
STUDIA INFORMATICA
Nr 1(8) Systemy i technologie informacyjne 2007

Monitoring of State in Program Simulator
of Electronic Device

Piotr Czeberkus, Alexander O. Timofeev
Institute of Computer Science, University of Podlasie,
ul. Sienkiewicza 51, 08-110 Siedlce, Poland

Abstract. The article presents the interactive method of state monitoring of electronic device in
autonomous simulated application. Form of electronic device state presentation is discussed. The
information about state is presented by means of a special template, which can include both text
and graphics. Author of model can decide about the format of displayed results. Implementation
of the subsystem for monitoring electronic devices states, simulation course and observation of
results are described. It is coming in sight, that the interactive monitoring of simulated devices
state by means of text and graphics is readable, intelli gible and more user friendly, and also it
helps to understand better the processes, which take place in simulated devices and it is a good
solution for didactics reasons.

Keywords: simulation, electronic device, state, monitoring of state.

1 Introduction

The question of computer simulation of dynamic device is current from for
a few dozen of years. The multiplicity of various program simulators has already
appeared.

However, the number of good solutions enabling to display simulation results
interactively and originally is still insuff icient. It is difficult to use them for teaching
since they are complicated and considerably complex.

It is desirable, that the system would enable user to observe internal state of
the simulated model in each discrete period. Often, the simulator is expected to do
more than show the simulation results in rigid tabular form without additional
explanation, especially when it is used in didactics.

The user of simulator will carry benefit maximally from application, when it
presents results in clear and readable way with elements of graphics and with
comments.

It is recommended, that each device component shows its own state in
separate window and the user can control simulation process in the way he needs.

34 Czeberkus P., Timofeev A.O.

Studia Informatica vol. 1(8)2007

Simulating system Amethyst meets mentioned expectations. It generates the
autonomous device simulator, which stands out above the other solutions [1, 2].

2 Form of electronic device state presentation

In Amethyst system, the information about state is presented by means of
a special template, which can include both text and graphics. The template is
composed of 256 ASCII symbols in the form of pseudo graphics with capabilit y to
insert images from file.

Author of model can decide about the format of displayed results. He can
easily built the template in the form of device scheme and aff ix bitmaps with photos
or drawings.

Each properly constructed simulator must have a simulation monitor. The
monitor is usually a huge and powerful program that registers model event times and
directly executes appropriate actions in specified order.

In order to decrease the size of monitor, thus also the size of entire
application, processing of delays and filtering of signals in Amethyst system have
been decentralized.

It is assumed that the model of each component monitors events on its inputs
and outputs. In each step, it must calculate time of a next event and send the result to
higher level in hierarchy. Once calculated and sent to the top of component hierarchy
the time of a next event is applied to entire model. The monitor compares this time
with the global system time and unless the end of simulation is reached it proceeds to
the next step.

The application provides following simulation control function:
- start of simulation in continuous mode,
- perform transition to the next event,
- stop of simulation process,
- start of simulation for definite period,
- perform immediate transition to the last step of simulation,
- return back to initial state.
Simulation results are also observed in decentralized manner. Components of

model show their state independently in specific format. It requires designing
separate state presentation windows for each component. Components, which are not
placed in library of system, must be first defined by the Amethyst's standard
description, and then placed in the system library.

3 Method of description of electronic device

Accepted method of standard describing electronic devices consists in
creating a text file with component definition and program files. Program files are

Monitoring of State in Program Simulator of Electronic Device 35

Modeling and Simulation

written in high-level programming language, e.g. C++, and include procedures,
which simulate the functionality of components.

The file with component definition has an extension “ .ame”. Its content is
divided into base text and control text.

Control text describes types of scheme fields and determines how they should
be displayed.

Base text contains initial values of dynamic fields. It is usually made as
a pseudo graphical drawing that can also mark places for external images.

A subsystem for state monitoring gets the information from proper sections of
file ame. These sections contain data in the form of text and drawings that wil l be
displayed during simulation.

System must read all fields, process and change them depending on course of
simulation, and then display them in state presentation windows.

In order to know how to interpret particular rows of data they must be properly
marked and described. In the end of each row containing such data, there is a description
encoded in the way intell igible to system. This description is called control text.

Dynamically changing row fragments are called lexemes. Some rows are not
the source of information used in simulating process and do not change dynamically.
They can be just fragments of template and include drawings, borders of maps,
tables etc., therefore, they do not require the control text.

After preparation of model definition file it is necessary to program the
simulated object. It requires creating source files named identically as file ame.

Choice of programming language should depend on environment and
compiler used later for generating a project of an autonomous application.

Programming functionality requires preparation of two structures responsible for
storage of model parameters and variables displayed in state presentation windows.

The variables must strictly correspond to lexemes from model definition file.
It means that variable types must match appropriate lexeme types and should be
declared in the same order.

The next step is declaring the model class containing pointer on structure with
state variables, pointer on structure with parameters and standard simulation
procedures described in Amethyst's documentation: fCreateUnit, fSet, f1 and f2.

Function fCreateUnit should contain operations being executed during first
initialization of model. Since this function overrides its significant base class equivalent
the inherited function should be called explicitly within user function body.

Procedure fSet is executed every time the simulation monitor is demanded to
initialize the model. It is a proper place to assign values from parameters section to
variables representing model's state.

Procedure f1 assigns values to output variables on the base of model internal
variables. It also can contain instructions of decentralized monitor for checking and
setting time variables.

Procedure f2 applies all internal changes of simulated model. It is an intended
place to include a code reading data from inputs and calculating values of internal
variables comprising the model's state.

36 Czeberkus P., Timofeev A.O.

Studia Informatica vol. 1(8)2007

Model implementation files can also include many auxili ary variables and
procedures.

4 Implementation of the subsystem for monitoring electronic
devices states

Both the system's module responsible for displaying simulated objects and the
simulation monitor function together creating a subsystem for monitoring states.

The information presented to user is updated directly in each step of
simulation and is initiated by monitor's thread. It is stored in special program
structures and must be correctly refreshed and showed whenever is changed.

Because the forms of presentation of individual elements and variables could be
different it is necessary to store the separate information about them. Hence, the information
of simulated device state is divided into two types: essential information and metadata.

The essential information concerns dynamically changing values of simulated
device, e.g. tensions on pins, times of events, values of buses and registers etc.
Usually it is represented by numerical or text variables and it is placed in source files
defined by model's author.

The metadata concerns types and styles of displayed values. It includes the
information about used units of measure, colors and typefaces of fonts, positions on screen
etc. The information is taken from file ame with hypertext definition of component.

It is also important to arrange and store mentioned information in organized
form, so that operations of reading and updating can be intuitive and fast.

This goal has achieved by introducing classes of models containing fields
describing state and methods responsible for simulation. As a result each simulated
component has represented by an object of specific class.

Before being displayed the information presented to user takes many intermediate
forms. In order to finally display results in readable and intell igible manner the special
functions were defined to convert information from one form to another.

Process of conversion has been ill ustrated on Figure 1.

Figure 1. The sequence of conversion of component state information

The simulation monitor invokes procedures updating binary values of
variables in program structures, i.e. internal variables of simulated object. However,
the subsystem for displaying state does not operate these structures explicitly. It uses
intermediate form shown as a middle block on Figure 1.

Monitoring of State in Program Simulator of Electronic Device 37

Modeling and Simulation

At this stage, the information takes a textual form, which can be easily
ill ustrated graphically. Each row of text is placed in separate structure along with
data about its format, that's why it is called “ format structure”.

Conversion of binary information into text is performed just before
displaying. Operation of displaying is performed in graphical mode and requires
eff icient method of drawing on a screen.

Solution currently implemented in Amethyst consists in drawing components
of model directly into the bitmap memory, and next displaying whole image in
a window. This method is fast because it performs low-level operations on memory
blocks and cells and uses functions API Windows. It omits whole compound
structure of VCL (Visual Component Library) objects.

Due to double buffering, undesirable flickering effect and on-screen picture
distortion usually appearing during refreshing and scrolli ng window contents have
been eliminated.

Direct writing to on-screen image memory requires using low-level
instructions and special functions of graphic card driver. This is a fastest possible
solution, but poorly universal and involving specialized graphics libraries, such as
DirectX or OpenGL.

In case of this application, it is redundant relative to real requirements of
program, whereas utili zation of basic graphics interface GDI (Graphics Device
Interface) has turned out to suffice and provide relatively efficient communication
between program and output device.

Convenient method of presenting device's state graphically is using bitmaps
DIB (Device Independent Bitmap). As the name indicates, this is device independent
format, besides it is well - documented and implemented in standard libraries of
Windows operating system.

Writing to bitmap memory is performed in the order determined by occurrence of
format structures and its lexemes, row-by-row, column-by-column. Each symbol from
format's text is drawn separately according to defined typeface of font.

Fonts are stored in special files in which each row corresponds to one ASCII
character and consists of sequence of hexadecimal numbers. The result of loading
font file into memory is an area of bytes where each single bit decides about
visibilit y of one pixel.

Covering bitmap with characters is made by finding a proper place in font
memory area, and then using nearest area of bits as a Boolean mask (Figure 2). An
offset of the proper place in memory is calculated on the base of character position in
ASCII table.

A size of the mask depends on loaded typeface. Pixels are drawn in places
where corresponding bits take a value of „1” .

The color of each pixel is defined in lexemes. If particular fragment of text
does not belong to any lexeme, then default color is applied.

An exception to the rule il lustrated on Figure 2 occurs in case of inserting
external images. The fragment of bitmap memory is fill ed directly with data coming

38 Czeberkus P., Timofeev A.O.

Studia Informatica vol. 1(8)2007

from loaded bitmap file by copying it pixel by pixel in the ratio of one to one.
Designer of model should choose such bitmaps that perfectly fit to the rest of image.

The last operation in process of displaying is moving created DIB bitmap to
the context of device associated with presentation window. After all the actions
relating to showing state have been done, the simulation monitor takes over the
control and determines next cycle of computations and presentation.

Figure 2. Painting of text in bitmap memory

5 Simulation course and observation of results

A simulation is preceded always by the operations of reading and analyzing
model definition file. They are performed every time the monitoring process is
instructed to initialize model and restore initial values. A special procedure performs
parsing the file and fill s format structures with data.

The format structures contain base text and information about lexemes, i.e.
dynamic fields relating to symbolic or physical elements of device. This information
includes lexemes types, values, position in base text and preferred methods of
presentation.

The structures are fill ed in on the base of control text. When binary form of
model comprised of format structures is ready the program performs initialization of
simulated object by invoking particular procedures programmed by model's author.

After successful initialization, the monitor's thread is started up in suspended
mode. Resuming the thread is caused by a proper user action. A monitor's body
constitutes a loop, which is running until the maximal defined simulation time is
exceeded. Inside the loop, procedures of two phases of simulation: f1 and f2 are executed.

At the end of each simulation step, i.e. after executing single loop of the
monitor, the content of the user interface is updated. If the monitor works in “ to end

Monitoring of State in Program Simulator of Electronic Device 39

Modeling and Simulation

state” mode then refreshing of interface is performed just once after the end of
simulation and only state that is showed is the final state.

The interface presenting device state is user - friendly. It consists of several
windows invoked separately for each atomic component of a device. User decides,
which windows he wants to open and observe.

The content of each currently opened window is refreshed dynamically on the
base of updated format structures.

The user can control to simulation using buttons placed in the main
application window. In order to observe simulation results and follow dynamic
model state user opens separate presentation windows for particular device elements
from a component tree (Figure 3).

Figure 3. Autonomous XOR gate simulator created in Amethyst system.
1 - fields to editing discreet time parameters, 2 - simulation monitor control buttons,

3 - components tree, 4 - state presentation window

The meaning of interface parts is as follows:
o Time - field showing current simulation time;
o Event - field displaying time of next event;
o End - field showing a maximal simulation time;

40 Czeberkus P., Timofeev A.O.

Studia Informatica vol. 1(8)2007

o Interval - field defining a period, after which simulation has to be stopped;
o Events - button causing transition to next state;
o Interval - button starting up simulation during;
o Times - if button Interval is pressed it denotes a multiplier for time value from

field Interval; if button Events is pressed it specifies a number of events that
have to occur before simulation is suspended. For example, if f ield Interval has
a value of 10ns and field Times has a value of 4 then clicking on button Interval
will cause start of simulation for 4 * 10ns= 40ns;

o Reset - button resetting device model;
o To end - button causing start of simulation without stops until t ime entered in

field End is reached;
o Pause - button suspending simulation;
o Continue - button resuming simulation.

Within a device state presentation window (Figure 3), it is possible to observe
dynamically changing values of model variables embedded in the symbolic device
scheme.

6 Conclusion

The interactive monitoring of simulated devices state by means of text and
graphics is readable, intelli gible and more user friendly. It helps to understand better
the processes, which take place in simulated devices and it is a good solution for
didactics and other cognitional reasons. Such method is implemented in the
simulation system Amethyst being a generator of interactive autonomous simulators.

References

1. A.O. Timofeev (2004): Computer production of programs for simulation of
dynamic systems. Proceedings of the 15th International Conference on Systems
'HVLJQ� ������ 6HSWHPEHU� ������ :URFODZ�� 3RODQG��� 9RO�� ��� :URFáDZ�� 2ILF\QD
WyGDZQLF]D�3ROLWHFKQLNL�:URFáDZVNLHM��������3S��������

2. P. Czeberkus (2007): Design and implementation of an electronic circuits
simulator. A subsystem for monitoring circuits states. Master's thesis (in Polish).
Akademia Podlaska, Siedlce, 2007.

