
STUDIA INFORMATICA
Nr 1(8) Systemy i technologie informacyjne 2007

UML Verification with Verics

Artur Niewiadomski1*, Wojciech Penczek1,2*

1 Institute of Computer Science,
University of Podlasie, ul. Sienkiewicza 51,
08-110 Siedlce, Poland

2 Institute of Computer Science,
Polish Academy of Science, ul. Ordona 21,
01-237 Warsaw, Poland

Abstract. We show how to verify UML specifications against properties expressed by CTL-like
formulas using the symbolic model checker Verics. Our method is ill ustrated with an example
showing a verification of Alternating Bit Protocol.

Keywords: Model checking, UML, Verics.

1 Introduction

Object-oriented techniques are commonly used during a software design
process and programming. Today it would be hard to imagine how to develop large
and complex systems without these techniques. Unified Modeling Language (UML)
[1] is one of the most popular object-oriented specification languages. UML has
become the common language of almost all IT projects as it improves the
communication between the developer team members.

UML allows to present the system designed from different points of view at
any level of abstraction: from a high level concept to a detailed description of the
actions together with their parameters and types. On the other hand an application of
formal techniques allowing for verification of crucial properties of the system at
early design stages can give great benefits. It can save a lot of time, money, and hard
work wasted on searching and correcting errors occurring during an implementation
and testing of the system.

In order to automatically verify an UML specification we need a verification
tool that accepts UML as an input. However, most of the verification tools accept
low level specifications, e.g. in a form of labelled transition systems. So,

* The authors acknowledge support from Ministry of Science and Education (grant 3T11C01128)

20 Niewiadomski A., Penczek W.

Studia Informatica vol. 1(8)2007

a translation form a high-level UML specification to a language accepted by
a verification tool seems to be a practical solution.

Our idea is to exploit the tool Verics to verification of UML specifications.
Verics is the model checker for real-time and multi -agent systems developed at ICS
PAS. It accepts systems defined in terms of a network of timed automata, but is
extended with some translators that allow to describe verified systems also in higher
level languages, e.g. as Estelle specifications. The interested reader is referred to [2,
3] for more details. Currently, a development of Verics proceeds in several
directions. One of them is to build a module to verify systems described in
commonly used high level languages such as UML or Java.

In this paper we describe the main concepts of our translation of UML
specifications and show how Verics can be used to perform the verification process.
The method is ill ustrated by the example of Alternating Bit Protocol.

The results reported in the paper are only preliminary. In particular, we
impose presently several important restrictions on the input language. However,
most of the restrictions can be relaxed and hence we plan to extend and improve our
results in the near future.

The rest of the paper is structured as follows: in the two following sections we
discuss some related work and present briefly the main concepts of UML. Then, the
internal language of Verics (Intermediate Language, IL in short) is introduced to
give a basis for a description of our UML to IL translation. Finally, a case study is
presented and the methodology of verification is exempli fied.

2 Related work

The formal verification of systems specified in UML is not a completely new
research topic. Since a few years it has been a field of an intensive research. There
are a lot of papers and tools dealing with verification of UML, but due to the limited
space in this paper it is impossible even to mention all of them. Therefore, we refer
to a few related papers and tools only.

All of the approaches below, similarly to ours, make use of the existing model
checking environments and perform a translation of UML specification into their
input languages.

IF [4] is one of the existing environments that allows for an UML
verification. UML diagrams are translated into the internal language of IF and then
model checking, simulation, and static analysis tools can be applied.

HUGO/RT [5] is the translator of UML models with time annotations into the
internal language of the model checker UPPAAL. A system is defined by a Class
Diagram and a set of State Machine Diagrams and the properties tested are described
by Collaboration Diagrams.

The authors of [6] report as a case study an attempt to model check the
control subsystem of an operational NASA robotics system. It is specified in xUML

UML Verification with Verics 21

Modeling and Simulation

[7] – the executable subset of UML. The environment ObjectCheck and the model
checker COSPAN is exploited here.

These three approaches, similarly to ours, exploit UML statemachines for
specifying a behaviour of a system. Otherwise than TURTLE approach [8] which is
a special extension of UML (a profile) aimed at modelli ng and formal validation of
real-time systems. Here the Activity Diagrams are used to specify the dynamics of
a system. There is also a special tool Ttool that allows for an edition of UML
diagrams using TURTLE profile. Verification and simulation can be performed
using RT-LOTOS environment.

All of the mentioned approaches, except xUML, make use of the synchronous
communication. In our work we use the asynchronous communication via FIFO
buffers only, similar to xUML.

3 Introduction to UML

The Unified Modeling Language is a specification and object modelli ng
language widely used in software engineering. It inroduces a standardised graphical
notation that allows to specify, visualise, construct and document software systems.
Today, when applications are too complex for one person to encircle, whole groups
of specialists work on software design processes. Unified Modeling Language has
become essential for all the participants of IT projects, including analytics, system
designers and programmers. Thanks to UML diagrams that are their common
language, the whole team can communicate simply and easily and thus cooperate
effectively.

6DQGHU 0HGLXP 5HFHLYHU
±PVJ%LW��LQW� ��±PVJ%LW��LQW� ��

±GDWD��LQW
�PVJ'OYU��E�LQW��G�LQW���YRLG

�DFN'OYU��E�LQW���YRLG
�PVJ6HQG��E�LQW��G�LQW���YRLG
�DFN6HQG��E�LQW���YRLG

Figure 1. Altermatomg Bit Protocol Class Diagram

UML can be used not only for modelli ng software systems, bul also for
modelli ng hardware, business processes, organisational structure, and many other
fields. However, an imprecise semantics of the language is a serious problem,
especially when one wants to get on a „firmal ground” . In this paper we restrict
UML to a subset, whose semantics is mostly fixed.

UML in the current version (2.0) consistes of 13 types of diagrams. All of
them can be divided into two groups:

• Diagrams modelli ng the static structure, and
• Diagrams modelli ng the dynamis behaviour of the system.

22 Niewiadomski A., Penczek W.

Studia Informatica vol. 1(8)2007

In our approach three kinds of UML diagrams are under consideration: Class
Diagrams, Object Diagrams, and State Machine Diagrams (Statechart Diagrams).

Figure 2. Alternating Bit Protocol Object Diagram

Class Diagrams (see Fig. 1) describe static properties of the systems
modeled. We restrict them to the following three elements: Classes, Attributes, and
Operations (Methods). A class is a description of a set of objects that consist of the
same attributes, operations, associations, and the meaning. An attribute is a named
property of a class. We restrict types of attributes to integer, boolean, and defined
classes only. An operation is a definition of an activity that can be executed by some
instance of the class (object). A list of arguments (with its types) can be associated
with an operation.

Object Diagrams (see Fig. 2) are used to define the types and the number of
the objects the system consists of and also model the static aspects of the system.
Objects are instances of classes that are defined in a class diagram.

State Machine Diagrams (see Fig. 3) are used to specify behaviour of objects,
so to model the dynamics of the system. UML State Machine Diagram depicts the
various states that an object may be in and the transitions between these states. The
transitions are fired in answer to external and internal events such as time events or
method calls. In our work to model the time flow we use the timed event after(t)
which occurs after t time units has elapsed since the state with outgoing timed
transition is reached.

In this paper we consider the following elements of State Diagrams:
• States. We distinguish simple states, complex states, and pseudo-states.

A pseudo-state can be initial-, final-, or choice-state. A choice-state is
a kind of an intermediate state which must be left immediately after it is
entered.

• Activities. Entry activities are executed immediately after the state has
been entered, whereas exit activities are executed just before the state is
left.

• Transitions. Transitions describe possible changes of states. Each
transition connects a source state with a target state. Transitions are
equipped with three arguments, where each of them can be empty:
– triggered event - the name of an event that enables the transition,
– guard - a boolean expression. If it is true, then the transition can be

fired,
– list of actions - a sequence of actions that are executed while the

transition is fired.

UML Verification with Verics 23

Modeling and Simulation

Figure 3. Alternating Bit Protocol Sender State Machine Diagram

4 The verification system Verics and Intermediate Language

Verics is a model checker for untimed, timed, and multi -agent systems.
It offers three complementary methods of model checking: SAT-based Bounded
Model Checking (BMC), SAT-based Unbounded Model Checking (UMC), and an
on-the-fly verification while constructing abstract models of systems. The theoretical
background of its implementation has been presented in several papers [9, 10, 11].
The systems to be verified can be specified in a subset of Estelle, in the internal
Verics language - Intermediate Language (IL for short), or directly as networks of
timed automata.

The properties tested are given as formulas of a branching-time temporal
logic, based on CTL. The formulas are built over propositional variables, defined
directly in the specification of a verified system.

In the sequel we describe a translation from UML into IL. An Intermediate
Language program is a parallel composition of sequential communicating processes,
where each process is specified in the terms of states and transitions. Communication
can be realised trough an asynchronous interchange of messages - via bounded or
unbounded buffers - or via shared global variables. An IL program is structured as
follows: a program name, a set of declarations, definitions of processes, and a main
part. In the declaration section all constants, global variables, and buffers must be
defined. A variable definition is a pair consisting of a name and of a type, optionally
followed by an assignment of an initial value. Only boolean and integer types of
variables are allowed.

A buffer is a FIFO queue and has to be given a name and a type. Optionally
a capacity can be defined if we want to get a bounded buffer. Buffers are accessible
for all processes, similarly to global variables.

A section of a process definition consists of its name, a set of states, local
variables definitions (if needed), an initialisation section, and definitions of

24 Niewiadomski A., Penczek W.

Studia Informatica vol. 1(8)2007

transitions. Optionally it can be followed by local properties definitions that are later
used to construct temporal formulas describing the tested properties of a system.

uml_model {
buffer int Medium_msgSend[1] size = 3;
buffer int Sender_ackDlvr[1] size = 2;
buffer int Receiver_msgDlvr[1] size = 3;
buffer int Medium_ackSend[1] size = 2;

process Sender_0 {
 stateset State_5, State_1, State_2, State_4, State_7;
 var int __il_objNum, __il_Par, data, msgBit, b;
 to State_1: { __il_objNum=0; msgBit=0; }
...
 from State_5 to State_7:
 when (b!=msgBit)
 delay [0,0]:urgent /* leave choice point immediately */
 { put(Medium_msgSend[0],0);put(Medium_msgSend[0],msgBit);
 put(Medium_msgSend[0],data); }
...
 prop { bit0: msgBit == 0; in_State_2: in State_2; }
}
...
process Receiver_0 {
 stateset State_15, State_12, State_14, State_13;
 var int __il_objNum, __il_Par, d, msgBit, b;
 to State_12: { __il_objNum=0; msgBit=0; }
...
 from State_15 to State_14:
 { put(Medium_ackSend[0],0); put(Medium_ackSend[0],b); }
...
 prop { bit0: msgBit == 0; in_State_14: in State_14; }
}
...
main { Receiver_0 || Sender_0 || Medium_0 }
prop { Sender_0.bit0; Sender_0.in_State_2;
 Receiver_0.bit0; Receiver_0.in_State_14; }
}

Figure 4. Sample of a specification of Alternating Bit Protocol in Intermediate Language

In the main part the instances of processes are created. Actual parameters are
assigned to formal parameters in processes definitions, if they have any. Then, the
properties definitions are given. The program properties are either boolean
expressions over global variables and buffers or local properties of processes.
A property is visible only if it is declared in the main section. A sample of
a specification of Alternating Bit Protocol in IL is shown in Fig. 4.

UML Verification with Verics 25

Modeling and Simulation

5 Translation from UML to Intermediate Language

In this section we give the main ideas behind our translation from UML to IL.
Objects and classes. An Object Diagram specifies a list of objects that

a system consits of. Each of objects must be an instance of some class defined in
a Class Diagram. Objects are mapped onto processes of Intermediate Language and
the number of UML objects corresponds to the number of IL processes.

Attributes. The attributes of objects are translated into process variables. The
types allowed are boolean, integer, and object types. The object types are mapped
onto integers - each object is equipped with its own unique number, so the
communication between objects is possible.

Methods. The methods are translated into arrays of buffers according to the
following rules:

• each method of each class is mapped onto one array of buffers,
• the size of an array corresponds to the number of objects of a given class,
• an array index (a single buffer) represents the method offered by

a concrete object.
A method call i s realized by placing a special element - call marker - in the

corresponding buffer. If the method called requires some parameters, then they are
allocated after the call marker.

States. Each of UML simple- and pseudo-states is mapped onto a state of an
IL process. Entry and exit activities are merged with actions of incoming and
outgoing transitions in such a way that the exit action (of the source state) is
followed by the proper transition action and the latter is then followed by the entry
action (of the target state).

Transitions. The transitions in State Diagrams are translated directly into
transitions of Intermediate Language processes. A triggered event, a guard, and
a sequence of actions can be associated with the transition.

Events. The time events in UML are translated into time constraints of
Intermediate Language transitions, using delay construction. The latter allows to
specify the amount of time that may elapse before certain actions take place.
A method call event is mapped onto a guard of an IL transition which is equipped
with a set of get statements. The role of these statements is to get a method call
marker (and optionally its parameters) from the buffer that corresponds to the called
method and the referred object. If suitable values exist in the buffer, then they are
taken away and the transition is executed. The parameters of the method called are
added to the set of local variables of the process.

Guards. The guards in UML are formed using attributes of objects and
parameters of the actions called. These expressions are directly transformed into IL
guards, using the variables that correspond to UML attributes and parameters.

Actions. In our approach we restrict the actions related to UML transitions to
method calls and assignment statements only. The assignments are translated

26 Niewiadomski A., Penczek W.

Studia Informatica vol. 1(8)2007

straightforwardly, while the method calls are realised via inserting a call marker (and
optionally parameters) into the adequate buffer.

Entering complex states. If a transition executed leads to a complex state, then
the enter actions of this state are added to the transition. If a transition does not lead
to any substate of a complex state, then it is understood that it leads to the initial state
of the complex state.

Exiting complex states. When a transition leaves some complex state, then the
exit actions of this state are added to the transition. In the case when some complex
state is a source state for a transition, then this is translated into a set of transitions
outgoing all the sub-states of this complex state. Exceptions are the special terminate
transitions.

Terminate transitions. A terminate transition is a special kind of transitions,
outgoing a complex-state and carrying no label, guard, nor event condition. The
terminate transition becomes enabled when its source state has finished its task. The
terminate transitions are translated into IL transitions outgoing the states that
emerged from UML final states.

Final states. A final state is a kind of a pseudostate that has no outgoing
transitions. They are translated into special simple states which have to be left
immediately. In case that the parent state of the final state is not the top state1 , then
the terminate transitions are enabled. If the parent of the final state is the top state,
the entire statechart terminates2 .

Transitions priorities. According to the semantics of UML state-machines,
the transition outgoing a substate has a higher priority than a transition outgoing
a parent state. Our translation respects this rule by a special preparation of the guards
of the transitions outgoing complex states: this guard is a conjunction of a guard
specified in the UML state-machine and the negation of all the guards of all
transitions outgoing the substates of this composite state.

Run-To-Completion (RTC). The RTC step is the period of time in which
events are accepted and acted upon. Processing an event always completes within
a single model step, including exiting the source state, executing any associated
actions, and entering the target state. RTC rule is preserved by our translation
because communication between processes is asynchronous, each UML transition is
translated into one IL transition, and IL transitions are atomic.

Propositional variables. The set of propositional variables can be specified
directly in UML state-machine diagrams. To this aim we use a special note element
that contains a specification of a propositional variable (see Fig. 3 and 5).

1 The top state represents entire statemachine and all the states in the statemachine are the children of the
top state. The top state can not be a source or a target state of any transition.
2 In this case the corresponding IL process stays forever in its final state.

UML Verification with Verics 27

Modeling and Simulation

Figure 5. Receiver State Machine Diagram

The specification begins with the keyword prop, and then (in the braces) we
provide the name of a propositional variable and (after a colon) the boolean
expression. In this case, after the translation to IL, we obtain one IL propositional
variable. Its value in a state is the same as the value of the boolean expression.

If we need a propositional variable that is true only if the system is in some
indicated state, we have to create an UML note element (containing prop keyword
and the name of the variable, but without the boolean expression) and connect it with
appropriate simple or complex state. Then, after the translation to IL, we obtain one
IL propositional variable that is true if and only if the system is in one of the IL
states that have emerged from the indicated UML state.

Moreover, we can connect an UML note element containing a boolean
expression to some UML simple or complex state if we need a propositional variable
that is true when the system is in the indicated state and the boolean expression is
true. Then, after the translation to IL, we obtain a pair of IL propositional variables
and we use the conjunction of them.

Assumptions and Restrictions. This paper reports on our preliminary attempt
to verify UML models with Verics. So, it is clear that we have restricted the input
language to only a few of the most relevant types of diagrams. For simplicity, we
have not allowed for certain features of the diagrams considered in the translation.
Below we list the features that are presently ignored:
The elements of Class Diagrams:

• the connections between classes, including inheritance,
• the static attributes - the attributes common for all the objects of the same class,
• the values returned by the methods,
• the visibilit y of attributes - we treat all attributes as private.

The elements of State Machine Diagrams:
• the concurrent states - in most cases they can be replaced by a set of objects

running concurrently,
• the history states,
• the actions different than method calls and assignments.

28 Niewiadomski A., Penczek W.

Studia Informatica vol. 1(8)2007

In our approach a method call i s interpreted as an asynchronous event, and
connections between objects in Object Diagrams are ignored.

6 Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a simple network protocol that provides
a reliable communication via an unreliable medium due to a retransmission of
messages. Below we describe our variant of ABP.

Figure 6. Lossy Medium State Machine Diagram

In our model the three objects are used: Sender, Receiver, and Lossy
Medium, as depicted in Fig. 1 and 2. The messages are sent from Sender s to
Receiver r via Lossy Medium m. Each message contains a data part and a one-bit
sequence number, i.e., a value that is 0 or 1. Sender s sends a message continuously
with the same sequence number, until he receives an acknowledgement (ACK) from
r that contains the same sequence number. When this happens, s flips the sequence
number and starts transmitting the next message. Otherwise, the message is
retransmitted by s after some period of time or after receiving from r the
acknowledgement with the opposite value of the bit. When r receives a message
from s, it sends back an ACK with the received sequence number3. The Lossy
Medium (see Fig. 6) sends or drops messages and ACKs in a non-deterministic way.

7 Verification of the Alternating Bit Protocol

This section ill ustrates how Verics can be used to verify a system specified in
UML. Because of the space limit, we show the verification against one property only
so we focus on demonstrating the methodology rather than on the complete
verification of the Alternating Bit Protocol.

The first stage of UML verification with Verics consists in the translation of
an UML specification into Intermediate Language. Next, the IL specification is

3 In our example we omit a consumer of data and simplify the producer – data is an integer number with
the fixed value 1.

UML Verification with Verics 29

Modeling and Simulation

translated into a network of timed automata4. The detailed information on this
translation can be found in [9].

Before starting the verification, we have to first construct a temporal formula
describing the tested property of a system using propositional variables defined in
the system specification. In this case, we want to verify the following property:
Always when the Receiver sends ACK and its internal bit is set to 1,and the Sender
receives the ACK, then the Sender’s internal bit is set to 0. This property is
obviously not true, because following the protocol after the message and an
acknowledgement have been received, both (Sender’s and Receiver’s) internal bits
are equal.

To capture this property as a temporal formula we need to define some
propositional variables first. In UML state-machine diagrams (see Fig. 3 and Fig. 5)
two special note elements are placed. They define two variables named bit0, one for
the Sender and the other for Receiver object. Both the notes are connected with the
states, in which these variables have the value true. After the translation of the UML
specification into IL, we obtain two pairs of global propositional variables:
Sender_0.in0, Sender_0.in_State_2, and Receiver_0.bit0, Receiver_0.in_State_14
(see Fig. 4). The variable Sender_0.bit0 has the value true always when the Sender’s
internal bit is equal to 0. Moreover, the variable Sender_0.in_State_2 is true iff the
Sender process is in the IL state that corresponds to the UML state connected with
the note element.

After the translation of the IL specification into the network of timed
automata the propositional variables are relocated to the appropriate automata. Their
names are similar to the IL propositional variables. While constructing the property
tested we have to use the propositional variables defined on the timed automata
level. The resulting formula is given as Formula 1.

() ()()0__0_2___0_0__0_Re14___0_Re bitSenderStateinSenderbitceiverStateinceiverAG ⇒∧¬∧

Formula 1. Always when the Receiver sends ACK and its internal bit is set to 1,and the
Sender receives the ACK, then the Sender’s internal bit is set to 0.

Now, we should choose the verification method. At the moment the most
effective is BMC that encodes a tested formula and the model of the system
(unfolded to the given depth) as a boolean formula. This formula is satisfiable iff the
property is true in the model. We check the satisfiabilit y of this formula using zChaff
[12] SAT-solver. If it is not satisfiable, then we increase the depth of the model and
run the BMC and zChaff again. The BMC method requires a formula in the
existential form, so applying the negation to Formula 1 we obtain Formula 2.

4 It is possible to obtain also a global (product) automaton.

30 Niewiadomski A., Penczek W.

Studia Informatica vol. 1(8)2007

()0__0_2___0_0__0_Re14___0_Re bitSenderStateinSenderbitceiverStateinceiverEF ¬∧∧¬∧

Formula 2. The negation of Formula 1.

Table 1. Experimental results for the Formula 2.

Depth BMC time[s] zChaff time[s] Clauses Literals Result
1 0.27 0.01 44098 106978 unsat
2 0.54 0.11 86723 210683 unsat
3 0.85 0.20 129348 314388 unsat
4 1.10 0.65 171973 418093 unsat
5 1.44 0.40 214598 521798 unsat
6 1.70 1.46 257223 625503 unsat
7 1.96 1.57 299848 729208 unsat
8 2.26 2.40 342473 832913 unsat
9 2.55 3.17 385098 936618 unsat
10 2.84 7.22 427723 1040323 unsat
11 3.19 6.05 470348 1144028 unsat
12 3.46 6.24 512973 1247733 unsat
13 3.73 5.74 555598 1351438 SAT

The experiments shows that Formula 2 is satisfiable in the model on depth 13.
This means that the property expressed by the Formula 1 is not true in the verified
system. In the Table 1 the detailed information on verification of Formula 2 is
presented. The tests have run on Pentium M 1.73GHz with 512MB RAM running
under Linux 2.6.12-9. The total time of all necessary translations is about two
seconds.

8 Conclusions and future work

The paper reports on the preliminary results of our work dealing with
automatic verification of UML using Verics. The translator of UML models has been
implemented that handles (with some restrictions) Class Diagrams, Object Diagrams,
and State Machine Diagrams. Moreover, it is possible to specify the propositional
variables directly in UML specifications.

We are planning to continue and extend our work. In the near future we will
introduce the synchronous communication methods, extend the translated subset of
UML with new diagrams, and relax some of the current restrictions. This will allow
to model systems in a more natural way. Moreover, we plan to provide a possibilit y
to specify tested properties in a graphic form. This should enable the verification of
UML systems by users having no knowledge about temporal logic, Intermediate
Language, and timed automata.

UML Verification with Verics 31

Modeling and Simulation

References

1. OMG: Unified Modeling Language (UML), version 2.0.
http://www.omg.org/technology/documents/formal/uml.htm (2005).

2. 1DELDáHN��:���1LHZLDGRPVNL��$���3HQF]HN��:���3yáUROD��$���6]UHWHU��0���VerICS
2004: A model checker for real time and multi -agent systems. In: Proc. of the
Int. Workshop on Concurrency, Specification and Programming (CS&P’04).
Volume 170(1) of Informatik-Berichte., Humboldt University (2004) 88-99.

3. 'HPEL�VNL��3���-DQRZVND��$���-DQRZVNL��3���3HQF]HN��:���3yáUROD��$���6]UHWHU�
0���:R(QD��%���=EU]H]Q\��$���VerICS: A tool for verifying timed automata and
Estelle specifications. In: Proc. of the 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’03). Volume 2619 of
LNCS., Springer-Verlag (2003) 278-283.

4. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In Bernardo,
M., Corradini, F., eds.: SFM. Volume 3185 of Lecture Notes in Computer
Science., Springer (2004) 237-267.

5. Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines
and collaborations. In: FTRTFT. (2002) 395-416.

6. Sharygina, N., Browne, J., Xie, F., Kurshan, R., Levin, V.: Lessons learned
from model checking a NASA robot controller. Formal Methods in System
Design 25 (2004) 241-270.

7. Starr, L.: Executable UML: The models that are the code. In: Model
Integration, LLC. (2001).

8. Apvrill e, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: TURTLE: A real-time
UML profile supported by a formal validation toolkit. In: IEEE Trans. Software
Eng 30(7) (2004) 473-487.

9. Doro���$���-DQRZVND��$���-DQRZVNL��3���From specification languages to timed
automata. In: Proc. of CS&P the Int. Workshop on Concurrency, Specification
and Programming (CS&P’02). Volume 161(1) of Informatik-Berichte.,
Humboldt University (2002) 117-128.

10. PHQF]HN�� :��� :R(QD�� %��� =EU]H]Q\�� $��� Bounded model checking for the
universal fragment of CTL. Fundamenta Informaticae 51(1-2) (2002) 135-156.

11. :R(QD��%���3HQF]HN��:���=EU]H]Q\��$���Reachabilit y for timed systems based
on SAT-solvers. In: Proc. of the Int. Workshop on Concurrency, Specification
and Programming (CS&P’02). Volume 161(2) of Informatik-Berichte.,
Humboldt University (2002) 380-395.

12. Zhang, L.: zChaff. http://www.ee.princeton.edu/~chaff/zchaff.php (2005).

