STUDIA INFORMATICA
Nr 1(8) Systemy i technologie informacyjne 2007

Monitoring of Statein Program Simulator
of Electronic Device

Piotr Czeberkus, Alexander O. Timofeev
Intitute of Computer Science, University of Podasie,
ul. Sienkiewicza51, 08-110Siedice, Poland

Abstract. The article presents the interadive method of state monitoring of eledronic devicein
autonomous simulated appli cation. Form of eledronic device state presentation is discussed. The
information abou state is presented by means of a spedal template, which can include both text
and graphics. Author of model can dedde about the format of displayed results. Implementation
of the subsystem for monitoring eledronic devices states, simulation course and observation of
results are described. It is coming in sight, that the interactive monitoring of simulated devices
state by means of text and graphics is readable, intelli gible and more user friendly, and also it
helps to understand better the processes, which take place in simulated devices and it is a good
solution for didadics reasons.

Keywords: simulation, electronic device, state, monitoring of state.

1 Introduction

The question of computer simulation of dynamic device is current from for
a few dozen of years. The multiplicity of various program simulators has already
appeared.

However, the number of goad solutions enabling to display simulation results
interadively and originaly is still insufficient. It is difficult to use them for teading
sincethey are complicated and considerably complex.

It is desirable, that the system would enable user to observe interna state of
the simulated model in ead discrete period. Often, the simulator is expeded to do
more than show the simulation results in rigid tabular form without additional
explanation, espedally when it is used in didadics.

The user of simulator will carry benefit maximally from applicaion, when it
presents results in clea and readable way with elements of graphics and with
comments.

It is recommended, that each device component shows its own state in
separate window and the user can control simulation processin the way he needs.

34 Czeberkus P., Timofeer A.O.

Simulating system Amethyst meets mentioned expedations. It generates the
autonomous device simulator, which stands out above the other solutions[1, 2].

2 Form of electronic device state presentation

In Amethyst system, the information about state is presented by means of
a speda template, which can include both text and graphics. The template is
composed o 256 ASCII symbadls in the form of pseudo graphics with capability to
insert images from file.

Author of model can dedde about the format of displayed results. He can
ealy built the template in the form of device scheme and affix bitmaps with phaos
or drawings.

Each properly constructed simulator must have a simulation monitor. The
monitor is usualy a huge and powerful program that registers model event times and
diredly executes appropriate adionsin specified order.

In order to deaeese the size of monitor, thus aso the size of entire
application, processng of delays and filtering of signals in Amethyst system have
been decentrali zed.

It is assumed that the model of each component monitors events on its inputs
and outputs. In eech step, it must cdculate time of a next event and send the result to
higher level in hierarchy. Once cdculated and sent to the top of comporent hierarchy
the time of a next event is applied to entire model. The monitor compares this time
with the global system time and unlessthe end of simulation is reached it proceeds to
the next step.

The application provides foll owing simulation control function:

- start of simulationin continuous mode,

- perform transition to the next event,

- stop of simulation process

- dtart of smulation for definite period,

- perform immediate transition to the last step of simulation,

- return back toinitial state.

Simulation results are a so observed in decentrali zed manner. Components of
model show their state independently in spedfic format. It requires designing
separate state presentation windows for ead component. Components, which are not
placal in library of system, must be first defined by the Amethyst's gandard
description, and then placal in the system library.

3 Method of description of electronic device

Accepted method o standard describing eledronic devices consists in
creding a text file with component definition and program files. Program files are

Sudia Informatica vol. 1(8)2007

Monitoring of State in Program Simulator of Electronic Device 35

written in high-level programming language, e.g. C++, and include procedures,
which simulate the functionality of components.

The file with component definition has an extension “.ame”. Its content is
divided into base text and control text.

Control text describes types of scheme fields and determines how they should
be displayed.

Base text contains initial values of dynamic fields. It is usually made &
apseudo graphicd drawing that can also mark places for external images.

A subsystem for state monitoring gets the information from proper sedions of
file ame. These sedions contain data in the form of text and drawings that will be
displayed during simulation.

System must read al fields, processand change them depending oncourse of
simulation, and then display them in state presentation windows.

In order to know how to interpret particular rows of data they must be properly
marked and described. In the end of each row containing such data, thereis a description
encoded in the way intelligible to system. This description is cdled control text.

Dynamicdly changing row fragments are cdled lexemes. Some rows are not
the source of information used in simulating process and db not change dynamicadly.
They can be just fragments of template and include drawings, borders of maps,
tables etc., therefore, they do not require the control text.

After preparation of model definition file it is necessary to program the
simulated objed. It requires creaing sourcefil es named identicdly as file ame.

Choice of programming language shoud depend o environment and
compiler used later for generating a projed of an autonomous application.

Programming functionality requires preparation of two structures responsible for
storage of model parameters and variables displayed in state presentation windows.

The variables must strictly correspond to lexemes from model definition file.
It means that variable types must match appropriate lexeme types and should be
dedared in the same order.

The next step is dedaring the model class containing pointer on structure with
state variables, pointer on structure with parameters and standard simulation
procedures described in Amethyst's documentation: fCreateUnit, fSet, f1 and 2.

Function fCreateUnit should contain operations being exeauted during first
initialization of model. Since this function overrides its significant base class equivalent
theinherited function shoud be called explicitly within user function body.

Procedure fSet is executed every time the simulation monitor is demanded to
initialize the model. It is a proper placeto assgn values from parameters sedion to
variables representing model's state.

Procedure f1 assigns values to output variables on the base of model internal
variables. It also can contain instructions of decentralized monitor for checking and
setting time variables.

Procedure f2 applies all internal changes of simulated model. It is an intended
placeto include a code reading data from inputs and cdculating values of internal
variables comprising the model's state.

Modeling and Smulation

36 Czeberkus P., Timofeer A.O.

Model implementation files can also include many auxiliary variables and
procedures.

4 Implementation of the subsystem for monitoring electronic
devices states

Both the system’'s modue responsible for displaying simulated objects and the
simulation monitor function together creaing a subsystem for monitoring states.

The information presented to user is updated directly in each step of
simulation and is initiated by monitor's thread. It is stored in specia program
structures and must be corredly refreshed and showed whenever is changed.

Becaise the forms of presentation of individua €ements and variables coud be
different it is necessary to tore the separate information about them. Hence, the information
of smulated devicegtate is divided into two types: essentia information and metadata.

The essential information concerns dynamicaly changing values of simulated
device eg. tensions on pins, times of events, values of buses and registers etc.
Usudlly it isrepresented by numericd or text variables and it is placed in source files
defined by model's author.

The metadata concens types and styles of displayed vaues. It includes the
information about used units of measure, colors and typefaces of forts, positions on screen
etc. Theinformationis taken from fil e ame with hypertext definition of comporent.

It is also important to arrange and store mentioned information in organized
form, so that operations of reading and updating can be intuitive and fast.

This goal has adchieved by introducing classes of models containing fields
describing state and methods responsible for simulation. As a result ead simulated
comporent has represented by an object of spedfic class

Before being dsplayed the information presented to user takes many intermediate
forms. In arder to finaly display results in readable and intelligible manner the specia
functions were defined to convert information from one form to anather.

Processof conversion has been ill ustrated on Figure 1.

|Bina:y information variables in program structures |

1L

| Texztual information in form at structures |

| Graphical information on a screen |

Figure 1. The sequence of conversion of comporent state information

The simulation monitor invokes procedures updating binary values of
variables in program structures, i.e. internal variables of simulated object. However,
the subsystem for displaying state does not operate these structures explicitly. 1t uses
intermediate form shown as amiddle block on Figure 1.

Sudia Informatica vol. 1(8)2007

Monitoring of State in Program Simulator of Electronic Device 37

At this stage, the information takes a textual form, which can be easily
illustrated graphicdly. Each row of text is placed in separate structure along with
data about its format, that's why it is cdled “format structure”.

Conversion of binary information into text is performed just before
displaying. Operation of displaying is performed in graphicd mode and requires
efficient method of drawing on a screen.

Solution currently implemented in Amethyst consists in drawing components
of model diredly into the bitmap memory, and next displaying whole image in
awindow. This method s fast because it performs low-level operations on memory
blocks and cdls and uses functions APl Windows. It omits whole compound
structure of VCL (Visual Component Library) objects.

Due to double buffering, undesirable flickering effect and on-screen picture
distortion usually appeaing during refreshing and scrolling window contents have
been diminated.

Dired writing to on-screen image memory requires using low-level
instructions and spedal functions of graphic card driver. This is a fastest possble
solution, but poorly universal and involving specialized graphics libraries, such as
DiredX or OpenGL.

In case of this application, it is redundant relative to red requirements of
program, whereas utilization of basic graphics interface GDI (Graphics Device
Interface) has turned out to suffice and provide relatively efficient communicaion
between program and output device

Convenient method of presenting devices state graphicdly is using bitmaps
DIB (Device Independent Bitmap). As the name indicdes, this is device independent
format, besides it is well - documented and implemented in standard libraries of
Windows operating system.

Writing to bitmap memory is performed in the order determined by occurrence of
format structures and its lexemes, row-by-row, column-by-column. Each symbol from
format'stext is drawn separately according to defined typeface of font.

Fonts are stored in spedd files in which each row corresponds to one ASCII
charader and consists of sequence of hexadedma numbers. The result of loading
font file into memory is an area of bytes where each single bit deddes about
visibility of one pixel.

Covering bitmap with charaders is made by finding a proper place in font
memory area and then using neaest areaof bits as a Boolean mask (Figure 2). An
offset of the proper placein memory is cdculated on the base of charader position in
ASCII table.

A size of the mask depends on loaded typeface Pixels are drawn in plages
where corresponding bits take avaue of ,1".

The color of ead pixel is defined in lexemes. If particular fragment of text
does nat belong to any lexeme, then default color is applied.

An exception to the rule illustrated on Figure 2 occurs in case of inserting
external images. The fragment of bitmap memory is fill ed diredly with data coming

Modeling and Smulation

38 Czeberkus P., Timofeer A.O.

from loaded hitmap file by copying it pixel by pixel in the ratio of one to ore.
Designer of model should choose such bitmaps that perfedly fit to the rest of image.

The last operation in processof displaying is moving created DIB bitmap to
the context of device associated with presentation window. After al the adions
relating to showing state have been done, the simulation monitor takes over the
control and determines next cycle of computations and presentation.

font template — 258 ASCH characters pixel by pivel

- >

| offs=t:
ES points = number of bytes per one characer

the '&' character (ASC1] code §5)
placed on a bitmap

Figure 2. Painting of text in bitmap memory

5 Simulation cour se and observation of results

A simulation is preceded always by the operations of reading and analyzing
model definition file. They are performed every time the monitoring process is
instructed to initialize model and restore initial values. A spedal procedure performs
parsing the file and fill s format structures with data.

The format structures contain base text and information about lexemes, i.e.
dynamic fields relating to symbolic or physica elements of device This information
includes lexemes types, values, postion in base text and preferred methods of
presentation.

The structures are filled in on the base of control text. When binary form of
model comprised of format structures is ready the program performs initiaizaion of
simulated objed by invoking particular procedures programmed by model's author.

After sucoessful initialization, the monitor's thread is started up in suspended
mode. Resuming the thread is caused by a proper user adion. A monitor's body
condtitutes a loop, which is running until the maxima defined smulation time is
exceeded. Insdethe loop procedures of two phases of smulation: f1 and f2 are exeauted.

At the end of ead simulation step, i.e. after exeauting single loop of the
monitor, the content of the user interfaceis updated. If the monitor worksin “to end

Sudia Informatica vol. 1(8)2007

Monitoring of State in Program Simulator of Electronic Device 39

state” mode then refreshing of interface is performed just once after the end of
simulation and only state that is showed isthe final state.

The interface presenting device state is user - friendly. It consists of severd
windows invoked separately for ead atomic comporent of a device. User deddes,
which windows he wants to open and observe.

The content of ead currently opened window is refreshed dynamicdly onthe
base of updated format structures.

The user can control to simulation using buttons placed in the main
application window. In order to observe simulation results and follow dynamic
model state user opens separate presentation windows for particular device elements
from a comporent tree(Figure 3).

s varon_ ST

Operation Options Help

—Process———— = EMAIN (state) @ -3l x|
Time [3030ns El;l
Event 3035 | IE
A (181 —>
End |10us . o
Interval B ::ED_Q s
100ns B: |118—>
Times [1 :
st | Tevent= Ja4dns
To end(z) Interval |
B e e
— Model
E T_?.XDFH
- MAIN @
Lol
L g2
g3
- gd
g5
- gf

| Current stake

Figure 3. Autonamous XOR gate simulator created in Amethyst system.
1 - fieldsto editing discreet time parameters, 2 - simulation monitor control buttons,
3 - comporentstree 4 - state presentation window

The meaning of interface partsisasfollows:
0 Time- field showing current simulation time;
0 Event - field displaying time of next event;
0 End - field showing a maximal simulationtime;

Modeling and Smulation

40 Czeberkus P., Timofeer A.O.

Interval - field defining a period, after which simulation hesto be stopped;

Events - button causing transitionto next state;

Interval - button starting up simulation during;

Times - if button Interval is pressed it denotes a multiplier for time vaue from

field Interval; if button Events is pressd it spedfies a number of events that

have to occur before simulation is suspended. For example, if field Interval has

avaue of 10ns and field Times has a value of 4 then clicking on button Interval

will cause start of simulationfor 4 * 10ns= 40ns;

0 Reset - button resetting device mode!;

0 To end - button causing start of simulation without stops until time entered in
field End isreaded;

0 Pause - button suspending ssimulation;

0 Continue - button resuming simulation.

O O 0O

Within a device state presentation window (Figure 3), it is possible to observe
dynamicdly changing values of model variables embedded in the symbolic device
scheme.

6 Conclusion

The interadive monitoring of simulated devices date by means of text and
graphicsis realable, intelli gible axd more user friendly. It helps to urderstand better
the processes, which take placein simulated devices and it is a good solution for
didadics and other cognitional reasons. Such method is implemented in the
simulation system Amethyst being a generator of interadive autonomous smulators.

References

1. A.O. Timofeer (2004): Computer production of programs for simulation of
dynamic systems. Proceedings of the 15th International Conference on Systems
Design (7-10 September 2004, Wroclaw, Poland). Vol. 2. Wroctaw, Oficyna
Wydawnicza Politechniki Wroctawskiej, 2004. Pp. 91-95.

2. P. Czeberkus (2007): Design and implementation o an eledronic drcuits
simulator. A subsystem for monitoring circuits dates. Master's thesis (in Poli sh).
Akademia Podlaska, Siedice 2007.

Sudia Informatica vol. 1(8)2007

