Many-Valued Gates for Reducing the Chip-Area of Integrated Circuits

Sergey Novikov

Institute of Computer Science, University of Podlasie, Siedlce, Poland, profesor, Novikov@poczta.onet.pl

Abstract

In this paper are proposed new many-valued gates $\boldsymbol{K}-\mathbf{P L A}, \boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ and $\boldsymbol{T}(\boldsymbol{K} / \mathbf{2})$ for a logical synthesis of digital integrated circuits. The semi-custom integrated circuit K-PLA has the architecture of a Programmable Logic Array of a type $\boldsymbol{A N D} \boldsymbol{D} \boldsymbol{O R}$ and includes new \boldsymbol{K}-valued valves MAX, MIN and $\operatorname{GATE}(\boldsymbol{A}, \boldsymbol{j})$. A gate $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})(\boldsymbol{T}(\boldsymbol{K} / \mathbf{2})$) is intended for transformation binary (\boldsymbol{K}-valued) entrance words into \boldsymbol{K}-valued (binary) output words. The method of the logical synthesis with the use $\boldsymbol{K}-\mathbf{P L A}, \boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ and $\boldsymbol{T}(\boldsymbol{K} / \mathbf{2})$ allows to reduce nearly three times the chip-area, which is essential for placing of the circuit's realization of the system of partial Boolean functions.

Keywords: Programmable Logic Array, logical synthesis, semi-custom integrated circuit, manyvalued gate, reducing of chip-area.

In this paper we look at the relevant problem of minimization of a chip-area of integrated circuits.

This paper is the obligatory supplement of our article [7], where are absent figures for explanation of functioning new many-valued gates.

The work done in this area includes the Dagon [1], MIS [2,3] and Ceres [4] systems. Results [5] and [6] were received with the help of the library basis of gates. For example, the paper [5] communicates about gate "AND/OR/NAND/NOR constraint".

Our method of the synthesis of circuits [7] allows to sinthesize integrated circuits with new many-valued gates $\boldsymbol{K}-\mathbf{P L A}, \boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ and $\boldsymbol{T}(\boldsymbol{K} / 2)$. The input information for synthesis is a system of partial Boolean functions ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$). For example, we sinthesize the system $(\mathbf{1 8 , 6 , 2 0})$, showed on Fig.1.

There are main stages of our method of logical synthesis of integrated circuits [7].
1.The choice of the quantity of \boldsymbol{K} for gates in a circuit's realization of the system of partial Boolean functions ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$). We take that \boldsymbol{K}, where $\boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{K}=\left[\boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{K}\right]$.
2. The coding the binary input and output words of ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) by \boldsymbol{K}-valued words with length $n=] m / \log _{2} K[$ and $s=] r / \log _{2} K[$.

In this stage we construct the system of partial many-valued logical functions ($\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q}$), which corresponds to system ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$). For our system (18,6,20), showed on Fig. 1, we get the system (6,2,20), showed on Fig. 2.

$\mathbf{x 1}$	$\mathbf{x 1 8}$	$\mathbf{g 1} \quad \mathbf{g 6}$	v1	v6	f1 $\mathbf{f 2}$	
100011000110011100	011100	430634	3	4		
100010111100100101	110110	427445	6	6		
111101100011010010	010011	754322	2	3		
000100100011100111	000110	044347	0	6		
101100101011000101	101101	545305	5	5		
100011100110010011	010001	434623	2	1		
000010110100111001	010101	026471	2	5		
100110001101110000	101101	461560	5	5		
000110100111001001	110110	064711	6	6		
111110001000110101	111111	761065	7	7		
100010110111010010	000101	426722	0	5		
100011100110110100	011101	434664	3	5		
000110001101001011	110100	061513	6	4		
100011100001100111	000001	434147	0	1		
111000110110000111	011011	706607	3	3		
111011000110110100	111111	730664	7	7		
100011100111001001	100100	434711	4	4		
001001110010000111	111011	116207	7	3		
100111001001000111	110001	471107	6	1		
101100100111000110	011010	544706	3	2		

Fig. 1.
Fig. 2.
Fig. 1. System of partial Boolean funtions $(\mathbf{1 8 , 6}, 20)$
Fig. 2. System $(6,2,20)$ of partial 8 -valued logical functions
3. The construction of the circuit S with $T(2 / K), K-P L A$ and $T(K / 2)$ for realization ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$). The circuit \boldsymbol{S} is showed on Fig. 3.

Fig. 3. Circuit \boldsymbol{S} for synthesis of $(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$
4. The minimization of the system of partial \boldsymbol{K}-valued logical functions $(\boldsymbol{n}, \boldsymbol{s}, \boldsymbol{q})$.

With that aim we generate system-intervals which realize by implicants and construct SOP-system in basis $\left\{\vee, \wedge, v_{i}^{j}, \mathbf{1 , 2}, \ldots, \boldsymbol{K}-\mathbf{1}\right\}$.
5. The creation the special matrixes for realization of the concrete parameters of gates for \boldsymbol{K} - PLA with the help of the $\boldsymbol{K} \boldsymbol{- P L A}$ - programmer.
6. The completion of the synthesis with the help of the $\boldsymbol{K} \mathbf{- P L A}$ - programmer.

It is easy to explain structures of all blocs showed on Fig. 3 with the help of the concrete examples.

Fig. 4 shows the structure of translator $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ for three input pins and $\boldsymbol{K}=\mathbf{8}$, where \qquad is the \qquad gate NOT, \triangle is the gate $A N D$,is the gate for realization of operation Max,is the gate $\operatorname{GATE}(\boldsymbol{A}, j)$.
The gate $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{A}, \boldsymbol{j})$ has one input pin and one output pin, where $\boldsymbol{y}=\boldsymbol{A}$ for $\boldsymbol{x}=\boldsymbol{j}$ and $\boldsymbol{y}=\mathbf{0}$ for $\boldsymbol{x} \neq \boldsymbol{j}$. The main parameters \boldsymbol{A} and \boldsymbol{j} for $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{A}, \boldsymbol{j})$ we must be able to modify with the help of a special equipment called by programmer (similar as PROM blower).

If input signals of $\boldsymbol{T}(\mathbf{2} / \mathrm{K})$ are equal to $\boldsymbol{x i 1}=1, x i 2=0, x i 3=1$, to input signal of $\operatorname{GATE}(5,1)$ is equal to 1 and it's output signal is equal to 5 . Then the output signal of $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ is equal to 5 also.

Fig. 4. Structure of translator $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K})$ for three input pins

Fig. 5 shows the structure of translator $\boldsymbol{T}(\boldsymbol{K} / \mathbf{2})$ for one input pin, three output pins and $\boldsymbol{K}=\boldsymbol{8}$, where ∇ is the gate $\boldsymbol{O R}, \square$ is the gate $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{A}, \boldsymbol{j})$.

For example, if input signal of $\boldsymbol{T}(8 / 2)$ is equal to $f i=4$, input signal of the gate $\boldsymbol{\operatorname { G A T E }}(\mathbf{1 , 4})$ is equal to 4 so and output signal of the gate $\boldsymbol{\operatorname { G A T E }}(\mathbf{1 , 4)}$ is equal to 1 . Then output signals of $\boldsymbol{T}(2 / K)$ are equal to $g i 1=1, g i 2=0, g i 3=0$.

Figure 6 shows the structure of $\boldsymbol{K} \boldsymbol{P} \boldsymbol{L A}(\mathbf{6 , 2 , 2 0})$ for $K=8$ with 6 input pins, 2 output pins and 20 intermediate lines. This block includes gates MIN, MAX, $\boldsymbol{\operatorname { G A T E }}(7, j), \boldsymbol{\operatorname { G A T E }}(\boldsymbol{A}, 7)$, which are described as $\boldsymbol{\Delta}, \boldsymbol{\nabla}$, and \square.

Fig. 5. Structure of translator $\boldsymbol{T}(8 / 2)$ with one input pin, three output pins

The parametr \boldsymbol{A} of each gate $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{A}, \boldsymbol{j})$ from $\boldsymbol{M}(\boldsymbol{A N D})$ is equal to $\boldsymbol{K} \mathbf{- 1}$ (in our case $\boldsymbol{A}=7$) and the parametrs \boldsymbol{j} must be turn by the $\boldsymbol{K} \boldsymbol{-} \boldsymbol{P} \boldsymbol{L} \boldsymbol{A}$ - programmer with the help of the matrix for turning (Fig. 7, Fig. 9). The parametr \boldsymbol{j} of each gate $\boldsymbol{\operatorname { G A T E }}(\boldsymbol{A}, \boldsymbol{j})$ from $\boldsymbol{M}(\boldsymbol{O R})$ is equal to $\boldsymbol{K}-\boldsymbol{1}$ (in our case $\boldsymbol{j}=7$) and the parametrs \boldsymbol{A} must be turn by the K-PLA - programmer with the help of the matrix for turning (Fig. 7, Fig. 9).

Fig. 6. Structure of 8-PLA(6,2,20)

For effective synthesis of $\boldsymbol{8 - P L A}$ we can minimize the obtained $\boldsymbol{8}$ - valued logical functions (Fig. 2).

Using our tools [7], we have the results of the minimization - system's intervals for the system (6,2,20). The corresponding SOP-system is showed in [7].

Fig. 8. Structure of $\mathbf{8 - P L A}$ for realization $(\mathbf{6 , 2 , 2 1})$

SOP-system is easily to realize by $\boldsymbol{8} \mathbf{- P L A}(\mathbf{6}, 2,21)$. In our case we have the circuit, where the structure of $8-\operatorname{PLA}(6,2,21)$ is showed on Fig. 8 and the matrix for turning is showed on Fig. 9.

At last we have the circuit for realization our system of Boolean funtions $(18,6,20)$. Our circuit S is showed on Fig. 10 .

Our method of synthesis [7] and new many-valued elements $\boldsymbol{T}(\mathbf{2} / \boldsymbol{K}), \boldsymbol{T}(\boldsymbol{K} / 2)$ and K-PLA allow considerably to reduce the chip-area, which is needed for realization the system of partial Boolean functions ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$).

We will estimate the effect (chip-area minimization) of the using of our method with $K=4$.

v1 v6	f1 f2	v1 v6	f1 f2
430634	34	488888	81
427445	66	884828	28
754322	23	888878	28
044347	06	888788	82
545305	55	888884	38
434623	21	788888	83
026471	25	886888	83
461560	55	888808	38
064711	66	880888	84
$\boldsymbol{M}($ AND $)=761065$	$\boldsymbol{M}(\mathbf{O R})=77$	$\boldsymbol{M}(\boldsymbol{A N D})=888818$	$\boldsymbol{M}(\mathbf{O R})=44$
426722	05	888885	55
434664	35	826888	85
061513	64	888868	85
434147	01	888808	58
706607	33	887888	66
730664	77	048888	86
434711	44	068888	68
116207	73	878888	68
471107	61	084888	86
544706	32	788868	77
		188888	78

Fig. 7
Fig. 9

Fig. 7. Matrix for turning $8-\operatorname{PLA}(6,2,20)$ (without minimization)
Fig. 9. Matrix for turning $8-\operatorname{PLA}(6,2,21) \quad$ (with minimization)

The use of traditional 2-PLA $(\boldsymbol{m}, r, \boldsymbol{q})$ allows to realize any system of partial Boolean functions ($\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$) by a circuit with $\boldsymbol{L}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ commutation points between input/output pins and intermediate lines, where

$$
\begin{equation*}
L(m, r, q)=(2 m+r) * q . \tag{1}
\end{equation*}
$$

The use of our method of the synthesis with elements $\boldsymbol{T}(\mathbf{2 / 4}), \boldsymbol{T}(\mathbf{4} / \mathbf{2})$ and $\mathbf{4}$ $\boldsymbol{P L A}(\boldsymbol{m} / \mathbf{2}, \boldsymbol{r} / \mathbf{2}, \boldsymbol{q})$ allows to realize the same system of partial Boolean functions $(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ by an other circuit \boldsymbol{S}, where the chip-area is equal to

$$
\begin{equation*}
L_{s}(m, r, q)=\frac{m}{2}(20+q)+\frac{r}{2}(12+q) . \tag{2}
\end{equation*}
$$

Fig. 10. The circuit for realization $(\mathbf{1 8 , 6}, \mathbf{2 0})$

The formula (2) was obtained from [7] by the assumption: parameters of \boldsymbol{m} and \boldsymbol{r} are even numbers. This assumption limits not the domain of using our method, because parameters $\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q}$ of "industrial" PLA are even numbers always.

We define the effect as

$$
\begin{aligned}
& c(m, r, q)=L(m, r, q)-L_{s}(m, r, q)=(2 m+r)^{*} q- \\
& -\left(\frac{m}{2}(20+q)+\frac{r}{2}(12+q)\right)=m q+q(m+r)-\frac{q}{2}(m+r)^{-10 m-6 r=} \\
& =m q+\frac{q}{2}(m+r)-10 m-6 r=\frac{2 m q+m q+r q-20 m-12 r}{2}= \\
& =\frac{q(3 m+r)-12(3 m+r)+16 m}{2}=\frac{(3 m+r)^{*}(q-12)+16 m}{2} .
\end{aligned}
$$

Like that the reducing of the chip-area for the $\operatorname{2-PLA}(m, r, q)$ is equal to
$c(m, r, q)=\frac{(3 m+r)^{*}(q-12)+16 m}{2}$.
Now we can estimate the effect of the using of our method for a circuit's realization of any system of partial Boolean functions ($M, \boldsymbol{R}, \boldsymbol{Q}$) with $\boldsymbol{M} \geq \boldsymbol{m}, \boldsymbol{R} \geq r, \boldsymbol{Q}$ $\geq q$.

It's known [8] (formula (4.19)), what any ($\mathbf{M}, \boldsymbol{R}, \boldsymbol{Q}$) may be realized by a circuit in the basis $\{\mathbf{2 - P L A}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})\}$, where the number of elements $2-\operatorname{PLA}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ is no more than
] $\frac{Q}{q}\left[(] \frac{M-m}{m-r}[+] \frac{R}{r}[)\right.$.
As the use of our method allows to replace a circuit S with one $\mathbf{2 - P L A}(m, r, q)$ by the equivalent circuit S with $\boldsymbol{T}(\mathbf{2} / 4), T(4 / 2)$ and $\mathbf{4 - P L A}(m / 2, r / 2, q)$ and to reduce the chip-area on $\boldsymbol{c}(\boldsymbol{m}, \boldsymbol{r}, \boldsymbol{q})$ we have the effect for any $(\boldsymbol{M}, \boldsymbol{R}, \boldsymbol{Q})$, which is equal to
$C(M, R, Q)=] \frac{Q}{q}\left[(] \frac{M-m}{m-r}[+] \frac{R}{r}[) \frac{(3 m+r)(q-12)+16 m}{2}\right.$

Example

Let the circuit's realization of the system $(\mathbf{6 4 , 6 4 , 4 0 0 0})$ contains 560 (with the help of (4)) $\mathbf{2 - P L A}(\mathbf{1 6}, 8,100)$. Then we can replace this circuit by the equivalent circuit S with $T(2 / 4), T(4 / 2)$ and $\mathbf{4 - P L A}(8,4,100)$, where the chip-area is smaller from (5) on $\mathbf{1 4 5 1 5 2 0}$ commutation points between input/output pins and intermediate lines.

For the realization of one $2-\operatorname{PLA}(\mathbf{1 6}, 8,100)$ is needed (1) the chip-area, which is equal to 4000.

Then we mark that the chip-area, which was economized by using of our method, allows to place 362 elements 2-PLA(16,8,100).

In that way our method allows to reduce nearly in three times the chip-area, which is essential for placing of the circuit's realization of the system $(\mathbf{6 4 , 6 4}, 4000)$ in comparison with the method [8].

References

1. K. Keutzer. "DAGON: Technology Binding and Local Optimization by DAG Matching", 24 th DAC, 1987, pp. 341-347.
2. E. Detjens, et al, "Technology Mapping in MIS", ICCAD, 1987, pp. 116-119.
3. R.K. Brayton, et al, "MIS: A Multiple-Level Optimization System", Transactions on CAD, CAD-6(6), November 1987, pp. 1062-81.
4. F. Mailhot, G. De Micheli, "Algorithms for Technology Mapping based on Binary Decision Diagrams and on Boolean operations", CSL-TR-91-486, August 1991.
5. A.Jain, R.E.Bryant, "Inverter Minimization in Multi-Level Logic Networks", CMU CAD 93-53, August 1993.
6. Pyotr Bibilo, Natalia Kirienko. Block synthesis of combinational circuits in the basis of PLA and library gates. Proceedings of The International Workshop on Discrete-Event System Design. Zielona Góra, Technical University of Zielona Góra, 2001, s. 181-186.
7. Sergey Novikov. Method of Logical Synthesis of Integrated Circuits in basis K-PLA. Studia Informatica. Systemy i technologie informacyjne. VOLUME 1/2(7), Siedlce, AP, 2006, s. 247-253.
8. С.В. Новиков. Теория регулярных структур. - Мн.: Университетское, 1987. - 208 с.
