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Abstract. The paper presents basic description methods of critical phenomena, i.e. first-order, 
continuous phase transitions, and an overview of the self-organized criticality concept. In this 
approach an attempt is made to identify the determinant factors of modeling critical events using 
cellular automata. 
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1 Introduction 
 
 The widespread occurrence of phase transitions in the surrounding reality is 
of crucial importance for all life over the world. In general, the various liquid-gas, 
solid-gas etc. transitions exhibit discontinuity in their physical properties while 
transforming from one state to another. States of the matter, magnetic features, 
structure etc. change as an effect of phase transitions. In any system containing liquid 
and gaseous phases there exists a special condition on which distinction between 
those phases is almost impossible. That special combination of pressure and 
temperature is called a critical region or critical point. In another class of systems, 
which evolve in such a way so as to approach a critical point and remain therein, we 
assume that a system exhibits a feature of self-organized criticality (SOC). That 
feature defines any system that takes an organized form in the absence of any 
external pressures. The critical events considered above may be observed in the 
physical or non-physical systems but using the term of phase transition to the last 
one is more controversial. Both considered types of the critical phenomena contain  
a critical point, where a small change can either push a system into a chaotic 
behavior or lock the system in a fixed behavior. That point is called as the Edge of 
Chaos. 
 Cellular automata, especially multi-dimensional, allow modeling many real-
world phenomena, as well as abstract problems. The aim of this paper is an attempt 
to identify possible restrictions in the use of cellular automata for modeling critical 
phenomena. 
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2 Phase transition 
 
 The following consideration of phase change refers to the thermodynamic 
equilibrium. A system is physically and chemically homogenous if it is located in one 
state of matter. Furthermore, the systems in equilibrium state may be characterized by the 
functions widely known as thermodynamic potentials. All of the properties of 
thermodynamic systems in equilibrium state are defined by a set of factors which may be 
chosen from the following parameters: entropy S, temperature T, pressure p, volume V, 
number of molecules N and chemical potential µ. In case of a system with non-existent 
influence of pressure and volume we choose another parameters, i.e. for magnetic matters 
we take magnetic field h and magnetic moment M. 
 A phase change or phase transition is the transformation from one phase to 
another. The most differentiating characteristic of a phase transition is an abrupt 
change in one or more properties. That change, in particular the heat capacity,  
is a function of small change in an intensive parameter (thermodynamic variable), 
such as the temperature. The various solid-liquid-gas phase changes occur in 
different ways. The first Ehrenfest classification grouped phase transitions based on 
the continuity of chemical potential. For example, the first-order phase transition 
exhibits discontinuity in the first derivative of the free energy f(T,p) (Helmholtz’s 
free energy) or free enthalpy g(T,M) (Gibbs’ free energy), called as the 
thermodynamic potentials. The higher order of phase transition will be define under 
this scheme. As the Ehrenfest classification of phase transitions is flawed, the 
modern one is based on the existence or non-existence of an association of latent heat 
of transition. That modern approach to classification divides phase transitions into 
two broad categories: first- and second-order phase transitions. The first-order phase 
changes are those that include a latent heat. The system under that kind of transition 
either absorbs or sets free a fixed amount of energy. A layer between two phases, i.e. 
boiling water under atmospheric pressure, forms a turbulent mixture of water and 
vapor. The second-order phase transition or continuous phase transition has  
a continuous free energy function (thermodynamic potential) and a continuous first-
order derivative, what affects non-existent latent heat. That kind of phase transition 
has some interesting features because there is a huge and long-term fluctuation of the 
order parameter. 
 As we observe a system in the critical state, we find that some characteristic 
system factors approach infinity. In that case a convenient description is a function in 
a non-analytic form e.g.: heat capacity C ∝ τα where τ = (T-Tc)/Tc, Tc being the 
temperature in a critical point. The α variable is called a critical index (or critical 
exponent) and defines the way, in which the function f(x) approaches infinity or zero. 
It is astonishing that critical indexes in different systems possess the same set of 
values with accepted level of the measurement error (sometimes rather high). After 
Warks, Larkin, Griffith and Kadanoff, we call that phenomenon as universality.  
A general idea of the universality is a thesis of grouping continuous phase transitions 
in a few classes (classes of universality), depending on dimensions of the system and 
symmetry of the ordered state. For each of the universality classes the physical 
variables near the critical point depend on the distance from that point. As a result, in 
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a class of universality all critical indexes are influenced by the variables mentioned 
above and dimension of the order parameter. 
 The next step in the development of the phase transition theory was Landau’s 
idea that all systems (he had examined some magnetic matters) have variables whose 
small change results in a change of symmetry (thus to a change of the matter 
properties). It turned out that the critical indexes are not mutually independent. The 
scaling hypothesis (Rushbrook, Griffith and Widom) based on that assumption was 
applied by Wilson to the evaluation method of critical index values. The concept of 
Wilson and co-authors, named as the renormalization group method (RG), leads to 
the procedure of finding a critical point. Together with the scaling hypothesis it 
generates an association, called a scaling relation, which is satisfied by the critical 
indexes. 
 The first-order phase transition, as we considered above, contains latent heat. 
On the boundary between two phases there exists an interfacial layer, including 
defective matter (within a nucleation phase transition model) and fluctuations with  
a critical dimension higher than the potential barrier. That kind of systems is difficult 
to analyze because their dynamics is not easy to control. We assume that the 
universality hypothesis for first-order phase transitions is analogous (however, 
possibly falling within a narrow scope) to the continuous one, and ultimately will be 
created. 

 
3 Self-Organized Criticality (SOC) 
 
 Self-Organized Criticality defines the critical state of a system without the 
need of tuning a control parameter. It means that the critical state of a system is an 
attractor of its dynamics. A move from a large region of the state space to  
a persistent smaller one (attractor) is independent from the initial conditions. That 
new, far from equilibrium, critical state is stable even in case of critical fluctuations. 
Back and co-authors [3] derive the SOC concept from the creation of avalanches on  
a pile of sand. In these models adding grains makes local slopes unstable and initiate 
avalanches, but their dimensions and moments of slide down are non-predictable. 
Studies of the SOC states as a phase transition, take conclusions from some 
observable events e.g. earthquakes or BTW models, i.e. such distributions of results 
that the larger event, the less frequent. The distribution of the dimension s of an 
avalanche may have the following mathematical form: p(s) ∝ s-τ . If we plot the 
logarithm of the number of times the avalanches are found versus the logarithm of 
the dimension of an avalanche, we get a straight line. In general the above function is 
called a power law. Any system subject to the power law exposes the same structure 
over all scales. Both self-similarity and scale independent features are characteristic 
of the self-organized systems. 
 The published SOC models could be divided, after Frigg [11], into two basic 
groups. The models with stochastic dynamics working in a deterministic 
environment are classified into the first group of so-called “stochastic models”. An 
example of such a system is the BTW model, forest fire, earthquake etc. The second 
group, so-called “quenched”, consists of models with deterministic dynamics 
performing in random environments. Here we can mention e.g. the Bak-Sneppen 



72 Wiśniewski A.  

Modeling 

evolution model [31], or production and inventory dynamics [10]. The SOC idea has 
been used to model phenomena (besides given above) as diverse and impressive 
range as the dynamics of river network, volcanic activities, traffic jams, 
superconductivity, variation of stock market etc. It is interesting, but non-
representative opinion, after Blanchard [11], that the SOC becomes a new paradigm 
of explanation of physical, social and many other phenomena. According to that 
paradigm, other authors [11] claim that “the world is simpler that we think” and the 
SOC features are ubiquitous.  
 It is questionable, whether the general conditions under which a physical 
system exhibits the SOC feature, are still unknown and from that point of view the 
SOC would be treated rather as a group of models connected by a formal analogy 
[9]. In spite of the SOC being a controversial matter, that concept has a great 
heuristic value as a stimulating factor to create new ideas or construct models [11]. 
 
4 Implementation of Cellular Automata 
 
 We define, after Wolfram [28], cellular automata (CA) as a simple 
mathematical system which is able to exhibit complex behavior. The cellular 
automata according to von Neumann’s idea, is defined as a system based, among 
others, on the following assumptions: homogenous structure of automata sited on 
regular net, finite number of states of each cell, the development of each cell defined 
by rules, state of all net changes synchronized. Automata structure depends on three 
parameters: dimension of space (n-dimensional grid), regularity condition 
(triangular, square or hexagonal cell) and number of neighbors (so-called von 
Neumann, Moore or Margolus neighborhood). The theory of cellular automata is 
extended to aspects of asynchronous work, graph automata with modify 
neighborhood, cellular automata with memory and other. 
 Cellular automata have vast applications that spread into almost every part of 
social life, including e.g. transport questions, percolation phenomena, or creation of 
social opinion [19,20].  
 The phase transition models mapping on cellular automata structure are 
based, in general, on model of magnetic phenomena. We could mention here, among 
others, Ising’s model, XY model, Heisenberg’s model, Gauss’ model, or percolation 
model [4]. Models in the digital simulation process are supported by diverse methods 
and algorithms, including the Monte Carlo method and the Metropolis or Wolff 
algorithms. 
 In the first-order phase transition the first derivative of free energy f has 
discontinuity (as we consider above) what means that the process involves a latent 
heat. The emerging transport problems connected with high values of latent heat 
(liquid-vapor, liquid-solid etc. phase change) exclude application of Ising’s model. 
The first-order phase transition model needs whole identification of creation of a new 
phase, what in our opinion is connected with nucleation process over structural 
defects and fluctuations within the interfacial layer. Reliable step towards the 
problem solution has been seen in the probabilistic switching rules [22]. A few 
models would be treated as a significant approximation of first-order phase transition 
within modeling physical process e.g. re-crystallization phenomena mapping on 
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cellular automata [32], modeling with applied Kauffman’s Boolean networks [8], 
probabilistic cellular automata with memory [1], modeling on the microscopic level 
[33]. Application of the renormalization group method to description of that kind of 
phase change is improper because of lack of identifiable invariants within the scaling 
process [21].  
 The second-order phase transition (or continuous phase change) in magnetic 
or crystal structure is modeled with the renormalization group method, Ising’s or 
Heisenberg’s models and other. The several phase change phenomena in 
monocrystal structure are simulated by means of cellular automata e.g. Ising’s model 
implemented on probabilistic cellular automata [7], application of the Creutz demon 
on cellular automata for description of phase change in EuTe - antiferromagnetic 
substance [13]. 
 The phenomenological renormalization group method is applied to study 
critical properties of the Domany-Kinzel probabilistic cellular automata for 
description of continuous phase transition [2,24]. The dynamically driven 
renormalization group is used to probabilistic cellular automata having one absorbing 
state [34]. The application range of cellular automata continuously extends with 
reference its basic idea e.g. in the Domany-Kinzel, Kauffman, Rothman-Keller, 
Creutz demons and other models.  
 The dynamic SOC systems evolving to approach a critical point form new 
state of system in absence of any external pressures. The question referenced to 
application of the SOC models is connected with the criterion of falsifiability as 
defined by K. Popper. For several reasons the SOC does not seem to be a scientific 
theory, as we discuss above. If we accept the SOC as a sketch towards successfully 
research, it would be applied to modeling phase transition e.g. in absorbing-state 
referenced BTW dynamics model [6,9]. The SOC feature occurring is studied for 
realm of natural systems based on cellular automata (e.g forest fire [23], earthquake 
[19,25]), for abstractive realm [5,26,27] and many other. 
 
5 Conclusions  
 
 The current studies on critical phenomena are characterized by creation 
universality and scaling hypothesis together with a deep conviction about a simple 
structure of the real world. That kind of belief is based on a possibility of modeling 
complex systems by adding simple and interactive elements (SOC, CA) or looking 
for universality features (RG). The first-order phase transition needs an operating 
interfacial layer model. The phenomenological approach would be effective if it will 
be possible to define universality hypothesis as it was done for the continuous phase 
change. The renormalization group method is inapplicable in that case and, 
moreover, it could not describe phenomena on the microscopic level.  
 Cellular automata, as we consider above, are based on several principles, 
among which the most important are: the finite number of states and the same rule of 
updating for each cell. As far as model interfacial layer within nucleation and heat 
transport processes are concerned, the problem becomes more complicated on the 
formal description level, so as the simulation process with cellular automata 
(microscopic approach without a transport process is cited above).  
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 The phenomenological description of the continuous phase change is enabled 
with the renormalization group method and cellular automata as a simulation tool. 
The extremely interesting question in the continuous phase change, as we refer to the 
first-order phase transition, is variable description on the microscopic level. 
Furthermore, from the simulation point of view, cellular automata have restrictions 
similar to the problems in the interfacial layer analysis, but in the continuous case the 
microscopic description of enormous fluctuations near the critical point becomes too 
complex. 
 Within the last considered group of critical phenomena, a mapping of the 
SOC systems on cellular automata is applied. The long-term fluctuation problem is 
solved using the scaling method, a modification of boundary types or other methods. 
It seems that the fundamental problem in that kind of systems is a proof of existence 
of the SOC feature, which is possible to demonstrate in the numerical way only. The 
formal analogy applied in the latter case is insufficient for establishing a theory and 
for effective simulating. A promising step towards the SOC theory is the 
renormalization group method with cellular automata applied to problems of the 
SOC realm [30,31]. 
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