Many-Valued Gates for Reducing the Chip-Area of Integrated Circuits

Sergey Novikov

Institute of Computer Science, University of Podlasie, Siedlce, Poland, profesor, Novikov@poczta.onet.pl

Abstract. In this paper are proposed new many-valued gates *K-PLA*, T(2/K) and T(K/2) for a logical synthesis of digital integrated circuits. The semi-custom integrated circuit *K-PLA* has the architecture of a Programmable Logic Array of a type *AND-OR* and includes new *K*-valued valves *MAX*, *MIN* and *GATE*(*A*,*j*). A gate T(2/K) (T(K/2)) is intended for transformation binary (*K*-valued) entrance words into *K*-valued (binary) output words. The method of the logical synthesis with the use *K-PLA*, T(2/K) and T(K/2) allows to reduce nearly three times the chip-area, which is essential for placing of the circuit's realization of the system of partial Boolean functions.

Keywords: Programmable Logic Array, logical synthesis, semi-custom integrated circuit, many-valued gate, reducing of chip-area.

In this paper we look at the relevant problem of minimization of a chip-area of integrated circuits.

This paper is the obligatory supplement of our article [7], where are absent figures for explanation of functioning new many-valued gates.

The work done in this area includes the Dagon [1], MIS [2,3] and Ceres [4] systems. Results [5] and [6] were received with the help of the library basis of gates. For example, the paper [5] communicates about gate "AND/OR/NAND/NOR constraint".

Our method of the synthesis of circuits [7] allows to sinthesize integrated circuits with new many-valued gates K-PLA, T(2/K) and T(K/2). The input information for synthesis is a system of partial Boolean functions (m,r,q). For example, we sinthesize the system (18,6,20), showed on Fig.1.

There are main stages of our method of logical synthesis of integrated circuits [7].

1. The choice of the quantity of **K** for gates in a circuit's realization of the system of partial Boolean functions (m,r,q). We take that **K**, where $log_2K = [log_2K]$.

2. The coding the binary input and output words of (m,r,q) by *K*-valued words with length $n = \frac{m}{\log_2 K[}$ and $s = \frac{r}{\log_2 K[}$.

In this stage we construct the system of partial many-valued logical functions (n,s,q), which corresponds to system (m,r,q). For our system (18,6,20), showed on Fig. 1, we get the system (6,2,20), showed on Fig. 2.

x1	x18	g1	g6	v1	v6	f1	f2
100 011 000 110 011	100	0111	00	4306	34	3	4
100 010 111 100 100	101	1101	10	4274	4 5	6	6
111 101 100 011 010	010	0100)11	7543	22	2	3
000 100 100 011 100	111	0001	10	0443	47	0	6
101 100 101 011 000	101	1011	01	5453	05	5	5
100 011 100 110 010	011	0100	01	4346	23	2	1
000 010 110 100 111	001	0101	01	0264	71	2	5
100 110 001 101 110	000	1011	01	4615	60	5	5
000 110 100 111 001	001	1101	10	0647	11	6	6
111 110 001 000 110	101	1111	11	7610	65	7	7
100 010 110 111 010	010	0001	01	4267	22	0	5
100 011 100 110 110	100	0111	01	4346	64	3	5
000 110 001 101 001	011	1101	00	0615	13	6	4
100 011 100 001 100	111	0000	01	4341	47	0	1
111 000 110 110 000	111	0110)11	7066	07	3	3
111 011 000 110 110	100	1111	11	7306	64	7	7
100 011 100 111 001	001	1001	00	4347	11	4	4
001 001 110 010 000	111	1110)11	1162	07	7	3
100 111 001 001 000	111	1100	01	4711	07	6	1
101 100 100 111 000	110	0110	010	5447	06	3	2

Fig. 1.

Fig. 2.

Fig. 1. System of partial Boolean functions (*18,6,20*) **Fig. 2.** System (*6,2,20*) of partial 8-valued logical functions

3. The construction of the circuit S with T(2/K), K-PLA and T(K/2) for realization (m,r,q). The circuit S is showed on Fig. 3.

Fig. 3. Circuit S for synthesis of (*m*,*r*,*q*)

4. The minimization of the system of partial K-valued logical functions (n, s, q). With that aim we generate system-intervals which realize by implicants and

construct SOP-system in basis $\{v, A, v_i^j, 1, 2, ..., K-1\}$.

5. The creation the special matrixes for realization of the concrete parameters of gates for K-PLA with the help of the K-PLA – programmer.

6. The completion of the synthesis with the help of the *K-PLA* – programmer.

It is easy to explain structures of all blocs showed on Fig. 3 with the help of the concrete examples.

Fig. 4 shows the structure of translator T(2/K) for three input pins and K=8, where

 \bigcirc is the gate *NOT*, \bigtriangleup is the gate *AND*, \checkmark is the gate for realization of operation *Max*, \Box is the gate *GATE*(*A*,*j*).

The gate $GATE(A_j j)$ has one input pin and one output pin, where y = A for x=j and y = 0 for $x \neq j$. The main parameters A and j for $GATE(A_j j)$ we must be able to modify with the help of a special equipment called by programmer (similar as PROM blower).

If input signals of T(2/K) are equal to xil = 1, xi2 = 0, xi3 = 1, to input signal of GATE(5,1) is equal to 1 and it's output signal is equal to 5. Then the output signal of T(2/K) is equal to 5 also.

Fig. 4. Structure of translator T(2/K) for three input pins

Fig. 5 shows the structure of translator T(K/2) for one input pin, three output pins and K=8, where \bigtriangledown is the gate OR, \Box is the gate $GATE(A_{\lambda}j)$. For example, if input signal of T(8/2) is equal to fi = 4, input signal of the

For example, if input signal of T(8/2) is equal to fi = 4, input signal of the gate GATE(1,4) is equal to 4 so and output signal of the gate GATE(1,4) is equal to 1. Then output signals of T(2/K) are equal to gi1 = 1, gi2 = 0, gi3 = 0.

Figure 6 shows the structure of *K-PLA*(6,2,20) for K=8 with 6 input pins, 2 output pins and 20 intermediate lines. This block includes gates *MIN*, *MAX*, *GATE*(7,*j*), *GATE*(A,7), which are described as \blacktriangle , ∇ , and \Box .

Fig. 5. Structure of translator T(8/2) with one input pin, three output pins

The parametr *A* of each gate GATE(A,j) from M(AND) is equal to *K-1* (in our case A=7) and the parametrs *j* must be turn by the *K-PLA* – programmer with the help of the matrix for turning (Fig. 7, Fig. 9). The parametr *j* of each gate GATE(A,j) from M(OR) is equal to *K-1* (in our case j=7) and the parametrs *A* must be turn by the *K-PLA* – programmer with the help of the matrix for turning (Fig. 7, Fig. 9).

Fig. 6. Structure of 8-PLA(6,2,20)

For effective synthesis of 8-PLA we can minimize the obtained 8 – valued logical functions (Fig. 2).

Using our tools [7], we have the results of the minimization - system's intervals for the system (6,2,20). The corresponding SOP-system is showed in [7].

SOP-system is easily to realize by 8-PLA(6,2,21). In our case we have the circuit, where the structure of 8-PLA(6,2,21) is showed on Fig. 8 and the matrix for turning is showed on Fig. 9.

At last we have the circuit for realization our system of Boolean functions (18,6,20). Our circuit S is showed on Fig. 10.

Our method of synthesis [7] and new many-valued elements T(2/K), T(K/2) and K-PLA allow considerably to reduce the chip-area, which is needed for realization the system of partial Boolean functions (m,r,q).

We will estimate the effect (chip-area minimization) of the using of our method with K=4.

v1 v6	f1 f2	v1 v6 f1 f2
430634	34	488888 81
427445	66	884828 28
754322	23	888878 28
044347	06	888788 82
545305	55	888884 38
434623	21	788888 83
026471	25	886888 83
461560	55	888808 38
064711	66	880888 84
M(AND) = 761065	M(OR) = 77	M(AND) = 888818 M(OR) = 44
426722	05	888885 55
434664	35	826888 85
061513	64	888868 85
434147	01	888808 58
706607	33	887888 66
730664	77	048888 86
434711	44	068888 68
116207	73	878888 68
471107	61	084888 86
544706	32	788868 77
		188888 78

Fig.7

Fig.9

Fig. 7. Matrix for turning *8-PLA(6,2,20)* (without minimization) **Fig. 9.** Matrix for turning *8-PLA(6,2,21)* (with minimization)

The use of traditional 2-PLA(m,r,q) allows to realize any system of partial Boolean functions (m,r,q) by a circuit with L(m,r,q) commutation points between input/output pins and intermediate lines, where

$$L(m,r,q) = (2m+r)^*q$$
. (1)

The use of our method of the synthesis with elements T(2/4), T(4/2) and 4-PLA(m/2,r/2,q) allows to realize the same system of partial Boolean functions (m,r,q) by an other circuit S, where the chip-area is equal to

$$L_s(m,r,q) = \frac{m}{2}(20+q) + \frac{r}{2}(12+q) \cdot$$
(2)

Fig. 10. The circuit for realization (18,6,20)

The formula (2) was obtained from [7] by the assumption: parameters of m and r are even numbers. This assumption limits not the domain of using our method, because parameters m,r,q of "industrial" PLA are even numbers always.

We define the effect as

$$\begin{aligned} c(m,r,q) &= L(m,r,q) - L_s(m,r,q) = (2m+r)^* q - \\ &- \left(\frac{m}{2}(20+q) + \frac{r}{2}(12+q)\right) = mq + q(m+r) - \frac{q}{2}(m+r) - 10m - 6r = \\ &= mq + \frac{q}{2}(m+r) - 10m - 6r = \frac{2mq + mq + rq - 20m - 12r}{2} = \\ &= \frac{q(3m+r) - 12(3m+r) + 16m}{2} = \frac{(3m+r)^*(q-12) + 16m}{2}. \end{aligned}$$

Like that the reducing of the chip-area for the **2-PLA**(*m*,*r*,*q*) is equal to $c(m,r,q) = \frac{(3m+r)*(q-12)+16m}{2}.$ (3)

Now we can estimate the effect of the using of our method for a circuit's realization of any system of partial Boolean functions (M,R,Q) with $M \ge m, R \ge r, Q \ge q$.

It's known [8] (formula (4.19)), what any (M,R,Q) may be realized by a circuit in the basis $\{2\text{-PLA}(m,r,q)\}$, where the number of elements 2-PLA(m,r,q) is no more than

$$]\frac{Q}{q}[(]\frac{M-m}{m-r}[+]\frac{R}{r}]).$$

$$\tag{4}$$

As the use of our method allows to replace a circuit S with one 2-PLA(m,r,q) by the equivalent circuit S with T(2/4), T(4/2) and 4-PLA(m/2,r/2,q) and to reduce the chip-area on c(m,r,q) we have the effect for any (M,R,Q), which is equal to

$$C(M,R,Q) = \frac{Q}{q} \left[\left(\frac{M-m}{m-r} \right] + \frac{R}{r} \right] \frac{(3m+r)(q-12) + 16m}{2}$$
(5)

Example

Let the circuit's realization of the system (64, 64, 4000) contains 560 (with the help of (4)) 2-PLA(16, 8, 100). Then we can replace this circuit by the equivalent circuit S with T(2/4), T(4/2) and 4-PLA(8, 4, 100), where the chip-area is smaller from (5) on 1451520 commutation points between input/output pins and intermediate lines.

For the realization of one 2-PLA(16,8,100) is needed (1) the chip-area, which is equal to 4000.

Then we mark that the chip-area, which was economized by using of our method, allows to place 362 elements 2-PLA(16,8,100).

In that way our method allows to reduce nearly in three times the chip-area, which is essential for placing of the circuit's realization of the system (64,64,4000) in comparison with the method [8].

References

- 1. K. Keutzer. "DAGON: Technology Binding and Local Optimization by DAG Matching", 24 th DAC, 1987, pp. 341-347.
- 2. E. Detjens, et al, "Technology Mapping in MIS", ICCAD, 1987, pp. 116-119.
- 3. R.K. Brayton, et al, "MIS: A Multiple-Level Optimization System", Transactions on CAD, CAD–6(6), November 1987, pp. 1062-81.
- F. Mailhot, G. De Micheli, "Algorithms for Technology Mapping based on Binary Decision Diagrams and on Boolean operations", CSL-TR-91-486, August 1991.
- 5. A.Jain, R.E.Bryant, "Inverter Minimization in Multi-Level Logic Networks", CMU CAD 93-53, August 1993.
- Pyotr Bibilo, Natalia Kirienko. Block synthesis of combinational circuits in the basis of PLA and library gates. Proceedings of The International Workshop on Discrete-Event System Design. Zielona Góra, Technical University of Zielona Góra, 2001, s. 181-186.
- Sergey Novikov. Method of Logical Synthesis of Integrated Circuits in basis *K-PLA*. Studia Informatica. Systemy i technologie informacyjne. VOLUME 1/2(7), Siedlce, AP, 2006, s. 247-253.
- С.В. Новиков. Теория регулярных структур. Мн.: Университетское, 1987. - 208 с.