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Abstract. Technique presented in the paper concerns augatieration of strategies controlling
virtual characters’ behaviour. Virtual people anerrently widely used in many applications,
especially in computer games, films and educatiepsems. A lot of researches focus on creating
intelligent characters capable of deciding aboetrtactions. The fully acceptable solution has not
yet been found. The paper presents the problemenérgting strategies by means of modified
genetic programming. A new Guide-Path techniquetieduced.
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1 Introduction

Animation techniques commonly employed in fieldswvies and games
rely mainly on motion capture systems and keyframastion, which are still
relatively expensive and time-consuming. The sofutio this problem might be
a creation of autonomous, aware of their envirortmemimated characters capable
of independent planning of their actions.

The paper presents experiments on using modifigerda learning genetic
programming (LLGP) to evolve behaviours of virtuaharacters. Genetic
programming (GP) is domain-independent, problenvisgl approach in which
a population of computer programs (individualspwlved to find a solution. The
simulated evolution in GP is based on the Darwinpenciple of reproduction and
survival of the fittest ([17]). Layered learningchanique consists of breaking the
main problem up into a hierarchy of sub-problemisiciv are solved sequentially, by
using results of lower layers in the next layef)(Zhe author of the paper proposed
new Guide-Paths (GuP) technique, which allows usirigrmation about virtual
character’s behaviours during GP evolution.

The remaining of the document is organized as \igdloSection 2 surveys
related work. Section 3 describes Guide-Paths tqabn Section 4 and 5 describe
experiments and results. Section 6 concludes therpend discusses the directions
for future researches.
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2 Redated Works

Researches in a generation of intelligent chara@es believed to start with
Craig Raynolds distributed behaviour model for dating flocks of birds in which
global behaviour arises from the interaction of @enlocal rules [11]. Each
individual member of the flock has a simple rulesgating that it should move with
its neighbours while avoiding collisions with therithe model proposed by
Raynolds was able to create a realistic behavidutooks of birds, but was not
capable of creating motions of a single bird. Thieee it an increase of rules was
proposed. In [6] 5200 rules were used to contrbBb®ur of a pilot. The result was
remarkable, but manual creation of so many rulegdch new behaviour for several
characters is not acceptable. A different apprdactine problem was proposed by
Aaron and his colleagues. In[1] they presentedethodology based on the
integration of nonlinear dynamical systems and tkindata structures. Carefully
designed attractor and repeller functions for tergend obstacles, shaped with
differential equations, modelled the behaviour nfaaitonomous agent. However,
this solution seems unsuitable for complex characie environment with many
objects and agents. Terzopoulos and Tu [15] predeat system for animating
dynamically simulated fish. The intentions of tlighfwere evaluated based on not
only an environment state but also on the fishisitseand state of mind. Ulicny and
Thalmann [14] proposed a model for crowd simulatimsed on combination of
rules and finite state machines for controlling rdge behaviour in a multi-layer
approach. At higher levels the rules selected cempkhaviours based on agents
and environment states. Hierarchical finite staseinmes implemented lower level
complex behaviours. Each behaviour was controliedr® finite state machine. In
another approach [7] agents evaluated, on eatidar hierarchical decision graph.
States of the virtual human and environment’s detee taken into account during
the action selection.

A manual creation of proposed structures can bélgneatic in presented
methods. Any enhancements to character behavipertere usually require time
and expert knowledge from an animator. As a reggdéarchers started to explore
methods which enable virtual characters to learn dpecific assigned tasks.
Additional benefit of using learned behaviours hig ffact that they are, in some
cases, more general and could be quite innovative.

The most promising techniques for automatic creatiocomplex behaviours
of virtual characters are evolution programming aeithforcement learning (RL).
Tang and Wan proposed genetic algorithms (GA) taukite intelligent self-
learning characters [13]. GA was also used to precdhinary rules, which defined
behaviour of autonomous players in a virtual sogame [4]. Gustafson and Hsu
[5] applied layered learning genetic programminget@lve behaviour of team of
agents playing a keep-away soccer, a game wheeam of four players had to
prevent a single opposition player for coming istmtact with the ball. A keep-
away soccer was also addressed by Kohl [16], wiptsgers were controlled by
neural networks evolved by means of GA. Bajurnowd &iesielski [2] studied
performance of LLGP for evolving goal scoring bebav of soccer players.
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Blumberg [3] proposed learning motion in real-tichgring the interactions with the
system, which used so-called pose-graph to geneatien. The nodes of the graph
were derived from source animation amended by terpolation technique. Thus
the animation was realistic and transitions cowddglenerated in real-time but the
actions had to be prepared by an animator and nogrgammed into system.
Szarowicz in [10] applied updated Q-learning aldon to automatically acquire
action sequences for animated characters. In anagiygroach [12] the technique
inspired by RL was used for automatic generatidnscadpts controlling behaviour
of fighting characters. Before each fight new dcvias generated from rules with
wages calculated according to winnings and losdesharacters controlled by
scripts.

Presented researches in an automatic creation lévimrs of virtual
characters produced interesting results, but the &gcceptable solution has not yet
been found. Proposed in the paper new Guide-Patisitjue with LLGP allows
a generation of behaviours at different levelshidteaction. To change behaviour of
a virtual character an animator has to only charhgeacter’s goals. A new solution
needs improvement, but even its early version shgmesit potential to become
answer to many animators’ problems.

3 Guide-Paths Technique

Behavioural strategies, described in this paper,usmderstood as sequences
of operations run successively or in parallel adta to character’s states or states
of his environment to obtain character's goals.ategy trees (Figure 3.1),
formalizing behavioural strategies, are ordereddrprocessed from root to leaves
with nodes representing operations. Operations rasponsible for performing
transformations on three-dimensional objects an@rdening environment’s and
virtual characters’ states. Operations can form mexwplex operations: strategy
trees. Strategy trees can be created manuallyfobaebmplicated tasks the process
can become time-consuming and prone to errors. Becaf that the author
employed layered learning genetic programming fdgomatic strategies generation
[8]. Results were very promising. In order to impedhem new extension to genetic
programming in the form of Guide-Paths techniqus designed.

The simulated evolution in GP starts with an ihipapulation of strategy
trees, generated at random. Then, each strategyisrmeasured in terms of how
well a virtual character performs in its environmeérhis measure is called a fithess
measure. Genetic programming is guided by the presexerted by the fithess
measure and natural selection. This fact makessihg@n adequate fitness function
one of the most important task, when using gergtigramming. Fitness measure
describes virtual character's goals. For examplea isituation of a virtual human
approaching a door the fitness function could memaaldistance between the human
and the door. The closer to the door the humathésmore fitted the strategy tree is.
Typically, each strategy tree is run over a numbkfitness cases representing
different situations (for example, initial posit®rof the virtual human). Usually
strategy trees in initial generations have a vagrgitness. Nonetheless, some trees
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in a population are more fitted than the others thiede differences in performance
are exploited by genetic programming. Iterativedirategy trees are evaluated for
fithness and genetic operations are performed orsethibees to generate new
populations. Over many generations, strategy trieesl to exhibit increasing
average fitness.

Figure 3.1. Two exemplary strategy trees. Numbers are idensifof operations.

In LLGP a bottom up decomposition of goals is agahliVirtual characters
first learn simpler tasks, then compose and coatdithem to solve larger tasks. For
each layer a different fithness function is used.

During generation of population of strategy treesiPGallows using
information about order of operations in strategle® example, in the situation of
a virtual hero trying to pass through enemy teryitovhen operations were run,
which determined that an enemy is approachinghéme is low on ammunition and
there is a rock nearby, guiding paths could stadt with probability equal to 0.65
the hero should hide behind the rock. He could alib probability equal to 0.05
retreat or with probability 0.1 attack the enemygri@ctly constructed guiding paths
should discourage the hero from trying to starbaversation with the enemy.

A k-length guiding path consists of a sequencderhents {qQ.s;(p1) 0..5(p2)

... 0P}, where g identifies an operation; sits successor number anddefines
conditional probability of running an operation provided that sequence of
operations with given successors;.$00,.%,...,0-1.5-1> was run fori =2,3, ...,.k.4p
defines probability of running an operatiop when previously run operations are
not considered. Successor humber points out whichltarnative subpath is chosen
when more than one is given.

In our example, with the hero and his enemy, weidantify three guiding paths:
{1.1(0.2) 2.4(0.35) 3.2(0.02) 4.1(0.65) ...},

{1.1(0.2) 2.4(0.35) 3.2(0.02) 5.1(0.05) ...},

{1.1(0.2) 2.4(0.35) 3.2(0.02) 6.1(0.10) ...},

where an operation determining the position of éhemy has identifier equal to
1 and its first successorfd) is called when the enemy is approaching20
identifies an operation verifying amount of an anmition possessed by the hero
and its fourth successor is called when the helmaison it. Other operations test the
position of the rock (s=3) and execute hiding the hero8), its retreat (&=5) or
attack (Q=6).
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3.1 Guiding Paths Generation

Guiding paths can be created manually with an éXpkelp. An expert can
formulate guiding paths directly or by designintagtgy trees, from which guiding
paths can be extracted. A second way, which doeds demand estimating
probability for each operation in a sequence is p&m but still requires
a knowledge on patterns controlling virtual peoplhaviours for different tasks.
Both methods need an expert's time and focus. Sprestthe patterns are not
obvious - especially when there are many low-l@grations. Therefore the author
proposed an automatic method for strategy treesrgéan consisting of following
steps:
1.Run LLGP evolution r times.
2.Choose at most rxg, strategy trees from ones generated in step 1 alwhding

to one of following sets:

- strategy trees with fitness function value gnetiten f,,

- strategy trees with more hits (found solutions ddferent initial conditions)
then hyn,

- strategy trees with the best fitness functiongesin a run,

- strategy trees with the greatest number of hitsriun.

Values of variables: r,.zx fmin, hmin, @are determined by an animator.

Acquired trees can be used to extract guiding pétltsin be achieved in the
following steps:

1. Define paths (which appear in processed tremsthe form of sequence
of elements <ps,;,0,.%....,9.5>, where pidentifies an operation; sits successor
number, i=1,2,...,j and j defines path length.

2. Define k-length permutations with repetition ekisting operations with

successor humbers £8,0,.S,...,0.5> and compute for each.®: l;, which

defines how many times path 58,0,.%,...,0.5> appeared in paths from step 1.

Remove from permutations of step; & evith |, = 0.

Compute | value as a sum pbf all unique @.s,.

Compute for each;.q: p) using one of equations 3.1 — 3.4. During guiding

paths’ generation;g, is used to remove insignificant subpaths.

Remove as; with pyu) < Print-

Remove ps with pyy < Pmin for i > 1.

Compute for each.q: p; using one of equations 3.1 — 3.4.

. Write down guiding paths .

Values of variables: k,qfh1, pmin @re determined by an animator.

The author of the paper proposed three ways of atingpconditional probability of

running an operation; for i>1 (eq. 3.1 - 3.3) and two ways of computindeqx. 3.3,

3.4). Allof them are using relations between paftequencies, observed in

processed trees. For example it can be observedean from Figure 3.1 that after

operation with identifier 1 in 100% cases its fimiccessor is operation with

identifier 2.
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P = I_' for i>1 (3.1)
i-1
D ::_i for i>1 (3.2)
1
o :'Ti fori=1,2,....k (3.3)
P, :% , where n-number of used operations (3.4)

The method of strategy trees’ creation should lertanto consideration,
when choosing one of equations 3.1-3.4. Big treemerpted during genetic
evolution need removal or limited exploitation atps, which appearance in trees
was incidental. On the other hand, in small treesighed by an expert every
operation matters. Equations 3.2 and 3.3 pointpaihs <., 0.%, ..., G.§ >,
which appear rarely in relation to all paths orhgabeginning with ps;. When we
want to obtain strategy trees following order oéiions found in processed trees
equation 3.1 is more useful.

A simple example of a guiding paths generationrissented below. Two
strategy trees, from Figure 3.1, were selectedafpaths’ extraction. Nodes’ names
correspond to operations’ identifiers. In choseeesr four paths were found:
<3.1,id>, <3.2, 2.1, ig>, <3.3, 1.1, 2.1, ick, <1.1, 2.1, ig>, where id represents
an ending of a strategy path. For k=3 we can defibé (6) permutations with
repetition of set {1.1, 2.1, 3.1, 3.2, 3.3,}idWe can remove permutations beginning
with id.. Now, we have 21626180 sequences. After calculating how many times
each subpath from permutations appeared in foas'tneaths, subpaths with=0
were removed. Following sequences remained: <g=1)(lid_ (I,=1)>, <3.2 (I=1),
2.1 (b=1), id (I=1)>, <3.3 (I=1), 1.1 (}=1), 2.1 (}=1)>, <1.1 (I=2), 2.1 (}=2),
id. (1:=2)>, <2.1 (I=3), id_ (1,=3)> for I=8.

For such simple strategy trees a subpaths’ renao@s not make sense, so it was
omitted. Equation 3.1 for i>1 and equation 3.3 fet were used to calculate
conditional probability pof running an operation; dn the end following five
guiding paths were obtained: {3.1(0.125) ()}, {3.2(0.125) 2.1(1) igd(1)},
{3.3(0.125) 1.1(1) 2.1(1)}, {1.1(0.250) 2.1(1).id)}, {2.1(0.375) id (1)}.

3.2 Guiding Paths Application

The aim of a Guide-Paths technique is to store pralide patterns
characterizing promising virtual characters behardgo This patterns can be
improved or adapted to new situations during genetiolution. Thanks to them
more general solutions can be created. The GuitlesRachnique can be used
during GP evolution in a process of choosing a @& node, finding a node to
remove and testing if a node is necessary in geglydree.
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Figure 3.2. Strategy tree with a place (an empty rectangla witler borders)
for a new node

An addition of a new node to a strategy tree ctm%$ finding in the tree
a subpath <SyVj4, ..., >, where nodejis a parent of a new node, j=i-k+2 faz k
or j=1 for i <k, k is a length of guiding path$.al sequence of elements equivalent
to path <y, Vi.1, ..., ¥> can't be found in guiding paths then j is incezh®y 1 and
a new sequence is looked for in guiding paths. Wthersequence is found a new
node is chosen with conditional probability defineg guiding paths. If a sum of
probabilities for nodey from subpath <y Vi, ..., V, Vig> is less than 1 then with
remain probability random operation is chosen.

ROTATES

randum ol _ A
TR0 s
== -
045

Figure 3.3. Probabilities of choosing different operationsdanew node
from a tree of Figure 3.2

Figure 3.2 shows strategy tree with operations’ emmreated by merging
the name of the operation type and its identifiamher. More information on
operations classification can be found in [9]. Fotree from Figure 3.2 using
following guiding paths: {5.1(0.4) 15.2(0.12) 5.1Z0) id (1.0)}, {5.1(0.4)
15.2(0.12) ig¢(0.45)}, {5.1(0.4) 15.2(0.12) 15.1(0.15) 5.1(0.3)ye can specify
probabilities of choosing specific operations fomew node (Figure 3.3): with
probability 0.45 the strategy path will end withdeoy,,; with probability 0.20
operation ‘ROTATES5’ will be chosen; with probabjlit 0.15 operation
‘POSITION15" will be selected; with probability 0.eandom operation will be
chosen.

With guiding paths we can also find a node in atsgry tree for removal.
If maximal conditional probability of an operatifor its all successors, according to
guiding paths, is less than some specific valuefgeration node can be removed.
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The author of the paper proposed following modifighetic operators using
Guide-Paths technique to add new nodes and detpossibility of node removal:
- initial population generation (GP-InitGupOp),

- crossover (GP-CrossoverGuPOp),

- standard mutation (GP-MutationStandardGuPOp),

- swap mutation (GP-MutationSwapGuPOp),

- shrink mutation (GP-MutationShrinkGuPOp).

Each genetic operator uses Guide-Paths technigiieprdbability determined by
operator’s trust coefficient (W, Wuc, Wumsi, Wumswap Wumshrink, Which allow
applying guiding paths we do not have full confidem.

4  Experiments

In order to test the proposed Guide-Paths technéguexemplary learning
task, comprising unlocking a door upon touchingdber handle, pushing the door
and passing through it, was used. Applied virtuahlin model (avatar) borrows its
biomechanical characteristics from robotics. Thatawv has a set of joints whose
movements can be either prismatic or revolute ared raled by the forward
kinematics. In the conducted experiments an avetadd rotate its arms and
forearms (Figure 4.1), walk forward, turn and chetlkironment state or its own
position in respect to certain conditions. Tabl& fresents available types of
strategy trees nodes, which detailed descriptionbeafound in [9]. To make finding
correct strategy trees more difficult given openagi include six unnecessary ones.
Virtual world consists of a space with a single daod walls.

Figure4.1. Avatars degree of freedom

During decomposition of the main problem two layaexe defined. The objective
for the first layer was to came within a reachirigtahce of a door handle from
random position and lay a hand on it. Second layeasured how well an avatar
fulfiled the main task (passing through the doofhe fithess measures are
computed as follows:

1
f, =
' J(di +06dp, +py +po) +1 (1)
1
Vs + P+ po) +1 (42)
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where:

dp - distance between an avatar and a place in mgdlistance to the handle,
dk - distance between the hand and the handle,

ds - distance between the avatar and the place bétéindoor,

P« - penalty for too many run operations and coltisio

Po - penalty for the avatar's wrong facing direction.

Table4.1. Operations used to build strategy trees

Symbol Description Degree
MOVEO move forward 1
ROTATE1 rotate a right arm forward 1
ROTATE3 rotate a right arm backward 1
ROTATE2 rotate a left arm forward 1
ROTATE4 rotate a left arm backward 1
ROTATES rotate a right arm up 1
ROTATE7 rotate a right arm down 1
ROTATEG6 rotate a left arm up 1
ROTATES rotate a left arm down 1
ROTATES straighten right arm in elbow 1
ROTATE11 flex right arm in elbow 1
ROTATE10 straighten left arm in elbow 1
ROTATE12 flex left arm in elbow 1
ROTATE13 turn right 1
ROTATE14 turn left 1
POSITION15 an avatar’s position to a door 3
POSITION16,
POSITION17, an avatar’s hands position to
POSITION18 a knob in three dimensions 3
a distance between an avatar
POSITION19 and a door 4
ORIENTATION20 avatars orientation to a door 4
IF23 door opened 2

The experiments were performed for GP parameteesepted in Table 4.2.
An experiments’ aim concerned determining whethgplydng Guide-Paths
technigue improves learning by means of layerednieg genetic programming.
The methods compared were standard layered leargérgetic programming
(LLGP) and LLGP with Guide-Paths (LLGP-GuP), whereding paths were used
with probability 0.9. Guiding paths used in expe¥its were generated from
strategy trees obtained in ten standard LLGP rutts iandom fitness cases. Their
quality was moderate. Strategy trees allowed f@tans unnecessary movements
and did not find solutions for all fitness casesvefty runs of each type of
experiments were performed.
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Table 4.2. Genetic programming parameters

Fitness eq.4.1,eq.4.2
Population size 250
Generations 2000
Cases 10
Pc 0.9
Pm 0.01

Figure 4.2 shows a few shots from actual animatgererated with strategy trees
from LLGP-GuP experiments.

Figure 4.2. Animations derived form exemplary strategy trees

5 Reaults

Two figures (5.1 and 5.2) present results of cotethexperiments. An
ordinate, form Figure 5.1 and Figure 5.2, showsgmiage of fitness cases, for
which strategies found a solution (hits). Figure shows best strategies’ percentage
of hits for each conducted experiment. Results vgeréed from worst to best and
connected by line for better visualization. Numleérexperiments, which found
strategies with 100% of hits increased by 100%n(fi® to 12) after Guide-Paths
application. Strategies with no less then 90% tsf &fre generated by 90% of LLGP-
GuP experiments and 35% of LLGP experiments. It@lan be observed that the
worst LLGP-GuP experiment generated strategies Wi# of hits, when the worst
LLGP experiment generated strategies with 30% ds. hFigure 5.2 shows
percentage of hits for succeeding generations ledém as average of experiments
best strategies’ percentage. We can observe cléaredce between speed, with
which experiments finds better strategies. An ayer@ercentage obtained by
strategies of LLGP experiments in 2000 generati@s wbtained by strategies of
LLGP-GuP experiments in 200 generation. Additiondlie earliest generation to
generate strategy with all hits was 74 for LLGP-Gafl 183 — for LLGP and
average generation was 448 and 970.
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Figure5.1. The best strategies for each conducted experir@@mparison
of experiments with and without Guide-Paths.

Calculation of generated generations shows that eith experiments needed to
define guiding paths LLGP-GuP needs less time (imimer of generations) to
generate, with specific probability, strategiesdmit0% of hits then LLGP.
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Figure5.2. An average of experiments best strategies’ peagent
of hits for succeeding generations.

6 Conclusion and Future Work

In the paper we have experimentally shown thatGoé&le-Paths technique
shortens time needed to create strategies witliddylearning genetic programming
and improves their effectiveness. Future work sthantlude more experiments with
different values of operators trust coefficientethbds for rating quality of guiding
paths should be defined.
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