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Abstract. The paper presents basic description methods ib€atrphenomena, i.e. first-order,
continuous phase transitions, and an overview ef dblf-organized criticality concept. In this

approach an attempt is made to identify the detantifactors of modeling critical events using
cellular automata.
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1 Introduction

The widespread occurrence of phase transitioriedrsurrounding reality is
of crucial importance for all life over the worlth general, the various liquid-gas,
solid-gas etc. transitions exhibit discontinuity tineir physical properties while
transforming from one state to another. Stateshef matter, magnetic features,
structure etc. change as an effect of phase tramsitin any system containing liquid
and gaseous phases there exists a special conditiomhich distinction between
those phases is almost impossible. That specialbic@ation of pressure and
temperature is called a critical region or critipalint. In another class of systems,
which evolve in such a way so as to approach eakripoint and remain therein, we
assume that a system exhibits a feature of seHrizgd criticality (SOC). That
feature defines any system that takes an orgarfized in the absence of any
external pressures. The critical events considafealve may be observed in the
physical or non-physical systems but using the tefrphase transition to the last
one is more controversial. Both considered typethefcritical phenomena contain
a critical point, where a small change can eitheshpa system into a chaotic
behavior or lock the system in a fixed behavioraflpoint is called as the Edge of
Chaos.

Cellular automata, especially multi-dimensiondlipwa modeling many real-
world phenomena, as well as abstract problems.aliheof this paper is an attempt

to identify possible restrictions in the use oflaelr automata for modeling critical
phenomena.
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2 Phasetransition

The following consideration of phase change refersthe thermodynamic
equilibrium. A system is physically and chemicdligmogenous if it is located in one
state of matter. Furthermore, the systems in &quifn state may be characterized by the
functions widely known as thermodynamic potentiafdl of the properties of
thermodynamic systems in equilibrium state arengefiby a set of factors which may be
chosen from the following parameters: entr&yemperaturd, pressurg, volumeV,
number of moleculell and chemical potential In case of a system with non-existent
influence of pressure and volume we choose anptitameters, i.e. for magnetic matters
we take magnetic field and magnetic momeM.

A phase change or phase transition is the tramsfiton from one phase to
another. The most differentiating characteristicaophase transition is an abrupt
change in one or more properties. That change,aiticplar the heat capacity,
is a function of small change in an intensive patem (thermodynamic variable),
such as the temperature. The various solid-liqaisl-gphase changes occur in
different ways. The first Ehrenfest classificatigrouped phase transitions based on
the continuity of chemical potential. For examptiee first-order phase transition
exhibits discontinuity in the first derivative dfd free energy(T,p) (Helmholtz's
free energy) or free enthalpg(T,M) (Gibbs' free energy), called as the
thermodynamic potentials. The higher order of pheaesition will be define under
this scheme. As the Ehrenfest classification ofsph&ransitions is flawed, the
modern one is based on the existence or non-egstian association of latent heat
of transition. That modern approach to classifaratdivides phase transitions into
two broad categories: first- and second-order phasesitions. The first-order phase
changes are those that include a latent heat. yidters under that kind of transition
either absorbs or sets free a fixed amount of gnéxdayer between two phases, i.e.
boiling water under atmospheric pressure, formarhulent mixture of water and
vapor. The second-order phase transition or cootisuphase transition has
a continuous free energy function (thermodynamieipiial) and a continuous first-
order derivative, what affects non-existent late@at. That kind of phase transition
has some interesting features because there igeaamd long-term fluctuation of the
order parameter.

As we observe a system in the critical state, we that some characteristic
system factors approach infinity. In that case r@veoient description is a function in
a non-analytic form e.g.: heat capacltyl] 7 where r = (T-Ty)/T,, T, being the
temperature in a critical point. The variable is called a critical index (or critical
exponent) and defines the way, in which the fumcifg) approaches infinity or zero.
It is astonishing that critical indexes in diffetesystems possess the same set of
values with accepted level of the measurement ¢sammetimes rather high). After
Warks, Larkin, Griffith and Kadanoff, we call th@henomenon as universality.
A general idea of the universality is a thesis @fuping continuous phase transitions
in a few classes (classes of universality), dependn dimensions of the system and
symmetry of the ordered state. For each of the eumality classes the physical
variables near the critical point depend on théadise from that point. As a result, in
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a class of universality all critical indexes aréluanced by the variables mentioned
above and dimension of the order parameter.

The next step in the development of the phaseitian theory was Landau’s
idea that all systems (he had examined some magnetters) have variables whose
small change results in a change of symmetry (tious change of the matter
properties). It turned out that the critical index@e not mutually independent. The
scaling hypothesis (Rushbrook, Griffith and Widoased on that assumption was
applied by Wilson to the evaluation method of catiindex values. The concept of
Wilson and co-authors, named as the renormalizagionp method (RG), leads to
the procedure of finding a critical point. Togetheith the scaling hypothesis it
generates an association, called a scaling relatiith is satisfied by the critical
indexes.

The first-order phase transition, as we considetsalve, contains latent heat.
On the boundary between two phases there existsitarfacial layer, including
defective matter (within a nucleation phase tréamsimodel) and fluctuations with
a critical dimension higher than the potential tearrThat kind of systems is difficult
to analyze because their dynamics is not easy tdrao We assume that the
universality hypothesis for first-order phase tioss is analogous (however,
possibly falling within a narrow scope) to the éoobus one, and ultimately will be
created.

3 Sdf-Organized Criticality (SOC)

Self-Organized Criticality defines the criticabtt of a system without the
need of tuning a control parameter. It means thatctitical state of a system is an
attractor of its dynamics. A move from a large oegiof the state space to
a persistent smaller one (attractor) is indepenffemy the initial conditions. That
new, far from equilibrium, critical state is staldeen in case of critical fluctuations.
Back and co-authors [3] derive the SOC concept ftloencreation of avalanches on
a pile of sand. In these models adding grains medaad slopes unstable and initiate
avalanches, but their dimensions and moments dé slown are non-predictable.
Studies of the SOC states as a phase transititkee, ¢anclusions from some
observable events e.g. earthquakes or BTW modelsstch distributions of results
that the larger event, the less frequent. Theibigion of the dimensiors of an
avalanche may have the following mathematical fopfs) O s*. If we plot the
logarithm of the number of times the avalanchesfawmad versus the logarithm of
the dimension of an avalanche, we get a straight In general the above function is
called a power law. Any system subject to the pdaerexposes the same structure
over all scales. Both self-similarity and scaleepdndent features are characteristic
of the self-organized systems.

The published SOC models could be divided, afteggq{11], into two basic
groups. The models with stochastic dynamics workimg a deterministic
environment are classified into the first groupsofcalled “stochastic models”. An
example of such a system is the BTW model, foliest éarthquake etc. The second
group, so-called “quenched”, consists of modelshwiteterministic dynamics
performing in random environments. Here we can foané.g. the Bak-Sneppen
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evolution model [31], or production and inventogndmics [10]. The SOC idea has
been used to model phenomena (besides given alasve)jverse and impressive
range as the dynamics of river network, volcanidivdies, traffic jams,
superconductivity, variation of stock market etd. i$ interesting, but non-
representative opinion, after Blanchard [11], ttet SOC becomes a new paradigm
of explanation of physical, social and many othBempmena. According to that
paradigm, other authors [11] claim that “the wadddsimpler that we think” and the
SOC features are ubiquitous.

It is questionable, whether the general conditionger which a physical
system exhibits the SOC feature, are still unknawd from that point of view the
SOC would be treated rather as a group of modeisexied by a formal analogy
[9]. In spite of the SOC being a controversial mgttthat concept has a great
heuristic value as a stimulating factor to creae ideas or construct models [11].

4 Implementation of Cellular Automata

We define, after Wolfram [28], cellular automat€A) as a simple
mathematical system which is able to exhibit comphbehavior. The cellular
automata according to von Neumann’s idea, is défix® a system based, among
others, on the following assumptions: homogenouscttre of automata sited on
regular net, finite number of states of each ¢k#,development of each cell defined
by rules, state of all net changes synchronizedoata structure depends on three
parameters: dimension of space (n-dimensional gridgularity condition
(triangular, square or hexagonal cell) and numbemeighbors (so-called von
Neumann, Moore or Margolus neighborhood). The thearcellular automata is
extended to aspects of asynchronous work, graplonatd with modify
neighborhood, cellular automata with memory aneoth

Cellular automata have vast applications thatagpieto almost every part of
social life, including e.g. transport questionsigoéation phenomena, or creation of
social opinion [19,20].

The phase transition models mapping on cellulaoraata structure are
based, in general, on model of magnetic phenom&ieacould mention here, among
others, Ising’s modelXY model, Heisenberg’s model, Gauss’ model, or peticola
model [4]. Models in the digital simulation process supported by diverse methods
and algorithms, including the Monte Carlo method ahe Metropolis or Wolff
algorithms.

In the first-order phase transition the first dative of free energy has
discontinuity (as we consider above) what means ttiea process involves a latent
heat. The emerging transport problems connected kiggh values of latent heat
(liquid-vapor, liquid-solid etc. phase change) exd application of Ising’s model.
The first-order phase transition model needs wit#atification of creation of a new
phase, what in our opinion is connected with nu@eaprocess over structural
defects and fluctuations within the interfacial day Reliable step towards the
problem solution has been seen in the probabilstigching rules [22]. A few
models would be treated as a significant approxamatf first-order phase transition
within modeling physical process e.g. re-crystalian phenomena mapping on
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cellular automata [32], modeling with applied Kan&én’'s Boolean networks [8],
probabilistic cellular automata with memory [1], daling on the microscopic level
[33]. Application of the renormalization group methto description of that kind of
phase change is improper because of lack of idelif invariants within the scaling
process [21].

The second-order phase transition (or continudusse change) in magnetic
or crystal structure is modeled with the renornaian group method, Ising’s or
Heisenberg’s models and other. The several phasangeh phenomena in
monocrystal structure are simulated by means ddleelautomata e.g. Ising’s model
implemented on probabilistic cellular automata pfjplication of the Creutz demon
on cellular automata for description of phase ckamgEuTe - antiferromagnetic
substance [13].

The phenomenological renormalization group meti®dpplied to study
critical properties of the Domany-Kinzel probalitis cellular automata for
description of continuous phase transition [2,24]he dynamically driven
renormalization group is used to probabilistic walt automata having one absorbing
state [34]. The application range of cellular auatencontinuously extends with
reference its basic idea e.g. in the Domany-Kinka&uffman, Rothman-Keller,
Creutz demons and other models.

The dynamic SOC systems evolving to approach tecalripoint form new
state of system in absence of any external pressiitge question referenced to
application of the SOC models is connected with dhiterion of falsifiability as
defined by K. Popper. For several reasons the S@¥S dot seem to be a scientific
theory, as we discuss above. If we accept the SO& sketch towards successfully
research, it would be applied to modeling phasastt@an e.g. in absorbing-state
referenced BTW dynamics model [6,9]. The SOC featoecurring is studied for
realm of natural systems based on cellular autorf@atpforest fire [23], earthquake
[19,25]), for abstractive realm [5,26,27] and matiyer.

5 Conclusions

The current studies on critical phenomena are aclarized by creation
universality and scaling hypothesis together wittleep conviction about a simple
structure of the real world. That kind of beliefiiased on a possibility of modeling
complex systems by adding simple and interactieenehts (SOC, CA) or looking
for universality features (RG). The first-order pbatransition needs an operating
interfacial layer model. The phenomenological apptowould be effective if it will
be possible to define universality hypothesis agai$ done for the continuous phase
change. The renormalization group method is inapple in that case and,
moreover, it could not describe phenomena on tleeasitopic level.

Cellular automata, as we consider above, are baredeveral principles,
among which the most important are: the finite namdf states and the same rule of
updating for each cell. As far as model interfa¢égler within nucleation and heat
transport processes are concerned, the problemmiescoore complicated on the
formal description level, so as the simulation psx with cellular automata
(microscopic approach without a transport processtéd above).
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The phenomenological description of the continusligse change is enabled
with the renormalization group method and celldatomata as a simulation tool.
The extremely interesting question in the contirmiphase change, as we refer to the
first-order phase transition, is variable descoiption the microscopic level.
Furthermore, from the simulation point of view, lakr automata have restrictions
similar to the problems in the interfacial layeabysis, but in the continuous case the
microscopic description of enormous fluctuationarmtie critical point becomes too
complex.

Within the last considered group of critical pherema, a mapping of the
SOC systems on cellular automata is applied. Thg-term fluctuation problem is
solved using the scaling method, a modificatiobadndary types or other methods.
It seems that the fundamental problem in that kihdystems is a proof of existence
of the SOC feature, which is possible to demonstirathe numerical way only. The
formal analogy applied in the latter case is insight for establishing a theory and
for effective simulating. A promising step towardee SOC theory is the
renormalization group method with cellular automatgplied to problems of the
SOC realm [30,31].
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