical
next step will be to create quantum computers, which will harness the power of
atoms and molecules to perform memory and processing tasks.

In a classical measurement the Shannon information is a natural measure of
our ignorance about properties of a system. There, observation removes that
ignorance in revealing properties of the system which can be considered to preexist

                                                
1  Howard Aiken and Grace Hopper designed the MARK series of computers at Harvard University. The
MARK series of computers began with the Mark I in 1944.
2  This remark is also attributed to Thomas J. Watson, the president of IBM
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prior to and independent of observation. Today's computers, like a Turing machine,
work by manipulating bits that exist in one of two states: a 0 or a 1.

Because of the completely different root of a quantum measurement as
compared to a classical measurement, conceptual difficulties arise when we try to
define the information gain in a quantum measurement using the notion of Shannon
information. The reason is that, in contrast to classical measurements, quantum
measurements, with very few exceptions, cannot be claimed to reveal a property of
the individual quantum system existing before the measurement is performed.

Benjamin Schumacher discovered a way of interpreting quantum states as
information. A theorem is proven for quantum information theory that is analogous
to the noiseless coding theorem of classical information theory (Schumacher, 1995).
In the quantum result, the von Neumann entropy of the density operator describing
an ensemble of pure quantum signal states is equal to the number of spin - 1/2
systems. (‘‘quantum bits’’ or ‘‘qubits3’’ ) necessary to represent the signal faithfully.
The theorem holds whether or not the signal states are orthogonal. Related results are
also presented about the fidelity of quantum coding and about representing
entangled4 quantum states. Because a quantum computer can contain these multiple
states simultaneously, it has the potential to be millions of times more powerful than
today's most powerful supercomputers.

This superposition of qubits is what gives quantum computers their inherent
parallelism. According to physicist David Deutsch, this parallelism allows a quantum
computer to work on a milli on computations at once, while your desktop PC works
on one. A 30-qubit quantum computer would equal the processing power of
a conventional computer that could run at 10 teraflops (trilli ons of f loating-point
operations per second). Today's typical desktop computers run at speeds measured in
gigaflops (billi ons of f loating-point operations per second).

2 Defining the Quantum Computer

A quantum bit, or qubit ['kju.bit] is a unit of quantum information. That
information is described by a state vector in a two-level quantum mechanical system
which is formally equivalent to a two-dimensional vector space over the complex
numbers. A qubit has some similarities to a classical bit, but is overall very different.
Like a bit, a qubit can have only two possible values - normally a 0 or a 1. The
difference is that whereas a bit must be either 0 or 1, a qubit can be 0, 1, or
a superposition of both.

A qubit is often represented graphically by a sphere (Bloch sphere) with an
arrow in it5.

                                                
3  Schumacher states that the term qubit was invented in jest, during his conversations with Bill Wootters.
4 Two particles are called entangled if they share the same fuzzy quantum state, meaning neither of them
begins with definite properties such as location or polarization (which can be thought of as a particle’s
spatial orientation).
5  In quantum mechanics, the Bloch sphere is a geometrical representation of the pure state space of a two-
level quantum mechanical system named after the physicist Felix Bloch. Alternately, it is the pure state
space of a 1 qubit quantum register.
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Figure 1. The Bloch sphere

The states a qubit may be measured in are known as basis states (or vectors).
As is the tradition with any sort of quantum states, Dirac, or bra-ket6 notation is used
to represent them.
This means that the two computational basis states are conventionally written as
|0〉 and |1〉 (pronounced: 'ket 0' and 'ket 1').

Arrow up corresponds to a classical 1. Arrow down corresponds to a classical
0. Arrow in between corresponds to a superposition of 1 and 0. Additionally the
arrow may be rotated about the vertical axis.

Any VWDWH�%� FDQ� EH� ZULWWHQ� DV� D� FRPSOH[� VXSHUSRVLWLRQ� RI� WKH� ket vectors
|0〉 and |1〉; moreover since phase factors do not affect physical state, we can take the
representation so that the coefficient of |0〉 LV� UHDO� DQG� QRQ�QHJDWLYH�� 7KXV� %� KDV
a representation as:
|�%〉  = =  cosθ |0〉  + eiϕ sinθ |1〉   = cosθ |0〉 + (cosϕ + i sin ϕ) sin θ |1〉 (1)

Except in the case % is one of the ket vectors |0〉 or |1〉, the representation is
unique, i.e. the parameters ϕ and θ uniquely specify a point on the unit sphere of
Euclidean space R3 - the point whose coordinates (x, y, z) are:

x  =  sin 2θ × cos ϕ
y  =  sin 2θ × sin ϕ (2)
z =   cos 2θ 

In this representation |0〉 is mapped into (0, 0, 1) and |1〉 is mapped into (0, 0, -1).
The State Space Postulate7 tells us that we can describe the most general state

_%〉 of a single qubit by a vector of the form:
|ψ〉   = =  cos (θ / 2) |0〉  + eiφ sin (θ / 2) |1〉 (3)

1. Consider the analogous situation for a deterministic classical bit. The state of a classical
ELW�FDQ�EH�GHVFULEHG�E\�D�VLQJOH�ELQDU\�YDOXH�%��ZKLFK�FDQ�EH�HTXDO�WR�HLWKHU���RU���

2. Next consider the slightly more complicated situation of a classical bit whose
value is not known exactly, but is known to be either 0 or 1 with corresponding

                                                
6  Bra-ket notation is the standard notation for describing quantum states in the theory of quantum
mechanics. It can also be used to denote abstract vectors and linear functionals in pure mathematics. It is
so called because the inner product of two states is denoted by a bracket, 〈ϕ|�% 〉, consisting of a left part,
〈ϕ| called the bra, and a right part, |�% 〉, called the ket. The notation was invented by Paul Dirac, and is
also known as Dirac notation.
7 The state of a system is described by a unit vector in a Hilbert space H.
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probabiliti es p0 and p1. We might call this a probabili stic classical bit. The state of
such a probabili stic bit is described by the probabiliti es p0 and p1, which satisfy
p0 + p1 = 1 (reflecting the fact that we know the bit has to be either 0 or 1).

3. Now return to the state of a quantum bit, which is described by a complex unit
vector |%〉 in a 2-dimensional Hilbert space. Such a state vector is often depicted
as a point on the surface of a 3-dimensional sphere, known as the Bloch sphere.

The state of a
deterministic classical
bit can be represented
as one of two points,
labeled “0” and “1” .

The probabilistic classical bit – Here the
probabil ities p0 and p1 of the bit being 0
and 1, are represented by the position of
a point on the line segment between the
points representing 0 and 1.

State of a qubit on
the Bloch sphere

Figure 2. The representation of classical, probabilistic and quantum bits

The Turing machine, developed by Alan Turing in the 1930s, is a theoretical
device that consists of tape of unlimited length that is divided into littl e squares.
Each square can either hold a symbol (1 or 0) or be left blank. A read-write device
reads these symbols and blanks, which gives the machine its instructions to perform
a certain program. Does this sound famili ar? Well , in a quantum Turing machine, the
difference is that the tape exists in a quantum state, as does the read-write head. This
means that the symbols on the tape can be either 0 or 1 or a superposition of 0 and 1;
in other words the symbols are both 0 and 1 (and all points in between) at the same
time. While a normal Turing machine can only perform one calculation at a time,
a quantum Turing machine can perform many calculations at once.

The original Turing machine was deterministic (DTM): the head would be always
in a single state, which would uniquely determine which direction it would go into and
how far. There is a variant of the Turing machine, which is not deterministic. The head
may be in a state, which gives the machine certain choices as to the direction and length
of the next traverse. The choices are then made by throwing dice and possibly applying
some weights to the outcome. A machine like that is called a probabili stic Turing
machine (PTM), and it turns out that it is more powerful than the deterministic Turing
machine in the sense that anything computable with DTM is also computable with PTM
and usually faster. But both PTM and DTM are based on classical physics: the states of
the tape and of the head are always readable and writable, data can be always copied,
everything is uniquely defined.

A mathematical theory of computation that is based on quantum physics is
bound to be different. As you move from classical physics to quantum physics there
is a qualitative change in concepts that has profound ramifications.

So here's a brief history of how quantum Turing machine came about.
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1973 - Bennett demonstrates that a reversible Turing machine is possible (Bennett, 1973)
1980 - Benioff observes that since quantum mechanics is reversible a computer based on

quantum mechanical principles should be reversible too (Benioff, 1980).
1982 - Richard Feynman shows that no classical Turing machine can simulate

quantum phenomena without an exponential slow down, and then observes
that a universal quantum simulator can (Feynman, 1982).

1985 - David Deutsch of Oxford University, UK, describes the first true quantum
Turing machine (Deutsch, 1985).
In the quantum Turing machine read, write, and shift operations are all

accomplished by quantum interactions. The tape itself exists in a quantum state as
does the head. In particular in place of the Turing cell on the tape that could hold
either 0 or 1, in quantum Turing machine there is a qubit, which can hold a quantum
superposition of 0 and 1. The quantum Turing machine can encode many inputs to
a problem simultaneously, and then it can perform calculations on all the inputs at
the same time. This is called quantum parallelism. The tape of the quantum Turing
machine can now be drawn as shown in figure on the next page (Meglicki, 1995):

a) initial conditions

b) as the machine evolves, the head moves simultaneously in three different
directions - the state of the machine becomes a superposition of the three states

Figure 3. The tape of the quantum Turing machine.

The machine evolves in many different directions simultaneously. After some
time t its state is a superposition of all states that can be reached from the initial
condition in that time. In the quantum Turing machine read, write, and shift
operations are all accomplished by quantum interactions. The tape itself exists in a
quantum state as does the head. In particular in place of the Turing cell on the tape
that could hold either 0 or 1, in quantum Turing machine there is a qubit, which can
hold a quantum superposition of 0 and 1. The quantum Turing machine can encode
many inputs to a problem simultaneously, and then it can perform calculations on all
the inputs at the same time. This is called quantum parallelism.

Quantum Turing machine can be used to simulate the classical Turing
machine and the probabili stic Turing machine too. But quantum Turing machine can
do more than that. For example it can generate truly random numbers, something
that classical Turing machines cannot do.
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Quantum parallelism is not easy to harness though. On measurement of final
results the wave function of the computer must collapse, so that only a single result
is delivered. On the other hand, it turns out that it is possible to measure certain joint
properties of all the outputs.

3 Quantum gates

The theory of quantum computing is related to a theory of reversible
computing. A computation is reversible if it is always possible to uniquely recover
the input, given the output. For example, the NOT operation is reversible, because if
the output bit is 0, you know the input bit must have been 1, and vice versa. On the
other hand, the AND operation is not reversible (see figure below).

x     ¬x

0       1

1       0

x     y     x ∧ y

               0      0        0

               0      1        0

               1      0        0

               1      1        1
Figure 4. The standard gates

A quantum gate or a quantum logic gate is a basic quantum circuit operating
on a small number of qubits. They are the analogues for quantum computers to
classical logic gates for conventional digital computers. Although quantum gates
work on qubits in a much different fashion from standard electronic circuits, they
only differ in their basic effects in one sense: reversibilit y. Both types of gates take
a bit, alter it, and give an output bit state. Quantum gates, however, have the
additional property of reversibilit y8. The reversible AND gate keeps a copy of the
inputs and adds the and of x0 and x1 (denoted x1 ∧ x2) to the value in the additional
input bit. And note that by fixing the additional input bit to 0 and discarding the
copies of the x0 and x1 we can simulate the non-reversible AND gate.

Figure 5. The reversible AND gate

                                                
8 The reason that quantum gates are reversible is that their mechanism of action on qubits is through
Schroedinger evolution (which is reversible by virtue of being unitary).
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In classical computation, one could choose to be more environmentally
friendly and uncompute redundant or junk information, and reuse the cleared-up
memory for another computation. However, simply discarding the redundant
information does not actually affect the outcome of the computation. In quantum
computation however, discarding information that is correlated to the bits we keep
can drastically change the outcome of a computation. For this reason, the theory of
reversible computation plays an important role in the development of quantum
algorithms. In a manner very similar to the classical case, reversible quantum
operations can efficiently simulate non-reversible quantum operations (and
sometimes vice versa) so we generally focus attention on reversible quantum gates.
However, for the purposes of implementation or algorithm design, this is not always
necessary (e.g. one can cleverly configure special famili es of non-reversible gates to
efficiently simulate reversible ones).

Some universal classical logic gates, such as the Toffoli gate9, provide
reversibilit y and can be directly mapped onto quantum logic gates. Quantum logic
gates are represented by unitary matrices10. The most common quantum gates
operate on spaces of one or two qubits. This means that as matrices, quantum gates
can be described by 2 × 2 or 4 × 4 matrices with orthonormal rows. Because the
qubit is expressed as a vector, single qubit operators, or quantum gates, are expressed
as 2 × ��PDWULFHV��,Q�RUGHU�WR�EH�D�YDOLG�RSHUDWRU��WKH�UHVXOW�PXVW�VWLOO�FRQIRUP�WR�.2 +
�2 = 1. It turns out that any matrix which transforms a source vector with that
property to a result vector with that same property is said to be unitary, that is HtH =
I, where:









++
++

=
higfie

dicbia
H and 








−−
−−

=
higdic

fiebia
H t (4)

 
The requirement that the operator be unitary greatly restricts what can be

done in quantum computing. Most classical operations are not unitary; because we
can not get back the original value once the operation is performed. In fact, any
operation that takes two bits and produces one is not unitary. The abilit y to reverse
computation has practical implications. This creates an explosion in the number of
bits required to perform computation, because the information necessary to reverse
all operations performed must be part of the computation.

The quantum equivalents of such classical logic gates are achieved as simple
unitary operations on qubits - e.g. see tables below.

                                                
9 This gate has a 3-bit input and output. If the first two bits are set, it flips the third bit.
10 A square matrix U is a unitary matrix if UH = U-1, where UH denotes the conjugate transpose and U-1 is
the matrix inverse. For example:
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is a unitary matrix
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Table 1. The NOT gate

Symbol

Matrix 




=

01

10
NOT

Truth table in
Dirac
notation

Input      Output

|0〉            |1〉

|1〉            |0〉

The NOT gate is probably the most
famili ar to those used to dealing with
classical circuit diagrams. It simply
inverts the values of the qubit. It also has
the effect of exchanging a and b in
superpositioned states, exchanging the
probabil ity that the qubit will collapse to
|0〉 with the probability of collapse to |1〉
and vice versa (that is a|0〉 + b|1〉 becomes
b|0〉 + a|1〉).

Table 2. The Hadamard gate

Symbol

Matrix 






−
=

11

11

2

1
H

Truth table in
Dirac
notation

        Input             Output

|0〉        
2

1
(|0〉 + |1〉)

|1〉        
2

1
(|0〉 − |1〉)

Arguably the most important gate
in quantum computation is the
Walsh-Hadamard transformation
gate (or Hadamard gate for short).
Its function as a one-bit gate is to
put the unsuperpositioned qubit
into a superposition of the, |1〉〉 and
|0〉〉 states. As the quantum
computer derives much of its
power from superposition-based
activities, this gate is crucial.
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Table 3. Phase shift gate

Symbol

Matrix 






−
=

10

01
Shift

Truth table in
Dirac notation

Input        Output

|0〉               |0〉

|1〉            − |1〉

Gates in this class operate on a
single qubit. They are represented
by 2 × 2 matrices of the form






= θπθ ie

R 20

01
)(

This has the computational effect of
making two qubits that are in phase
with each other move into another
phase together.

Table 4. Square-root NOT gate

Symbol

Matrix 






− −
+

=
1

01

1 i
i

NOT

Truth table in
Dirac notation

    Input                     Output

|0〉         
2

1
(1+ i)|0〉 + 

2

1
(1−i)|1〉

|1〉        
2

1
(1−i)|0〉 + 

2

1
(1+ i)|1〉

The root NOT gate is exactly
what it sounds like: the input
is sent through two root NOT
gates to NOT the input as the
output. One advantage it has
is that, unlike the NOT and
CNOT gates, two root NOT
gates can invert a
superpositioned qubit (that is,
the probabilities that the
qubit will collapse to 1 is
changed to the probabil ity
that that the qubit wil l
collapse to 0).

Table 5. Controlled NOT gate

Symbol

Also known as the XOR or
measurement gate, the controlled
NOT (or CNOT) gate takes two
qubits as input, |x〉  and |y〉. The
result is the |x〉  qubit and an XOR
(⊗) of |x〉 and |y〉. If |x〉 value is 0,
|y〉 remains the same; otherwise, |y〉
value is flipped to its opposite
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Matrix



















=

0100

1000

0010

0001

CNOT

Truth table

Control         Input          Output 1          Output 2

                      0                 0                    0                       0
                      0                 1                    0                       1
                      1                 0                    1                       1
                      1                 1                    1                       0

4 Quantum algor ithms

Since quantum algorithms share some features with classical probabili stic
algorithms, we will start with a comparison of the two algorithmic paradigms (Kaye,
et al., 2007).

A classical probabili stic computation acting on a register that can be in one of
four states labeled 0, 1, 2, 3. The p0,j are the probabiliti es for the computation
proceeding from state 0 to state j in the first step. The qj,k represent the probabiliti es
for the computation proceeding from state j to state k in the second step.

Suppose we want to find the total probabilit y that the computation ends up in
state 3 after the second step. (Fig. 6)

Figure 6. Finding the total probability in classical computation

This is calculated by first determining the probabilit y associated with each
computation ‘path’ that could end up at the state 3, and then by adding the
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probabiliti es for all such paths. There are four computation paths that can leave the
computation in state 3 after the first step. The computation can proceed from state 0
to state j and then from state j to state 3, for any of the four j ∈ { 0, 1, 2, 3} . The
probabilit y associated with any one of these paths is obtained by multiplying the
probabilit y p0,j of the transition from state 0 to state j, with the probabilit y qj,3 of the
transition from state j to state 3. The total probabilit y of the computation ending up
in state 3 is given by adding these four possibiliti es. So we have:

∑=
j

jj qpprob 3,,0)3 is outcome final(  (5)

Another way of looking at this computation is to suppose the register consists
of two qubits, and let the labels 0, 1, 2, 3 refer to the four basis states |00〉 , |01〉 ,
|10〉 , |11〉, respectively. Then view each of the transition probabiliti es as a squared
norm of a quantum probabilit y amplitude, so that p0,j� � _.0,j|

2 and qj,k�  � _�j,k|
2. This

approach is shown in figure below, which can be viewed as a quantum computation
in which the state is measured after each step.

Figure 7. Finding the total probability in quantum computation

If we measured the state (in the computational basis) immediately after the
first step of the computation, the probabilit y associated with outcome 2 would be:

2,0

2

2,0)3 gives stepfirst after t measuremen( pprob == α (6)

Since we assume that the state is measured after each step, we would know
the intermediate state j, and thus we would know which computation path leading to
the final state 3 was taken. The total probabilit y of arriving at the final state 3 is
deWHUPLQHG� E\� DGGLQJ� WKH� VTXDUHG� QRUP� RI� WKH� SUREDELOLW\� DPSOLWXGH� .0,j�j,3

associated with each path (i.e. we add the probabiliti es for the four paths, and not the
probabilit y amplitudes). As before, the total probabilit y of measuring outcome 3
after the second step is:

2

3,,0

2

3,

2

,0)3 is  outcome final( jjjjprob βαβα == (7)

In a fully quantum algorithm, we would not measure the state immediately
after the first step. This way the quantum probabilit y amplitudes will have a chance
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to interfere. For example, some negative amplitude could cancel with some positive
amplitude, significantly affecting the final probabiliti es associated with a given
outcome. A quantum version of the algorithm above is ill ustrated in figure below.

Figure 8. Fully quantum algorithm

This time the calculation of the total probabilit y associated with outcome 3 in
the measurement after the second step is different. Since there is no measurement
after the first step of the computation, we do not learn the path taken by the
computation to the final state 3. That is, when we obtain the output 3, we will have
no information telli ng us which of the four paths was taken. In this case, instead of
adding the probabiliti es associated with each of these four paths, we must add the
probabilit y amplitudes. The probabilit y of a measurement after the second step
giving the result 3 is obtained by taking the squared norm of the total probabilit y
amplitude. Classical probabili stic algorithms can be easily simulated by quantum
algorithms. However, we know that naively replacing each quantum gate with
a probabili stic classical gate can give drastically different outcomes, and thus will
not work in general. And, there is no known general purpose classical algorithm for
simulating quantum systems (and, in particular, quantum computers). As an example
we look at the Deutsch algorithm. The Deutsch algorithm is a very simple example
of a quantum algorithm based on the Quantum Fourier Transform11. The problem
solved by the Deutsch algorithm is the following.

Suppose we are given a reversible circuit for computing an unknown 1-bit
function f : { 0, 1} : { 0, 1} . We treat this reversible circuit as a ‘black box’ or
‘oracle’ . This means that we can apply the circuit to obtain values of f(x) for given
inputs x, but we cannot gain any information about the inner workings of the circuit
to learn about the function f. So determining f(0)⊕f(1) is equivalent to determining
whether the function f is constant or balanced. How many queries to the oracle for f
must be made classically to determine f(0) ⊕ f(1)? Clearly the answer is 2.

Suppose we compute f(0) using one (classical) query. Then the value of f(1)
could be 0, making f(0) ⊕ f(1) = 0, or the value of f(1) could be 1, making f(0) ⊕ f(1)
= 1. Without making a second query to the oracle to determine the value of f(1), we

                                                
11 The quantum Fourier transform is the discrete Fourier transform with a particular decomposition into
a product of simpler unitary matrices. Using this decomposition, the discrete Fourier transform can be
implemented as a quantum circuit consisting of Hadamard gates and controlled phase shift gates.
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can make no conclusion about the value of f(0) ⊕ f(1). The Deutsch algorithm is
a quantum algorithm capable of determining the value of f(0) ⊕ f(1) by making only
a single query to a quantum oracle for f. The given reversible circuit for f can be
made into a quantum circuit, by replacing every reversible classical gate in the given
circuit with the analogous unitary quantum gate. This quantum circuit can be
expressed as a unitary operator:

Uf : |x〉 |y〉 :�_x〉 |y ⊕ f(x)〉 (8)

Having created a quantum version of the circuit for f, we can supply quantum
bits as inputs. We define Uf , so that if we set the second input qubit to be in the state
|y〉 = |0〉, then |x〉 = |0〉 in the first input qubit will give |0 ⊕ f(0)〉 = |f(0)〉 in the second
output bit, and |x〉 = |1〉 in the first input qubit wil l give |f(1) 〉. So we can think of
|x〉 = |0〉 as a quantum version of the (classical) input bit 0, and |x〉 = |1〉 as a quantum
version of the input bit 1. Of course, the state of the input qubit can be some superposition
of |0〉 and |1〉. A circuit, implementing the Deutsch algorithm is shown below.

Figure 9. A circuit implementing the Deutsch algorithm

For the Deutsch problem we are ultimately not interested in individual values
of f(x), but wish to determine the value of f(0) ⊕ f(1).

The Deutsch algorithm ill ustrates how we can use quantum interference to
obtain such global information about the function f, and how this can be done more
efficiently than is possible classically.

Table 6. Some problems solved with quantum algorithms

The Deutsch–
Jozsa Problem

Input:     A black-box for computing an unknown function f :
                {0, 1} n :�^����`�
Promise: f is either a constant or a balanced function.
Problem: Determine whether f is constant or balanced by making

queries to f.

Simon’s Problem

Input:      A black-box for computing an unknown function f :
               {0, 1} n :�;��ZKHUH�;�LV�VRPH�ILQLWH�VHW�
Promise: There exists a string s = s1s2 . . . sn  so that f(x) = f(y) if

and only if x = y or x = y ⊕ s.
Problem: Determine the string s by making queries to f
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Input: The state y
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Phase Estimation
Problem

3UREOHP��2EWDLQ�D�JRRG�HVWLPDWH�RI�WKH�SKDVH�SDUDPHWHU�&�
Eigenvalue
Estimation
Problem

Input:      A quantum circuit implementing an operator U, and an
HLJHQVWDWH�_%〉  with corresponding eigenvalue e��L&.

3UREOHP��2EWDLQ�D�JRRG�HVWLPDWH�IRU�&�
Order-Finding
Problem

Input:      Integers a and N such that GCD(a,N) = 1 (i.e. a is
relatively prime to N).

Problem: Find the order of a modulo N.

Integer
Factorization
Problem

Input:       An integer N.
Problem: Output positive integers p1, p2, . . . , pl, r1, r2, . . . , rl

where the pi are distinct primes and

              
12

2

1

1
,...,, r

l

rr pppN =

The Discrete
Logarithm
Problem

Input:      Elements b and a = bt in 
*

p
Ζ , where t is an integer from

{0, 1, . . . , rí�`�DQG�r is the order of a.
Problem: Find t.  (The number t is called the discrete logarithm of b

with respect to the base a.)

The Search
Problem

Input:      A black box Uf for computing an unknown function
 f : { 0, 1}n :�^����`�

Problem: Find an input x ∈ { 0, 1} n such that f(x) = 1.

5 Qubit Control

Quantum computers also utili ze another aspect of quantum mechanics known
as entanglement. One problem with the idea of quantum computers is that if you try
to look at the sub-atomic particles, you could bump them, and thereby change their
value. If you look at a qubit in superposition to determine its value, the qubit will
assume the value of either 0 or 1, but not both (effectively turning your spiffy
quantum computer into a mundane digital computer).

To make a practical quantum computer, scientists have to devise ways of
making measurements indirectly to preserve the system's integrity. Entanglement
provides a potential answer. In quantum physics, if you apply an outside force to two
atoms, it can cause them to become en-tangled, and the second atom can take on the
properties of the first atom. So if left alone, an atom will spin in all directions. The
instant it is disturbed it chooses one spin, or one value; and at the same time,
the second entangled atom will choose an opposite spin, or value. Qubits represent
atoms, ions, photons or electrons and their respective control devices that are
working together to act as computer memory and a processor. All quantum
computation exploits the quantum nature of an electron's spin or a photon's polarity.
Quantum theory dictates that until these properties are actually observed, they are
indeterminate: the spin of an electron, for instance, can be "up" or "down," or
a combination of the two.

We can control the microscopic particles that act as qubits in quantum
computers by using some control devices, e.g.:
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-  Ion traps - using optical or magnetic fields (or a combination of both) to
trap ions.

-  Optical traps - using light waves to trap and control particles.
-  Quantum dots are made of semiconductor material and are used to contain

and manipulate electrons.

5.1. Ion-trap

This technology uses electric and magnetic fields to isolate a charged particle
from its environment - a prerequisite for exploiting the temperamental quantum
properties of electrons. Although ion traps are just one technology for building a quantum
computer, they have the longest history - the first trap was buil t in Monroe's lab12 in 1995
- and they've advanced the furthest. But most ion traps are difficult to fabricate, consisting
of a ceramic insulator and gold contacts for conducting an electrical current. Monroe's
team buil t their chip out of insulating layers of alloys of aluminum, gall ium, and arsenide,
with semiconducting layers of galli um and arsenide - all easy to deposit on a chip using
a conventional process called molecular beam epitaxy.13

The chip is placed in a vacuum, which then gets injected with a vapor of
cadmium ions. When the appropriate voltages are applied to the electrodes,
a cadmium ion with a free electron becomes trapped, floating between the
cantilevers above the etched hole. In order to actually use the atom's free electron for
computation, the ion must be probed by a laser beam that reads the electron's spin
state. Putting multiple traps on one chip presents difficulties, because as the number
of traps increase, it becomes more difficult for a laser to read the state of an
individual electron without interfering with the state of other electrons.

Figure 10. Examples of ion traps (FOCUS Centre, 2006): a) ring-fork quadrupole trap,
b) three-layer linear trap, c) GaAs chip linear trap, d.) two-needle quadrupole trap,

e) four-rod linear trap.

                                                
12 Christopher Monroe's research group at the University of Michigan Department of Physics and FOCUS
Physics Frontier Center.
13 This first ion-trap chip builds on a quantum computing roadmap that Monroe, David Kielpinski at MIT,
and David J. Wineland at NIST published in Nature in 2002.
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5.2. Optical traps

Optical traps exploit the momentum of laser light to manipulate individual objects
– not just beads, but also cells, organelles, and even atoms. After years of work, the Bell
Labs group found they could hold a clear bead in place with a single, tightly focused laser
beam, a surprisingly simple configuration now known as optical tweezers. If the bead
starts to drift away, the laser light is deflected, and the particle is pushed in the opposite
direction, back towards the focus. The result is that the bead is held gently in place, as if
by tiny springs. When the experimenter moves the light beam, the bead follows, so
optical tweezers can move objects around like their nonoptical namesake.

Figure 11. The model of optical tweezers. The incoming light is focused down to a tight spot
and the forces that act on the sphere are such that the centre moves towards this focus. The

'F's in the diagram indicate the forces on the sphere

Figure 12. The example of optical trap (Ashkin, 1997): a) Geometry of levitation trap.
b) Origin of backward restoring force F for sphere located below tweezers focus f

Optical tweezers use light to manipulate microscopic objects as small as
a single atom. The radiation pressure from a focused laser beam is able to trap small
particles. In the biological sciences, these instruments have been used to apply forces
in the pN-range and to measure displacements in the nm range of objects ranging in
size from 10 nm to over 100 mm.
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The techniques of optical trapping and manipulation of neutral particles by
lasers provide unique means to control the dynamics of small particles.

5.3. Quantum dots

Quantum dots are tiny nanocrystals that glow when stimulated by an external
source such as ultraviolet (UV) light. They are unique class of semiconductor
because they are so small, ranging from 2-10 nanometers (10-50 atoms) in diameter.
In natural bulk semiconductor material, an extremely small percentage of electrons
occupy the conduction band the overwhelming majority of electrons occupy the
valence band, filli ng it almost completely.

The only way for an electron in the valence band to jump to the conduction
band is to acquire enough energy to cross the band gap14, and most electrons in bulk
simply do not have enough energy to do so. It is also established that electrons in
natural semiconductor bulk that have been raised into the conduction band will stay
there only momentarily before falli ng back across the bandgap to their natural,
valence energy levels. As the electron falls back down across the band gap,
electromagnetic radiation with a wavelength corresponding to the energy it loses in
the transition is emitted.

Because quantum dots' electron energy levels are discrete rather than
continuous, the addition or subtraction of just a few atoms to the quantum dot has the
effect of altering the boundaries of the bandgap. Changing the geometry of the
surface of the quantum dot also changes the bandgap energy, owing again to the
small size of the dot, and the effects of quantum confinement. As with bulk
semiconductor material, electrons tend to make transitions near the edges of the
bandgap. However, with quantum dots, the size of the bandgap is controlled simply
by adjusting the size of the dot. (Evident Technologies, 2007)

Figure 13. A tunable bandgap

                                                
14 A suff iciently strong stimulus will cause a valence band electron to take residence in the conduction
band, causing the creation of a positively charged hole in the valence band. The raised electron and the
hole taken as a pair are called an exciton. Excitons have an average physical separation between the
electron and hole, referred to as the Exciton Bohr Radius this physical distance is different for each
material.
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Quantum dots are small semi-conductor or metal islands with a diameter that
is small enough to make their charging energy greater than kBT where kB is
Boltzmann’s constant and T is the operating temperature. The charging energy is the
potential energy needed to overcome the electrostatic repulsion from the other
electrons in the dot – or in other words, the energy required to add an electron to
a dot. If this energy is greater than the thermal energy of the environment (kBT), dots
can trap individual charges.

Figure 14. Cell polarizations and representations of binary 1 and binary 0 (Shukla, 2004)

Exactly two mobile electrons are loaded into cells and can move to different
quantum dots by means of electron tunneling. Tunneling paths are represented by the
lines connecting the quantum dots in figure below. Coulombic repulsion will cause
“classical” models of the electrons to occupy only the corners of the cell , resulting in
two specific polarizations. These polarizations are configurations where electrons are
as far apart from one another as possible, in an energetically minimal position,
without escaping the confines of the cell .

6 Today's Quantum Computers

Quantum computers could one day replace sili con chips, just like the
transistor once replaced the vacuum tube. But for now, the technology required to
develop such a quantum computer is beyond our reach. Most research in quantum
computing is still very theoretical. The most advanced quantum computers have not
gone beyond manipulating more than 16 qubits, meaning that they are a far cry from
practical application. Several key advancements have been made in quantum
computing in the last few years. See table below:

Table 7. The history of quantum computation growth

1998 Los Alamos and MIT researchers managed to spread a single qubit across three
nuclear spins in each molecule of a liquid solution of alanine or
trichloroethylene molecules. Spreading out the qubit made it harder to corrupt,
allowing researchers to use entanglement to study interactions between states as
an indirect method for analyzing the quantum information.

2000 In March, scientists at Los Alamos National Laboratory announced the development
of a 7-qubit quantum computer within a single drop of liquid. The quantum computer
uses nuclear magnetic resonance (NMR) to manipulate particles in the atomic nuclei
of molecules of transcrotonic acid, a simple fluid consisting of molecules made up of
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six hydrogen and four carbon atoms. The NMR is used to apply electromagnetic
pulses, which force the particles to line up. These particles in positions parallel or
counter to the magnetic field allow the quantum computer to mimic the information-
encoding of bits in digital computers.

2001 Scientists from IBM and Stanford University successfully demonstrated Shor's
Algorithm on a quantum computer. Shor's Algorithm is a method for finding the
prime factors of numbers (which plays an intrinsic role in cryptography). They
used a 7-qubit computer to find the factors of 15. The computer correctly
deduced that the prime factors were 3 and 5.

2005 The Institute of Quantum Optics and Quantum Information at the University of
Innsbruck an-nounced that scientists had created the first qubyte, or series of 8
qubits, using ion traps.

2006 Scientists in Waterloo and Massachusetts devised methods for quantum control
on a 12-qubit system. Quantum control becomes more complex as systems
employ more qubits.

2007 Canadian startup company D-Wave demonstrated a 16-qubit quantum computer.
The computer solved a sudoku puzzle and other pattern matching problems. The
company claims it wil l produce practical systems by 2008. Skeptics believe
practical quantum computers are still decades away, that the system D-Wave has
created isn't scaleable, and that many of the claims on D-Wave's Web site are
simply impossible (or at least impossible to know for certain given our
understanding of quantum mechanics).
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Erratum

In  the Studia Informatica, Vol. 1/2(7) 2006 the following corrections should
be noted. (1) Table of contents as a name of page 3 (instead of polish version),
(2) The Tabu Search approach in coherent co-synthesis of multiprocessor systems,
second author Czajkowski K. name was misspelled, (3) header on even pages from
36 to 44, both authors Drabowski M., Czajkowski K. names were misspelled,
(4) Method of Logical Synthesis of Integrated Circuits in basis K-PLA, Novikov S.,
the figures from 1 to 10 were pass over – this Studia Informatica, Vol. 1(8) 2007
includes report under the title of Many-valued gates for reducing the chip-area
of integrated circuits (by Novikov S.) as extended version of mentioned above with
the same figures identically numbered.

We apologize for these mistakes.


