STUDIA INFORMATICA
Nr 1(8) Systemy i technologie informacyjne 2007

UML Verification with Verics

Artur Niewiadomski'’, Wojciech Penczek?
! Institute of Computer Science,
University of Podasie, ul. Sienkiewicza 51,
08-110Siedlce, Poland
2 |nstitute of Computer Science,
Polish Academy of Science, ul. Ordora 21,
01-237 Warsaw, Poland

Abstract. We show how to verify UML spedficaions against properties expressed by CTL-like
formulas using the symboalic model chedker Verics. Our method is ill ustrated with an example
showing averificaion d Alternating Bit Protocol.

Keywords: Model cheding, UML, Verics.

1 Introduction

Objed-oriented techniques are commonly used during a software design
process and programming. Today it would be hard to imagine how to develop large
and complex systems without these techniques. Unified Modeling Language (UML)
[1] is one of the most popular objed-oriented spedficaion languages. UML has
bewme the common language of almost all IT projeds as it improves the
communicaion between the developer team members.

UML allows to present the system designed from different points of view at
any level of abstradion: from a high level concept to a detailed description of the
adions together with their parameters and types. On the other hand an application o
formal techniques alowing for verification of crucial properties of the system at
ealy design stages can give gred benefits. It can save alot of time, money, and hard
work wasted on searching and correding errors occurring during an implementation
and testing of the system.

In order to automaticdly verify an UML specification we need a verificdion
tod that accepts UML as an input. However, most of the verificaion tools acapt
low level spedficdions, eg. in a form of labelled transition systems. So,

" The authors adknowledge suppat from Ministry of Science and Education (grant 3T11C01129

20 Niewiadomski A., Penczek W.

a trandation form a high-level UML spedficaion to a language acepted by
averification tool seansto be apradicd solution.

Our ideais to exploit the tool Verics to verification of UML spedfications.
Verics is the model chedker for red-time and multi-agent systems developed at ICS
PAS. It accepts stems defined in terms of a network of timed automata, but is
extended with some trandators that allow to describe verified systems also in higher
level languages, e.g. as Estelle spedficaions. The interested reader is referred to [2,
3] for more details. Currently, a development of Verics procedals in severa
diredions. One of them is to huild a modue to verify systems described in
commonly used high level languages such as UML or Java

In this paper we describe the main concepts of our trandation of UML
spedfications and show how Verics can be used to perform the verificaion process.
The method isill ustrated by the example of Alternating Bit Protocol.

The results reported in the paper are only preliminary. In perticular, we
impose presently several important restrictions on the input language. However,
most of the restrictions can be relaxed and hence we plan to extend and improve our
results in the near future.

Therest of the paper is structured as foll ows: in the two foll owing sedions we
discuss ome related work and present briefly the main concepts of UML. Then, the
internal language of Verics (Intermediate Language, IL in short) is introduced to
give a basis for a description of our UML to IL trandation. Finally, a ase study is
presented and the methodology of verificaion is exemplified.

2 Related work

The formal verificaion o systems gedfied in UML is not a completely new
reseach topic. Since a few yeas it has been afield of an intensive research. There
are alot of papers and tods deding with verificaion of UML, but due to the limited
spacein this paper it isimpossble even to mention al of them. Therefore, we refer
to afew related papers and tools only.

All of the approaches below, similarly to ours, make use of the existing model
chedking environments and perform a trandation of UML spedfication into their
input languages.

IF [4] is one of the existing environments that alows for an UML
verification. UML diagrams are trandated into the internal language of IF and then
model chedking, simulation, and static analysis tools can be gplied.

HUGO/RT [5] is the trandator of UML models with time annotations into the
internal language of the model checker UPPAAL. A system is defined by a Class
Diagram and a set of State Machine Diagrams and the properties tested are described
by Coll aboration Diagrams.

The authors of [6] report as a case study an attempt to model check the
control subsystem of an gperational NASA robotics g/stem. It is spedfied in xXUML

Sudia Informatica vol. 1(8)2007

UML Verificationwith Verics 21

[7] — the executable subset of UML. The environment ObjedChedk and the model
chedker COSPAN is exploited here.

These three approaches, similarly to aurs, exploit UML statemadhines for
spedfying a behaviour of a system. Otherwise than TURTLE approach [8] which is
aspedd extension of UML (a profile) aimed at modelling and formal validation of
red-time systems. Here the Activity Diagrams are used to spedfy the dynamics of
a system. There is also a spedal tool Ttool that allows for an edition of UML
diagrams using TURTLE profile. Verificaion and simulation can be performed
using RT-LOTOS environment.

All of the mentioned approaches, except XUML, make use of the synchronous
communicaion. In our work we use the asynchronous communicaion via FIFO
buffers only, similar to xXUML.

3 Introduction to UML

The Unified Modeling Language is a spedficaion and objed modelling
language widely used in software engineering. It inroduces a standardised graphicd
notation that allows to spedfy, visualise, construct and document software systems.
Today, when applicaions are too complex for one person to encircle, whole groups
of speaalists work on software design processes. Unified Modeling Language has
become esentia for al the participants of IT projeds, including anaytics, system
designers and programmers. Thanks to UML diagrams that are their common
language, the whole tean can communicate simply and easily and thus cooperate
effedively.

Sander Medium Receiver
—-msgBit :int = 0 —-msgBit :int = 0
—data :int
+msgSend (b:int .d:int):void +msgDlvr (bint ,d:int):void
+ackDlvr (b:int):void +ackSend (b:int):void

Figure 1. Altermatomg Bit Protocol ClassDiagram

UML can be used nat only for modelling software systems, bul also for
modelling haerdware, business processes, organisational structure, and many other
fields. However, an impredse semantics of the language is a serious problem,
espedaly when one wants to get on a ,firmal ground”. In this paper we restrict
UML to a subset, whose semantics is mostly fixed.

UML in the current version (2.0) consistes of 13 types of diagrams. All of
them can be divided into two groups:

« Diagrams modelli ng the static structure, and

« Diagrams modelli ng the dynamis behaviour of the system.

Modeling and Smulation

22 Niewiadomski A., Penczek W.

In our approach three kinds of UML diagrams are under consideration: Class
Diagrams, Objed Diagrams, and State Machine Diagrams (Statechart Diagrams).

s:Sender m:Medium r:Receiver

Figure 2. Alternating Bit Protocol Object Diagram

Class Diagrams (see Fig. 1) describe static properties of the systems
modeled. We restrict them to the following three elements. Classes, Attributes, and
Operations (Methods). A classis a description of a set of objeds that consist of the
same dtributes, operations, associations, and the meaning. An attribute is a named
property of a class We restrict types of attributes to integer, boolean, and defined
clasesonly. An operation is a definition of an adivity that can be exeauted by some
instance of the class(objed). A list of arguments (with its types) can be associated
with an operation.

Objed Diagrams (see Fig. 2) are used to define the types and the number of
the objeds the system consists of and also model the static aspeds of the system.
Objeds are instances of classesthat are defined in a classdiagram.

Sate Machine Diagrams (seeFig. 3) are used to spedfy behaviour of objeds,
so to model the dynamics of the system. UML State Machine Diagram depicts the
various states that an objed may be in and the transitions between these states. The
transitions are fired in answer to external and internal events such as time events or
method cdls. In our work to model the time flow we use the timed event after(t)
which occurs after t time units has elapsed since the state with outgoing timed
trangition is readed.

In this paper we consider the following elements of State Diagrams:

e Sates. We distinguish simple states, complex states, and pseudo-states.

A pseudo-state @n be initial-, final-, or choice-state. A choicestate is
akind of an intermediate state which must be left immediately after it is
entered.

e Activities. Entry adivities are executed immediately after the state has
been entered, whereas exit adivities are exeauted just before the state is
left.

e Trangtions. Trangitions describe possble canges of states. Each
transition conneds a source state with a target state. Transitions are
equipped with three arguments, where eazh of them can be empty:

— triggered event - the name of an event that enables the transiti on,

— qguard - a boolean expresdon. If it is true, then the transition can be
fired,

— list of adions - a sequence of actions that are executed while the
transition isfired.

Sudia Informatica vol. 1(8)2007

UML Verificationwith Verics 23

NewData |
_______ rop {bit0: msgBit == 0;
. exit /data=1 prop 4 i B‘
Senderlnitial
(SendData h
SDint_Initial after SendData_internalFinal
[b==msgBit]/ msgBit=1-msgBit
\1/ [bl=msgBit] 9 .
(TryToSend)
Lentry /~m.msgSend(msgBit, data) ackDIvr
J SDint_Choice

Figure 3. Alternating Bit Protocol Sender State Machine Diagram

4 Theverification system Vericsand Intermediate L anguage

Verics is a model checker for untimed, timed, and multi-agent systems.
It offers three @mplementary methods of model chedking: SAT-based Bounded
Model Cheding (BMC), SAT-based Unbounded Model Checking (UMC), and an
on-the-fly verification while cnstructing abstrad models of systems. The theoreticd
badground of its implementation hes been presented in several papers [9, 10, 11].
The systems to be verified can be spedfied in a subset of Estelle, in the internal
Verics language - Intermediate Language (IL for short), or diredly as networks of
timed automata.

The properties tested are given as formulas of a branching-time temporal
logic, based on CTL. The formulas are built over propgsitional variables, defined
diredly in the spedficdion of averified system.

In the sequel we describe atrandlation from UML into IL. An Intermediate
Language program is a parallel composition of sequential communicaing processes,
where e@h processis spedfied in the terms of states and transitions. Communication
can be redised trough an asynchronous interchange of messages - via bounded or
unbounded bufers - or via shared global variables. An IL program is gructured as
follows: a program name, a set of dedarations, definitions of processes, and a main
part. In the declaration sedion all constants, globa variables, and buffers must be
defined. A variable definition is a pair consisting of aname and d atype, optionaly
followed by an assgnment of an initial value. Only boolean and integer types of
variables are al owed.

A buffer is a FIFO queue and has to be given a name and a type. Optionally
a cgadty can be defined if we want to get a bounded buffer. Buffers are acessble
for al processes, similarly to gobal variables.

A sedion of a process definition consists of its name, a set of states, local
variables definitions (if needed), an initidisation sedion, and definitions of

Modeling and Smulation

24 Niewiadomski A., Penczek W.

trangitions. Optionally it can be followed by locd properties definitions that are later
used to construct temporal formulas describing the tested properties of a system.

um _nodel {

buf fer int MediumnsgSend[1] size
buffer int Sender_ackD vr[1] size
buffer int Receiver_msgDivr[1l] siz
buffer int Medium ackSend[1] size

3;
2;
= 3;
2;

o uin

process Sender_0 {

stateset State_5, State_1, State_2, State_4, State_7,
var int __il_objNum __il_Par, data, msgBit, b;

to State_1: { __il_obj Num=O; nsgBit=0; }

fromState 5 to State_7:
when (b!=msgBit)
delay [0,0]:urgent /* |eave choice point immediately */
{ put (Medi um nsgSend[0], 0) ; put (Medi um nmsgSend[0], nsgBit);
put (Medi um nsgSend[0], data); }

prop { bitO: nsgBit == 0; in_State_2: in State_2; }

process Receiver_0 {

stateset State_15, State_12, State_14, State_13;
var int __il_objNum __il_Par, d, nmsgBit, b;

to State_12: { __il_obj Num=0; mnsgBit=0; }

' 'from State_15 to State_14:
{ put (Medi um ackSend[0], 0); put(Medium ackSend[0],b); }

.b;'op { bitO: negBit == 0; in_State_14: in State_14; }
}

main { Receiver_0 || Sender_O || MediumO }
prop { Sender_0.bit0; Sender_0.in_State_2;

Recei ver_0.bit0; Receiver_0.in_State_14; }
}

Figure 4. Sample of a specification d Alternating Bit Protocol in Intermediate Language

In the main part the instances of processes are aeded. Actual parameters are
asdgned to forma parameters in processs definitions, if they have any. Then, the
properties definitions are given. The program properties are either booean
expressons over globa variables and buffers or locd properties of processes.
A property is visible only if it is dedared in the main sedion. A sample of
aspedfication of Alternating Bit Protocol in IL isshown in Fig. 4.

Sudia Informatica vol. 1(8)2007

UML Verificationwith Verics 25

5 Trandation from UML to Intermediate L anguage

In this £dion we give the main ideas behind our translation from UML to IL.

Objeds and classes. An Objed Diagram spedfies a list of objeds that
a system consits of. Each of objeds must be an instance of some dass defined in
a Class Diagram. Objeds are mapped orto processes of Intermediate Language ad
the number of UML objeds corresponds to the number of IL processes.

Attributes. The dtributes of objeds are translated into processvariables. The
types alowed are bodean, integer, and dbjed types. The objed types are mapped
onto integers - eah oled is equipped with its own wigue number, so the
communicéion ketween oljedsis possble.

Methods. The methods are trandated into arrays of buffers according to the
following rules:

« eatmethad o each classis mapped orto ane aray of buffers,

« thedzeof anarray corregpondsto the number of oljeds of agiven class

e an aray index (a snde buffer) represents the method dfered by

a oncrete objed.

A method cdl isredized by pladng a speda element - call marker - in the
corresponding buffer. If the method cdled requires some parameters, then they are
alocaed after the cdl marker.

Sates. Each of UML simple- and pseudo-states is mapped onto a state of an
IL process. Entry and exit adivities are merged with adions of incoming and
outgoing transitions in such a way that the exit adion (of the source state) is
followed by the proper transition adion and the latter is then followed by the entry
adion (of the target state).

Transitions. The transitions in State Diagrams are translated dredly into
trangitions of Intermediate Language processes. A triggered event, a guard, and
a sequence of adions can be associated with the transition.

Events. The time events in UML are trandated into time nstraints of
Intermediate Language transitions, using delay construction. The latter allows to
spedfy the amount of time that may elapse before artain adions take place
A method cdl event is mapped onto a guard o an IL transition which is equipped
with a set of get statements. The role of these statements is to get a method cal
marker (and optionally its parameters) from the buffer that corresponds to the cadled
method and the referred dbjed. If suitable values exist in the buffer, then they are
taken away and the transition is executed. The parameters of the method cdled are
added to the set of locd variables of the process.

Guards. The guards in UML are formed using attributes of objeds and
parameters of the adions cdled. These expressons are diredly transformed into IL
guards, using the variables that correspond to UML attributes and parameters.

Actions. In our approach we restrict the adions related to UML transitions to
method cdls and assgnment statements only. The adgnments are translated

Modeling and Smulation

26 Niewiadomski A., Penczek W.

straightforwardly, whil e the method cdl s are redised viainserting a cdl marker (and
optionally parameters) into the adequate buffer.

Entering complexstates. If atransition executed leads to a complex state, then
the enter adions of this date ae added to the transition. If atransition does not lead
to any substate of a complex state, then it is understood that it leads to theinitial state
of the complex state.

Exiting complex states. When a transiti on leaves some complex state, then the
exit adions of this date ae added to the transition. In the case when some @wmplex
state is a source state for a transition, then this is trandated into a set of transitions
outgoing all the sub-states of this complex state. Exceptions are the spedal terminate
transitions.

Terminate transitions. A terminate transition is a spedal kind of transitions,
outgoing a complex-state and carrying no label, guard, nor event condition. The
terminate transition becomes enabled when its ource state has finished its task. The
terminate transitions are trandated into IL transitions outgoing the states that
emerged from UML final states.

Final states. A final state is a kind of a pseudostate that has no outgoing
transitions. They are trandated into special simple states which have to be left
immediately. In case that the parent state of the final state is not the top state® , then
the terminate transitions are enabled. If the parent of the final state is the top state,
the entire statechart terminates? .

Transitions priorities. Acoording to the semantics of UML state-madhines,
the transition outgoing a substate has a higher priority than a transition outgoing
aparent state. Our trandlation respeds this rule by a spedal preparation of the guards
of the transitions outgoing complex states: this guard is a conjunction of a guard
spedfied in the UML state-machine and the negation of all the guards of all
transiti ons outgoing the substates of this composite state.

Run-To-Completion (RTC). The RTC step is the period of time in which
events are accepted and aded upan. Processing an event aways completes within
a single moddl step, including exiting the source state, executing any associated
adions, and entering the target state. RTC rule is preserved by our trandation
becaise communicaion between processs is asynchronous, ead UML transition is
translated into one IL transition, and IL transitions are aomic.

Propositional variables. The set of propositional variables can be spedfied
diredly in UML state-machine diagrams. To this aim we use aspeda note element
that contains a spedfication of apropositional variable (seeFig. 3 and 5).

! The top state represents entire statemachine and al the states in the statemachine are the children of the
top state. The top state can na be asource or atarget state of any transition.
2 In this case the correspondng IL process says forever initsfinal state.

Sudia Informatica vol. 1(8)2007

UML Verificationwith Verics 27

.
[Idle SendAck
i . /"m.ackSend(b)
Reciverlnitial
,

[bl=msgBit]

msgDlvr

prop {bit0: msgBit == 0;} B‘

ReciverChoice [b==msgBit]/ msgBit=1-msgBit

Figure5. Reasiver State Machine Diagram

The spedfication begins with the keyword prop, and then (in the braaes) we
provide the name of a propositiona variable and (after a colon) the boolean
expresson. In this case, after the trandation to IL, we obtain one IL propositional
variable. Itsvaluein a state is the same & the value of the boolean expresson.

If we need a propositional variable that is true only if the system is in some
indicated state, we have to creage an UML note dement (containing prop keyword
and the name of the variable, but without the boolean expresson) and conned it with
appropriate simple or complex state. Then, after the trandation to IL, we obtain one
IL propositional variable that is true if and only if the system is in ore of the IL
states that have energed from the indicated UML state.

Moreover, we can conned an UML note dement containing a boolean
expresson to some UML simple or complex state if we need a propositional variable
that is true when the system is in the indicaed state and the boolean expresson is
true. Then, after the translation to IL, we obtain a pair of IL propositional variables
and we use the conjunction of them.

Assumptions and Restrictions. This paper reports on our preliminary attempt
to verify UML models with Verics. So, it is clear that we have restricted the input
language to only a few of the most relevant types of diagrams. For simplicity, we
have not allowed for certain feaures of the diagrams considered in the trandlation.
Below we list the feaures that are presently ignored:

The dements of ClassDiagrams:

e the @mmedions between classes, including inheritance,

e thedadtic atributes - the atributes commonfor dl the objeds of the same dass

o thevauesreturned by the methods,

o thevishility of attributes- wetred al attributes as private.

The dements of State Machine Diagrams:

» the oncurrent states - in most cases they can be replacel by a set of objeds

running concurrently,

» thehigory sates,

« the adionsdifferent than methodcadl s and assgnments.

Modeling and Smulation

28 Niewiadomski A., Penczek W.

In our approach a method cdl is interpreted as an asynchronous event, and
connedions between objedsin Objed Diagrams are ignored.

6 Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a simple network protocol that provides
a reliable communicaion via an unreliable medium due to a retransmisson of
messages. Below we describe our variant of ABP.

Hf MediumState W
Mediuminitial msgSend/ *r.msgDlvr(b.d)
msgSend
ackSend! *s.ackDhrb)
ackSend

Figure 6. Lossy Medium State Machine Diagram

In our model the three objeds are used: Sender, Recever, and Lossy
Medium, as depicted in Fig. 1 and 2 The messages are sent from Sender s to
Recever r via Lossy Medium m. Each message cntains a data part and a one-bit
sequence number, i.e., avaue that is 0 or 1. Sender s sends a message @ntinuously
with the same sequence number, until he receves an acknowledgement (ACK) from
r that contains the same sequence number. When this happens, s flips the sequence
number and starts transmitting the next message. Otherwise, the message is
retransmitted by s after some period of time or after receving from r the
adknowledgement with the opposite value of the bit. When r receives a message
from s, it sends back an ACK with the recéved sequence number®. The Lossy
Medium (seeFig. 6) sends or drops messages and ACKsin anon-deterministic way.

7 Verification of the Alternating Bit Protocol

This dion ill ustrates how Verics can be used to verify a system spedfied in
UML. Because of the space limit, we show the verification against one property only
so we focus on demonstrating the methodology rather than on the complete
verificaion o the Alternating Bit Protocol.

The first stage of UML verificaion with Verics consists in the trandation of
an UML spedficaion into Intermediate Language. Next, the IL spedficaion is

3 In ou example we omit a consumer of data and simplify the producer — data is an integer number with
thefixed value 1.

Sudia Informatica vol. 1(8)2007

UML Verificationwith Verics 29

translated into a network of timed automata’. The detailed information a this
tranglation can be found in [9].

Before starting the verification, we have to first construct a tempora formula
describing the tested property of a system using propositional variables defined in
the system spedficdion. In this case, we want to verify the following property:
Always when the Recaver sends ACK and its internal bit is st to 1,and the Sender
recaves the ACK, then the Sender’s internal hit is st to O This property is
obviously not true, becaise following the protocol after the message and an
adknowledgement have been recaved, both (Sender’s and Recéver’s) interna bits
areequal.

To capture this property as a temporal formula we neel to define some
propasitional variables first. In UML state-machine diagrams (see Fig. 3 and Fig. 5)
two spedal note dements are placel. They define two variables named bit0, one for
the Sender and the other for Recaver objed. Both the notes are conneded with the
states, in which these variables have the value true. After the translation of the UML
spedfication into IL, we obtain two pairs of global propositional variables:
Sender_0.in0, Sender_0.in_Sate 2, and Recave_0.bit0, Recever 0.in_Sate 14
(seeFig. 4). The variable Sender_0.hit0 has the value true always when the Sender’s
internal bit is equal to 0. Moreover, the variable Sender_0.in_Sate 2 is true iff the
Sender processis in the IL state that corresponds to the UML state connected with
the note dement.

After the trandation of the IL spedficaion into the network of timed
automata the propositional variables are relocaed to the appropriate automata. Their
names are similar to the IL propositional variables. While constructing the property
tested we have to use the propositional variables defined on the timed automata
level. The resulting formulais given as Formula 1.

AG((Receiver_O_in_State_14D—- Receiver 0_bit_0 DSendeLO_in_State_Z)D (SendeLO_bit_O))

Formula 1. Always when the Receiver sends ACK and itsinternal bit is st to 1,and the
Sender receives the ACK, then the Sender’ sinternal bitis st to 0.

Now, we should choose the verificaion method At the moment the most
effedive is BMC that encodes a tested formula axd the model of the system
(unfolded to the given depth) as aboolean formula. Thisformulais stisfiable iff the
property istrue in the model. We check the satisfiability of this formula using zChaff
[12] SAT-solver. If it is not satisfiable, then we increase the depth of the model and
run the BMC and zChaff again. The BMC method requires a formula in the
existential form, so applying the negationto Formula 1 we obtain Formula 2.

*Itispossbleto oktain also aglobal (product) automaton.

Modeling and Smulation

30 Niewiadomski A., Penczek W.

EF(Receiver_O_in_State-_l4[|—| Receiver_0_bit_00OSender 0_in_State 2 DﬂSendeLO_bit_O)
Formula 2. The negation of Formula 1.

Table 1. Experimental results for the Formula 2.

Depth BMC time[g] |zChaff time[g] Clauses Literals Result
1 0.27 001 44098 106978 sat
2 0.54 011 86723 210683 sat
3 0.85 020 129348 314388 sat
4 110 065 171973 418093 st
5 144 040 214598 521798 st
6 170 146 257223 625503 st
7 196 157 299848 729208 st
8 2.26 240 342473 832913 st
9 255 317 385098 936618 st
10 284 7.22 427723 1040323 sat
11 319 6.05 470348 1144028 1At
12 346 6.24 512973 1247733 sat
13 3.73 5.74 555598 1351438 SAT

The experiments sowsthat Formula 2 is sttisfiable in the model on depth 13.
This means that the property expressed by the Formula 1 is naot true in the verified
system. In the Table 1 the detailed information o verificaion of Formula 2 is
presented. The tests have run on Pentium M 1.73GHz with 512MB RAM running
under Linux 2.6.12-9. The total time of al necessary trandations is about two
sewnds.

8 Conclusions and future work

The paper reports on the preliminary results of our work deding with
automatic verification of UML using Verics. The translator of UML models has been
implemented that handles (with some restrictions) ClassDiagrams, Objed Diagrams,
and State Madhine Diagrams. Moreover, it is possble to spedfy the propositional
variables diredly in UML spedficdions.

We are planning to continue and extend our work. In the nea future we will
introduce the synchronous communicaion methods, extend the translated subset of
UML with new diagrams, and relax some of the current restrictions. This will allow
to model systemsin a more natural way. Moreover, we plan to provide aposshility
to spedfy tested properties in a graphic form. This should enable the verification of
UML systems by users having no knowledge about temporal logic, Intermediate
Language, and timed automata.

Sudia Informatica vol. 1(8)2007

UML Verificationwith Verics 31

References

10.

11.

12.

OMG: Unified Modeling Language (UML), version 2.0.
http://www.omg.org/tedinology/documents/formal/uml.htm (2005).

Nabiatek, W., Niewiadomski, A., Penczek, W., Pétrola, A., Szreter, M.: VerICS
2004: A model checke for real time and multi-agent systems. In: Proc. of the
Int. Workshop on Concurrency, Spedficaion and Programming (CS& P 04).
Volume 170(1) of Informatik-Berichte., Humboldt University (2004) 88-99.
Dembinski, P., Janowska, A., Janowski, P., Penczek, W., Polrola, A., Szreter,
M., Wozna, B., Zbrzezny, A.: VerICS. Atool for verifying timed automata and
Estelle spedfications. In: Proc. of the 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 03). Volume 2619 of
LNCS,, Springer-Verlag (2003) 278-283.

Bozga, M., Graf, S., Ober, 1., Ober, I., Sifakis, J.: The IF toolset. In Bernardo,
M., Corradini, F., eds.: SAM. Volume 3185 of Ledure Notes in Computer
Science, Springer (2004) 237-267.

Knapp, A., Merz, S., Rauh, C.: Model checkng - timed UML state machines
and collaborations. In: FTRTFT. (2002) 395-416.

Sharygina, N., Browne, J., Xie, F., Kurshan, R., Levin, V.: Lessons learned
from model checking a NASA robot controller. Formal Methods in System
Design 25 (2004) 241-270.

Starr, L.: Exeautable UML: The models that are the code. In: Mode
Integration, LL C. (2001).

Apvrille, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: TURTLE: A real-time
UML profile supported by a formal validation toolkit. In: IEEE Trans. Software
Eng 30(7) (2004) 473-487.

Doros, A., Janowska, A., Janowski, P.: From spedfication languages to timed
automata. In: Proc. of CS&P the Int. Workshop on Concurrency, Spedfication
and Programming (CS&P02). Volume 161(1) of Informatik-Berichte.,
Humboldt University (2002) 117-128.

Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checkng for the
universal fragment of CTL. Fundamenta Informaticae51(1-2) (2002) 135-156.
Wozna, B., Penczek, W., Zbrzezny, A.: Reachability for timed systems based
on SAT-solvers. In: Proc. of the Int. Workshop on Concurrency, Spedficdion
and Programming (CS&P02). Volume 161(2) of Informatik-Berichte.,
Humboaldt University (2002) 380-395.

Zhang, L.: zChaff. http://www.eeprinceton.edu/~chaff/zchaff.php (2005).

Modeling and Smulation

