
STUDIA INFORMATICA
Nr 2(9) Systemy i technologie informacyjne 2007

Automatic Strategies for Autonomous
Virtual Characters

Lach Ewa1
1 Institute of Informatics, Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland

Abstract. Technique presented in the paper concerns automatic generation of strategies controlling
virtual characters’ behaviour. Virtual people are currently widely used in many applications,
especially in computer games, films and educational systems. A lot of researches focus on creating
intelligent characters capable of deciding about their actions. The fully acceptable solution has not
yet been found. The paper presents the problem of generating strategies by means of modified
genetic programming. A new Guide-Path technique is introduced.

Keywords. Genetic programming, task control, machine learning, virtual characters animation

1 Introduction

 Animation techniques commonly employed in fields of movies and games
rely mainly on motion capture systems and keyframed motion, which are still
relatively expensive and time-consuming. The solution to this problem might be
a creation of autonomous, aware of their environment, animated characters capable
of independent planning of their actions.

The paper presents experiments on using modified layered learning genetic
programming (LLGP) to evolve behaviours of virtual characters. Genetic
programming (GP) is domain-independent, problem solving approach in which
a population of computer programs (individuals) is evolved to find a solution. The
simulated evolution in GP is based on the Darwinian principle of reproduction and
survival of the fittest ([17]). Layered learning technique consists of breaking the
main problem up into a hierarchy of sub-problems, which are solved sequentially, by
using results of lower layers in the next layer ([2]). The author of the paper proposed
new Guide-Paths (GuP) technique, which allows using information about virtual
character’s behaviours during GP evolution.

The remaining of the document is organized as follows. Section 2 surveys
related work. Section 3 describes Guide-Paths technique. Section 4 and 5 describe
experiments and results. Section 6 concludes the paper and discusses the directions
for future researches.

58 Lach E.

Modeling

2 Related Works

Researches in a generation of intelligent characters are believed to start with
Craig Raynolds distributed behaviour model for simulating flocks of birds in which
global behaviour arises from the interaction of simple local rules [11]. Each
individual member of the flock has a simple rule set stating that it should move with
its neighbours while avoiding collisions with them. The model proposed by
Raynolds was able to create a realistic behaviour of flocks of birds, but was not
capable of creating motions of a single bird. To achieve it an increase of rules was
proposed. In [6] 5200 rules were used to control behaviour of a pilot. The result was
remarkable, but manual creation of so many rules for each new behaviour for several
characters is not acceptable. A different approach to the problem was proposed by
Aaron and his colleagues. In [1] they presented a methodology based on the
integration of nonlinear dynamical systems and kinetic data structures. Carefully
designed attractor and repeller functions for targets and obstacles, shaped with
differential equations, modelled the behaviour of an autonomous agent. However,
this solution seems unsuitable for complex characters in environment with many
objects and agents. Terzopoulos and Tu [15] presented a system for animating
dynamically simulated fish. The intentions of the fish were evaluated based on not
only an environment state but also on the fish’s habits and state of mind. Ulicny and
Thalmann [14] proposed a model for crowd simulation based on combination of
rules and finite state machines for controlling agents’ behaviour in a multi-layer
approach. At higher levels the rules selected complex behaviours based on agents
and environment states. Hierarchical finite state machines implemented lower level
complex behaviours. Each behaviour was controlled by one finite state machine. In
another approach [7] agents evaluated, on each iteration, hierarchical decision graph.
States of the virtual human and environment’s data were taken into account during
the action selection.

A manual creation of proposed structures can be problematic in presented
methods. Any enhancements to character behaviour repertoire usually require time
and expert knowledge from an animator. As a result researchers started to explore
methods which enable virtual characters to learn for specific assigned tasks.
Additional benefit of using learned behaviours is the fact that they are, in some
cases, more general and could be quite innovative.

The most promising techniques for automatic creation of complex behaviours
of virtual characters are evolution programming and reinforcement learning (RL).
Tang and Wan proposed genetic algorithms (GA) to simulate intelligent self-
learning characters [13]. GA was also used to produce binary rules, which defined
behaviour of autonomous players in a virtual soccer game [4]. Gustafson and Hsu
[5] applied layered learning genetic programming to evolve behaviour of team of
agents playing a keep-away soccer, a game where a team of four players had to
prevent a single opposition player for coming into contact with the ball. A keep-
away soccer was also addressed by Kohl [16], whose players were controlled by
neural networks evolved by means of GA. Bajurnow and Ciesielski [2] studied
performance of LLGP for evolving goal scoring behaviour of soccer players.

 Automatic Strategies for Autonomus Virtual Characters 59

Studia Informatica 2(9)2007

Blumberg [3] proposed learning motion in real-time during the interactions with the
system, which used so-called pose-graph to generate motion. The nodes of the graph
were derived from source animation amended by an interpolation technique. Thus
the animation was realistic and transitions could be generated in real-time but the
actions had to be prepared by an animator and pre-programmed into system.
Szarowicz in [10] applied updated Q-learning algorithm to automatically acquire
action sequences for animated characters. In another approach [12] the technique
inspired by RL was used for automatic generations of scripts controlling behaviour
of fighting characters. Before each fight new script was generated from rules with
wages calculated according to winnings and losses of characters controlled by
scripts.

Presented researches in an automatic creation of behaviours of virtual
characters produced interesting results, but the fully acceptable solution has not yet
been found. Proposed in the paper new Guide-Paths technique with LLGP allows
a generation of behaviours at different levels of abstraction. To change behaviour of
a virtual character an animator has to only change character’s goals. A new solution
needs improvement, but even its early version shows great potential to become
answer to many animators’ problems.

3 Guide-Paths Technique

Behavioural strategies, described in this paper, are understood as sequences
of operations run successively or in parallel according to character’s states or states
of his environment to obtain character’s goals. Strategy trees (Figure 3.1),
formalizing behavioural strategies, are ordered trees processed from root to leaves
with nodes representing operations. Operations are responsible for performing
transformations on three-dimensional objects and determining environment’s and
virtual characters’ states. Operations can form new complex operations: strategy
trees. Strategy trees can be created manually, but for complicated tasks the process
can become time-consuming and prone to errors. Because of that the author
employed layered learning genetic programming for automatic strategies generation
[8]. Results were very promising. In order to improve them new extension to genetic
programming in the form of Guide-Paths technique was designed.

The simulated evolution in GP starts with an initial population of strategy
trees, generated at random. Then, each strategy tree is measured in terms of how
well a virtual character performs in its environment. This measure is called a fitness
measure. Genetic programming is guided by the pressure exerted by the fitness
measure and natural selection. This fact makes choosing an adequate fitness function
one of the most important task, when using genetic programming. Fitness measure
describes virtual character’s goals. For example, in a situation of a virtual human
approaching a door the fitness function could measure a distance between the human
and the door. The closer to the door the human is, the more fitted the strategy tree is.
Typically, each strategy tree is run over a number of fitness cases representing
different situations (for example, initial positions of the virtual human). Usually
strategy trees in initial generations have a very poor fitness. Nonetheless, some trees

60 Lach E.

Modeling

in a population are more fitted than the others and these differences in performance
are exploited by genetic programming. Iteratively, strategy trees are evaluated for
fitness and genetic operations are performed on those trees to generate new
populations. Over many generations, strategy trees tend to exhibit increasing
average fitness.

Figure 3.1. Two exemplary strategy trees. Numbers are identifiers of operations.

In LLGP a bottom up decomposition of goals is applied. Virtual characters
first learn simpler tasks, then compose and coordinate them to solve larger tasks. For
each layer a different fitness function is used.

During generation of population of strategy trees GuP allows using
information about order of operations in strategies. For example, in the situation of
a virtual hero trying to pass through enemy territory, when operations were run,
which determined that an enemy is approaching, the hero is low on ammunition and
there is a rock nearby, guiding paths could state that with probability equal to 0.65
the hero should hide behind the rock. He could also with probability equal to 0.05
retreat or with probability 0.1 attack the enemy. Correctly constructed guiding paths
should discourage the hero from trying to start a conversation with the enemy.

A k-length guiding path consists of a sequence of elements {o1.s1(p1) o2.s2(p2)
... ok.sk(pk)}, where oi identifies an operation, si - its successor number and pi defines
conditional probability of running an operation oi provided that sequence of
operations with given successors <o1.s1,o2.s2,...,oi−1.si−1> was run for i = 2,3, ...,k. p1
defines probability of running an operation o1, when previously run operations are
not considered. Successor number points out which an alternative subpath is chosen
when more than one is given.
In our example, with the hero and his enemy, we can identify three guiding paths:
{1.1(0.2) 2.4(0.35) 3.2(0.02) 4.1(0.65) ...},
{1.1(0.2) 2.4(0.35) 3.2(0.02) 5.1(0.05) ...},
{1.1(0.2) 2.4(0.35) 3.2(0.02) 6.1(0.10) ...},
where an operation determining the position of the enemy has identifier equal to
1 and its first successor (s1=1) is called when the enemy is approaching. o2=2
identifies an operation verifying amount of an ammunition possessed by the hero
and its fourth successor is called when the hero is low on it. Other operations test the
position of the rock (o3=3) and execute hiding the hero (o4=4), its retreat (o4=5) or
attack (o4=6).

 Automatic Strategies for Autonomus Virtual Characters 61

Studia Informatica 2(9)2007

3.1 Guiding Paths Generation

Guiding paths can be created manually with an expert’s help. An expert can
formulate guiding paths directly or by designing strategy trees, from which guiding
paths can be extracted. A second way, which does not demand estimating
probability for each operation in a sequence is simpler, but still requires
a knowledge on patterns controlling virtual people behaviours for different tasks.
Both methods need an expert’s time and focus. Sometimes the patterns are not
obvious - especially when there are many low-level operations. Therefore the author
proposed an automatic method for strategy trees generation consisting of following
steps:
1. Run LLGP evolution r times.
2. Choose at most r×zmax strategy trees from ones generated in step 1 and belonging

to one of following sets:
· strategy trees with fitness function value greater then fmin,
· strategy trees with more hits (found solutions for different initial conditions)

then hmin,
· strategy trees with the best fitness functions values in a run,
· strategy trees with the greatest number of hits in a run.

Values of variables: r, zmax, fmin, hmin, are determined by an animator.
Acquired trees can be used to extract guiding paths. It can be achieved in the

following steps:
1. Define paths (which appear in processed trees) in the form of sequence

of elements <o1.s1,o2.s2,...,oj.sj>, where oi identifies an operation, si - its successor
number, i=1,2,...,j and j defines path length.

2. Define k-length permutations with repetition of existing operations with
successor numbers <o1.s1,o2.s2,...,ok.sk> and compute for each oi.si: li, which
defines how many times path <o1.s1,o2.s2,...,oi.si> appeared in paths from step 1.

3. Remove from permutations of step 2 oi.si with li = 0.
4. Compute l value as a sum of l1 of all unique o1.s1.
5. Compute for each oi.si: pi(U) using one of equations 3.1 – 3.4. During guiding

paths’ generation pi(U) is used to remove insignificant subpaths.
6. Remove o1.s1 with p1(U) < pmin1.
7. Remove oi.si with pi(U) < pmin for i > 1.
8. Compute for each oi.si: pi using one of equations 3.1 – 3.4.
9. Write down guiding paths .
Values of variables: k, pmin1, pmin are determined by an animator.
The author of the paper proposed three ways of computing conditional probability of
running an operation oi for i>1 (eq. 3.1 - 3.3) and two ways of computing p1 (eq. 3.3,
3.4). All of them are using relations between paths frequencies, observed in
processed trees. For example it can be observed in trees from Figure 3.1 that after
operation with identifier 1 in 100% cases its first successor is operation with
identifier 2.

62 Lach E.

Modeling

1i

i
i l

l
p

−
= for i>1 (3.1)

1

i
i l

l
p = for i>1 (3.2)

l

l
p i

i = for i=1,2,…,k (3.3)

n

1
p1 = , where n-number of used operations (3.4)

The method of strategy trees’ creation should be taken into consideration,
when choosing one of equations 3.1-3.4. Big trees generated during genetic
evolution need removal or limited exploitation of paths, which appearance in trees
was incidental. On the other hand, in small trees designed by an expert every
operation matters. Equations 3.2 and 3.3 point out paths <o1.s1, o2.s2, ..., oi.si >,
which appear rarely in relation to all paths or paths beginning with o1.s1. When we
want to obtain strategy trees following order of operations found in processed trees
equation 3.1 is more useful.

A simple example of a guiding paths generation is presented below. Two
strategy trees, from Figure 3.1, were selected for a paths’ extraction. Nodes’ names
correspond to operations’ identifiers. In chosen trees four paths were found:
<3.1, idL>, <3.2, 2.1, idL>, <3.3, 1.1, 2.1, idL>, <1.1, 2.1, idL>, where idL represents
an ending of a strategy path. For k=3 we can define 216 (63) permutations with
repetition of set {1.1, 2.1, 3.1, 3.2, 3.3, idL}. We can remove permutations beginning
with idL. Now, we have 216-62=180 sequences. After calculating how many times
each subpath from permutations appeared in four trees’ paths, subpaths with li=0
were removed. Following sequences remained: <3.1 (l1=1), idL (l2=1)>, <3.2 (l1=1),
2.1 (l2=1), idL (l3=1)>, <3.3 (l1=1), 1.1 (l2=1), 2.1 (l3=1)>, <1.1 (l1=2), 2.1 (l2=2),
idL (l3=2)>, <2.1 (l1=3), idL (l2=3)> for l=8.
For such simple strategy trees a subpaths’ removal does not make sense, so it was
omitted. Equation 3.1 for i>1 and equation 3.3 for i=1 were used to calculate
conditional probability pi of running an operation oi In the end following five
guiding paths were obtained: {3.1(0.125) idL(1)}, {3.2(0.125) 2.1(1) idL(1)},
{3.3(0.125) 1.1(1) 2.1(1)}, {1.1(0.250) 2.1(1) idL(1)}, {2.1(0.375) idL(1)}.

3.2 Guiding Paths Application

The aim of a Guide-Paths technique is to store and provide patterns
characterizing promising virtual characters behaviours. This patterns can be
improved or adapted to new situations during genetic evolution. Thanks to them
more general solutions can be created. The Guide-Paths technique can be used
during GP evolution in a process of choosing a new tree node, finding a node to
remove and testing if a node is necessary in a strategy tree.

 Automatic Strategies for Autonomus Virtual Characters 63

Studia Informatica 2(9)2007

Figure 3.2. Strategy tree with a place (an empty rectangle with wider borders)
for a new node

An addition of a new node to a strategy tree consists of finding in the tree

a subpath <vj, vj+1, ..., vi>, where node vi is a parent of a new node, j=i-k+2 for i ≥ k
or j=1 for i < k, k is a length of guiding paths. If a sequence of elements equivalent
to path <vj, vj+1, ..., vi> can’t be found in guiding paths then j is increased by 1 and
a new sequence is looked for in guiding paths. When the sequence is found a new
node is chosen with conditional probability defined by guiding paths. If a sum of
probabilities for node vi+1 from subpath <vj, vj+1, ..., vi, vi+1> is less than 1 then with
remain probability random operation is chosen.

Figure 3.3. Probabilities of choosing different operations for a new node
from a tree of Figure 3.2

Figure 3.2 shows strategy tree with operations’ names created by merging

the name of the operation type and its identifier number. More information on
operations classification can be found in [9]. For a tree from Figure 3.2 using
following guiding paths: {5.1(0.4) 15.2(0.12) 5.1(0.20) idL(1.0)}, {5.1(0.4)
15.2(0.12) idL(0.45)}, {5.1(0.4) 15.2(0.12) 15.1(0.15) 5.1(0.3)} we can specify
probabilities of choosing specific operations for a new node (Figure 3.3): with
probability 0.45 the strategy path will end with node vi+1; with probability 0.20
operation ‘ROTATE5’ will be chosen; with probability 0.15 operation
‘POSITION15’ will be selected; with probability 0.2 random operation will be
chosen.

With guiding paths we can also find a node in a strategy tree for removal.
If maximal conditional probability of an operation for its all successors, according to
guiding paths, is less than some specific value the operation node can be removed.

64 Lach E.

Modeling

The author of the paper proposed following modified genetic operators using
Guide-Paths technique to add new nodes and determine possibility of node removal:
- initial population generation (GP-InitGupOp),
- crossover (GP-CrossoverGuPOp),
- standard mutation (GP-MutationStandardGuPOp),
- swap mutation (GP-MutationSwapGuPOp),
- shrink mutation (GP-MutationShrinkGuPOp).
Each genetic operator uses Guide-Paths technique with probability determined by
operator’s trust coefficient (wUB, wUC, wUMstd, wUMswap, wUMshrink), which allow
applying guiding paths we do not have full confidence in.

4 Experiments

In order to test the proposed Guide-Paths technique an exemplary learning
task, comprising unlocking a door upon touching the door handle, pushing the door
and passing through it, was used. Applied virtual human model (avatar) borrows its
biomechanical characteristics from robotics. The avatar has a set of joints whose
movements can be either prismatic or revolute and are ruled by the forward
kinematics. In the conducted experiments an avatar could rotate its arms and
forearms (Figure 4.1), walk forward, turn and check environment state or its own
position in respect to certain conditions. Table 4.1 presents available types of
strategy trees nodes, which detailed description can be found in [9]. To make finding
correct strategy trees more difficult given operations include six unnecessary ones.
Virtual world consists of a space with a single door and walls.

Figure 4.1. Avatars degree of freedom

During decomposition of the main problem two layers were defined. The objective
for the first layer was to came within a reaching distance of a door handle from
random position and lay a hand on it. Second layer measured how well an avatar
fulfilled the main task (passing through the door). The fitness measures are
computed as follows:

 (4.1)

 (4.2)

1)pp(d

1
f

OKB
2 +++

=

1)ppd6.0(d

1
f

OKDK
1 ++++

=

 Automatic Strategies for Autonomus Virtual Characters 65

Studia Informatica 2(9)2007

where:
dD - distance between an avatar and a place in reaching distance to the handle,
dK - distance between the hand and the handle,
dB - distance between the avatar and the place behind the door,
pK - penalty for too many run operations and collisions,
pO - penalty for the avatar’s wrong facing direction.

Table 4.1. Operations used to build strategy trees

Symbol Description Degree
MOVE0

ROTATE1
ROTATE3
ROTATE2
ROTATE4
ROTATE5
ROTATE7
ROTATE6
ROTATE8
ROTATE9
ROTATE11
ROTATE10
ROTATE12
ROTATE13
ROTATE14

POSITION15
POSITION16,
POSITION17,
POSITION18

POSITION19

ORIENTATION20
IF23

move forward
rotate a right arm forward

rotate a right arm backward
rotate a left arm forward

rotate a left arm backward
rotate a right arm up

rotate a right arm down
rotate a left arm up

rotate a left arm down
straighten right arm in elbow

flex right arm in elbow
straighten left arm in elbow

flex left arm in elbow
turn right
turn left

an avatar’s position to a door

an avatar’s hands position to
a knob in three dimensions

a distance between an avatar
and a door

avatars orientation to a door
door opened

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3

3

4
4
2

The experiments were performed for GP parameters presented in Table 4.2.
An experiments’ aim concerned determining whether applying Guide-Paths
technique improves learning by means of layered learning genetic programming.
The methods compared were standard layered learning genetic programming
(LLGP) and LLGP with Guide-Paths (LLGP-GuP), where guiding paths were used
with probability 0.9. Guiding paths used in experiments were generated from
strategy trees obtained in ten standard LLGP runs with random fitness cases. Their
quality was moderate. Strategy trees allowed for avatar’s unnecessary movements
and did not find solutions for all fitness cases. Twenty runs of each type of
experiments were performed.

66 Lach E.

Modeling

Table 4.2. Genetic programming parameters

Fitness
Population size

Generations
Cases

pC
pM

eq.4.1, eq.4.2
250
2000
10
0.9
0.01

Figure 4.2 shows a few shots from actual animations generated with strategy trees
from LLGP-GuP experiments.

Figure 4.2. Animations derived form exemplary strategy trees

5 Results

Two figures (5.1 and 5.2) present results of conducted experiments. An
ordinate, form Figure 5.1 and Figure 5.2, shows percentage of fitness cases, for
which strategies found a solution (hits). Figure 5.1 shows best strategies’ percentage
of hits for each conducted experiment. Results were sorted from worst to best and
connected by line for better visualization. Number of experiments, which found
strategies with 100% of hits increased by 100% (from 6 to 12) after Guide-Paths
application. Strategies with no less then 90% of hits are generated by 90% of LLGP-
GuP experiments and 35% of LLGP experiments. It can also be observed that the
worst LLGP-GuP experiment generated strategies with 70% of hits, when the worst
LLGP experiment generated strategies with 30% of hits. Figure 5.2 shows
percentage of hits for succeeding generations calculated as average of experiments
best strategies’ percentage. We can observe clear difference between speed, with
which experiments finds better strategies. An average percentage obtained by
strategies of LLGP experiments in 2000 generation was obtained by strategies of
LLGP-GuP experiments in 200 generation. Additionally the earliest generation to
generate strategy with all hits was 74 for LLGP-GuP and 183 – for LLGP and
average generation was 448 and 970.

 Automatic Strategies for Autonomus Virtual Characters 67

Studia Informatica 2(9)2007

Figure 5.1. The best strategies for each conducted experiment. Comparison
of experiments with and without Guide-Paths.

Calculation of generated generations shows that even with experiments needed to
define guiding paths LLGP-GuP needs less time (in number of generations) to
generate, with specific probability, strategies with 100% of hits then LLGP.

Figure 5.2. An average of experiments best strategies’ percentage
of hits for succeeding generations.

6 Conclusion and Future Work

In the paper we have experimentally shown that the Guide-Paths technique
shortens time needed to create strategies with layered learning genetic programming
and improves their effectiveness. Future work should include more experiments with
different values of operators trust coefficients. Methods for rating quality of guiding
paths should be defined.

68 Lach E.

Modeling

References
1. Aaron E., Goldenstein S., Goswami A., Guibas L., Karavelas M., Metaxas. D., (2001).

Scalable nonlinear dynamical systems for agent steering and crowd simulation. In:
Computer and Graphics, 25(6), 983-998.

2. Bajurnow A., (2004). Layered learning for evolving goal scoring behavior in soccer
players, Proc. of Congress on Evolutionary Computation, 1828-1835.

3. Blumberg B., Berlin M., Downie M., Ivanov Y., Johnson M. P., Tomlinson. B., (2002).
Integrated learning for interactive synthetic characters, Conference on Computer Graphics
and Interactive Techniques, 417-426.

4. Duthen Y., Luga H., Panatier C., Sanza C., (1999). Adaptive behavior for cooperation:
a virtual reality application, Proc. of International Workshop on Robot and Human
Interaction, 76-81.

5. Gustafson S.M., Hsu W.H., (2002). Genetic programming and multi-agent layered
learning by reinforcements, Proc. of Genetic and Evolutionary Computation - GECCO,
764-771.

6. Jones R.M., Laird J.E., Nielsen P.E., (1998). Real-time intelligent characters for a non-
visual simulation environment. Proc. of Computer Animation Conference.

7. Kallmann M., Sevin de E., Thalmann D., (2001). Towards real time virtual human life
simulations. In: Computer Graphics International, 31-37.

8. Lach E., (2005). Automatic generation of animation of virtual humans, The VII
International Conference on Artificial Intelligence, 109-115.

9. Lach E., (2006). Wybrane techniki wspomagające animację autonomicznych postaci
wirtualnych, PhD. Thesis, Gliwice, Poland, Silesian University of Technology.

10. Mittmann M., Remagnino P., Szarowicz A., Francik J., (2003). Automatic acquisition of
actions for animated agents, Proc. of GAME-ON Conference on Simulation and AI in
Computer Games.

11. Reynolds C.W., (1987). Flocks, herds, and schools: A distributed behavioral model. In:
Computer Graphics, 25-34.

12. Sprinkhuizen-Kuyper I., Spronck P., Ponsen M., Postma E., (2006). Adaptive game AI
with dynamic scripting. In: Machine Learning, 63(3), 217-248.

13. Tang W., Wan T.R., (2002). Intelligent self –learning characters for computer games,
Proc. of Eurographics UK Conference, 51-58.

14. Thalmann D., Ulicny B., (2002). Crowd simulation for interactive virtual environments
and VR training systems, Proc. of Eurographic workshop on Computer animation and
simulation, 163-170.

15. Tu X., Terzopoulos D., (1994). Artificial fishes: Physics, locomotion, perception,
behavior. Proc. of SIGGRAPH, 28, 43-50.

16. Whiteson S., Kohl N., Miikkulainen R., Stone P., (2005). Evolving soccer keepaway
players through task decomposition. In: Machine Learning, 5-30.

17. Koza J.R., (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press.

