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Abstract. Technique presented in the paper concerns automatic generation of strategies controlling 
virtual characters’ behaviour. Virtual people are currently widely used in many applications, 
especially in computer games, films and educational systems. A lot of researches focus on creating 
intelligent characters capable of deciding about their actions. The fully acceptable solution has not 
yet been found. The paper presents the problem of generating strategies by means of modified 
genetic programming. A new Guide-Path technique is introduced. 
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1 Introduction 

 Animation techniques commonly employed in fields of movies and games 
rely mainly on motion capture systems and keyframed motion, which are still 
relatively expensive and time-consuming. The solution to this problem might be 
a creation of autonomous, aware of their environment, animated characters capable 
of independent planning of their actions. 

The paper presents experiments on using modified layered learning genetic 
programming (LLGP) to evolve behaviours of virtual characters. Genetic 
programming (GP) is domain-independent, problem solving approach in which 
a population of computer programs (individuals) is evolved to find a solution. The 
simulated evolution in GP is based on the Darwinian principle of reproduction and 
survival of the fittest ([17]). Layered learning technique consists of breaking the 
main problem up into a hierarchy of sub-problems, which are solved sequentially, by 
using results of lower layers in the next layer ([2]). The author of the paper proposed 
new Guide-Paths (GuP) technique, which allows using information about virtual 
character’s behaviours during GP evolution. 

The remaining of the document is organized as follows. Section 2 surveys 
related work. Section 3 describes Guide-Paths technique. Section 4 and 5 describe 
experiments and results. Section 6 concludes the paper and discusses the directions 
for future researches.  
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2 Related Works 

Researches in a generation of intelligent characters are believed to start with 
Craig Raynolds distributed behaviour model for simulating flocks of birds in which 
global behaviour arises from the interaction of simple local rules [11]. Each 
individual member of the flock has a simple rule set stating that it should move with 
its neighbours while avoiding collisions with them. The model proposed by 
Raynolds was able to create a realistic behaviour of flocks of birds, but was not 
capable of creating motions of a single bird. To achieve it an increase of rules was 
proposed. In [6] 5200 rules were used to control behaviour of a pilot. The result was 
remarkable, but manual creation of so many rules for each new behaviour for several 
characters is not acceptable. A different approach to the problem was proposed by 
Aaron and his colleagues. In [1] they presented a methodology based on the 
integration of nonlinear dynamical systems and kinetic data structures. Carefully 
designed attractor and repeller functions for targets and obstacles, shaped with 
differential equations, modelled the behaviour of an autonomous agent. However, 
this solution seems unsuitable for complex characters in environment with many 
objects and agents. Terzopoulos and Tu [15] presented a system for animating 
dynamically simulated fish. The intentions of the fish were evaluated based on not 
only an environment state but also on the fish’s habits and state of mind. Ulicny and 
Thalmann [14] proposed a model for crowd simulation based on combination of 
rules and finite state machines for controlling agents’ behaviour in a multi-layer 
approach. At higher levels the rules selected complex behaviours based on agents 
and environment states. Hierarchical finite state machines implemented lower level 
complex behaviours. Each behaviour was controlled by one finite state machine. In 
another approach [7] agents evaluated, on each iteration, hierarchical decision graph. 
States of the virtual human and environment’s data were taken into account during 
the action selection.  

A manual creation of proposed structures can be problematic in presented 
methods. Any enhancements to character behaviour repertoire usually require time 
and expert knowledge from an animator. As a result researchers started to explore 
methods which enable virtual characters to learn for specific assigned tasks. 
Additional benefit of using learned behaviours is the fact that they are, in some 
cases, more general and could be quite innovative.  

The most promising techniques for automatic creation of complex behaviours 
of virtual characters are evolution programming and reinforcement learning (RL). 
Tang and Wan proposed genetic algorithms (GA) to simulate intelligent self-
learning characters [13]. GA was also used to produce binary rules, which defined 
behaviour of autonomous players in a virtual soccer game [4]. Gustafson and Hsu 
[5] applied layered learning genetic programming to evolve behaviour of team of 
agents playing a keep-away soccer, a game where a team of four players had to 
prevent a single opposition player for coming into contact with the ball. A keep-
away soccer was also addressed by Kohl [16], whose players were controlled by 
neural networks evolved by means of GA. Bajurnow and Ciesielski [2] studied 
performance of LLGP for evolving goal scoring behaviour of soccer players. 
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Blumberg [3] proposed learning motion in real-time during the interactions with the 
system, which used so-called pose-graph to generate motion. The nodes of the graph 
were derived from source animation amended by an interpolation technique. Thus 
the animation was realistic and transitions could be generated in real-time but the 
actions had to be prepared by an animator and pre-programmed into system. 
Szarowicz in [10] applied updated Q-learning algorithm to automatically acquire 
action sequences for animated characters. In another approach [12] the technique 
inspired by RL was used for automatic generations of scripts controlling behaviour 
of fighting characters. Before each fight new script was generated from rules with 
wages calculated according to winnings and losses of characters controlled by 
scripts.  

Presented researches in an automatic creation of behaviours of virtual 
characters produced interesting results, but the fully acceptable solution has not yet 
been found. Proposed in the paper new Guide-Paths technique with LLGP allows  
a generation of behaviours at different levels of abstraction. To change behaviour of 
a virtual character an animator has to only change character’s goals. A new solution 
needs improvement, but even its early version shows great potential to become 
answer to many animators’ problems.  
 
3 Guide-Paths Technique 

Behavioural strategies, described in this paper, are understood as sequences 
of operations run successively or in parallel according to character’s states or states 
of his environment to obtain character’s goals. Strategy trees (Figure 3.1), 
formalizing behavioural strategies, are ordered trees processed from root to leaves 
with nodes representing operations. Operations are responsible for performing 
transformations on three-dimensional objects and determining environment’s and 
virtual characters’ states. Operations can form new complex operations: strategy 
trees. Strategy trees can be created manually, but for complicated tasks the process 
can become time-consuming and prone to errors. Because of that the author 
employed layered learning genetic programming for automatic strategies generation 
[8]. Results were very promising. In order to improve them new extension to genetic 
programming in the form of Guide-Paths technique was designed.  

The simulated evolution in GP starts with an initial population of strategy 
trees, generated at random. Then, each strategy tree is measured in terms of how 
well a virtual character performs in its environment. This measure is called a fitness 
measure. Genetic programming is guided by the pressure exerted by the fitness 
measure and natural selection. This fact makes choosing an adequate fitness function 
one of the most important task, when using genetic programming. Fitness measure 
describes virtual character’s goals. For example, in a situation of a virtual human 
approaching a door the fitness function could measure a distance between the human 
and the door. The closer to the door the human is, the more fitted the strategy tree is. 
Typically, each strategy tree is run over a number of fitness cases representing 
different situations (for example, initial positions of the virtual human). Usually 
strategy trees in initial generations have a very poor fitness. Nonetheless, some trees 
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in a population are more fitted than the others and these differences in performance 
are exploited by genetic programming. Iteratively, strategy trees are evaluated for 
fitness and genetic operations are performed on those trees to generate new 
populations. Over many generations, strategy trees tend to exhibit increasing 
average fitness.  

 

 
 

Figure 3.1. Two exemplary strategy trees. Numbers are identifiers of operations. 
 

In LLGP a bottom up decomposition of goals is applied. Virtual characters 
first learn simpler tasks, then compose and coordinate them to solve larger tasks. For 
each layer a different fitness function is used.  

During generation of population of strategy trees GuP allows using 
information about order of operations in strategies. For example, in the situation of  
a virtual hero trying to pass through enemy territory, when operations were run, 
which determined that an enemy is approaching, the hero is low on ammunition and 
there is a rock nearby, guiding paths could state that with probability equal to 0.65 
the hero should hide behind the rock. He could also with probability equal to 0.05 
retreat or with probability 0.1 attack the enemy. Correctly constructed guiding paths 
should discourage the hero from trying to start a conversation with the enemy. 

A k-length guiding path consists of a sequence of elements {o1.s1(p1) o2.s2(p2) 
... ok.sk(pk)}, where oi identifies an operation, si - its successor number and pi defines 
conditional probability of running an operation oi provided that sequence of 
operations with given successors <o1.s1,o2.s2,...,oi−1.si−1>  was run for i = 2,3, ...,k. p1 
defines probability of running an operation o1, when previously run operations are 
not considered. Successor number points out which an alternative subpath is chosen 
when more than one is given. 
In our example, with the hero and his enemy, we can identify three guiding paths: 
{1.1(0.2) 2.4(0.35) 3.2(0.02) 4.1(0.65) ...}, 
{1.1(0.2) 2.4(0.35) 3.2(0.02) 5.1(0.05) ...}, 
{1.1(0.2) 2.4(0.35) 3.2(0.02) 6.1(0.10) ...}, 
where an operation determining the position of the enemy has identifier equal to  
1 and its first successor (s1=1) is called when the enemy is approaching. o2=2 
identifies an operation verifying amount of an ammunition possessed by the hero 
and its fourth successor is called when the hero is low on it. Other operations test the 
position of the rock (o3=3) and execute hiding the hero (o4=4), its retreat (o4=5) or 
attack (o4=6). 
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3.1 Guiding Paths Generation 

Guiding paths can be created manually with an expert’s help. An expert can 
formulate guiding paths directly or by designing strategy trees, from which guiding 
paths can be extracted. A second way, which does not demand estimating 
probability for each operation in a sequence is simpler, but still requires 
a knowledge on patterns controlling virtual people behaviours for different tasks. 
Both methods need an expert’s time and focus. Sometimes the patterns are not 
obvious - especially when there are many low-level operations. Therefore the author 
proposed an automatic method for strategy trees generation consisting of following 
steps: 
1. Run LLGP evolution r times. 
2. Choose at most r×zmax strategy trees from ones generated in step 1 and belonging 

to one of following sets: 
· strategy trees with fitness function value greater then fmin, 
· strategy trees with more hits (found solutions for different initial conditions) 

then hmin, 
· strategy trees with the best fitness functions values in a run, 
· strategy trees with the greatest number of hits in a run. 

Values of variables: r, zmax, fmin, hmin, are determined by an animator. 
Acquired trees can be used to extract guiding paths. It can be achieved in the 

following steps: 
1. Define paths (which appear in processed trees) in the form of sequence  

of elements <o1.s1,o2.s2,...,oj.sj>, where oi identifies an operation, si - its successor 
number, i=1,2,...,j and j defines path length. 

2. Define k-length permutations with repetition of existing operations with  
successor numbers <o1.s1,o2.s2,...,ok.sk> and compute for each oi.si: li, which 
defines how many times path <o1.s1,o2.s2,...,oi.si> appeared in paths from step 1. 

3. Remove from permutations of step 2 oi.si with li = 0.  
4. Compute l value as a sum of l1 of all unique o1.s1. 
5. Compute for each oi.si: pi(U) using one of equations 3.1 – 3.4. During guiding 

paths’ generation pi(U) is used to remove insignificant subpaths. 
6. Remove o1.s1 with p1(U) < pmin1. 
7. Remove oi.si with pi(U) < pmin for i > 1. 
8. Compute for each oi.si: pi using one of equations 3.1 – 3.4. 
9. Write down guiding paths . 
Values of variables: k, pmin1, pmin are determined by an animator. 
The author of the paper proposed three ways of computing conditional probability of 
running an operation oi for i>1 (eq. 3.1 - 3.3) and two ways of computing p1 (eq. 3.3, 
3.4). All of them are using relations between paths frequencies, observed in 
processed trees. For example it can be observed in trees from Figure 3.1 that after 
operation with identifier 1 in 100% cases its first successor is operation with 
identifier 2.  
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The method of strategy trees’ creation should be taken into consideration, 
when choosing one of equations 3.1-3.4. Big trees generated during genetic 
evolution need removal or limited exploitation of paths, which appearance in trees 
was incidental. On the other hand, in small trees designed by an expert every 
operation matters. Equations 3.2 and 3.3 point out paths <o1.s1, o2.s2, ..., oi.si >, 
which appear rarely in relation to all paths or paths beginning with o1.s1. When we 
want to obtain strategy trees following order of operations found in processed trees 
equation 3.1 is more useful. 

A simple example of a guiding paths generation is presented below. Two 
strategy trees, from Figure 3.1, were selected for a paths’ extraction. Nodes’ names 
correspond to operations’ identifiers. In chosen trees four paths were found: 
<3.1, idL>, <3.2, 2.1, idL>, <3.3, 1.1, 2.1, idL>, <1.1, 2.1, idL>, where idL represents 
an ending of a strategy path. For k=3 we can define 216 (63) permutations with 
repetition of set {1.1, 2.1, 3.1, 3.2, 3.3, idL}. We can remove permutations beginning 
with idL. Now, we have 216-62=180 sequences. After calculating how many times 
each subpath from permutations appeared in four trees’ paths, subpaths with li=0 
were removed. Following sequences remained: <3.1 (l1=1), idL (l2=1)>, <3.2 (l1=1), 
2.1 (l2=1), idL (l3=1)>, <3.3 (l1=1), 1.1 (l2=1), 2.1 (l3=1)>, <1.1 (l1=2), 2.1 (l2=2), 
idL (l3=2)>, <2.1 (l1=3), idL (l2=3)> for l=8. 
For such simple strategy trees a subpaths’ removal does not make sense, so it was 
omitted. Equation 3.1 for i>1 and equation 3.3 for i=1 were used to calculate 
conditional probability pi of running an operation oi In the end following five 
guiding paths were obtained: {3.1(0.125) idL(1)}, {3.2(0.125) 2.1(1) idL(1)}, 
{3.3(0.125) 1.1(1) 2.1(1)}, {1.1(0.250) 2.1(1) idL(1)}, {2.1(0.375) idL(1)}. 
 
3.2 Guiding Paths Application 

The aim of a Guide-Paths technique is to store and provide patterns 
characterizing promising virtual characters behaviours. This patterns can be 
improved or adapted to new situations during genetic evolution. Thanks to them 
more general solutions can be created. The Guide-Paths technique can be used 
during GP evolution in a process of choosing a new tree node, finding a node to 
remove and testing if a node is necessary in a strategy tree. 
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Figure 3.2. Strategy tree with a place (an empty rectangle with wider borders)  
for a new node 

 
An addition of a new node to a strategy tree consists of finding in the tree 

a subpath <vj, vj+1, ..., vi>, where node vi is a parent of a new node, j=i-k+2 for i ≥ k 
or j=1 for i < k, k is a length of guiding paths. If a sequence of elements equivalent 
to path <vj, vj+1, ..., vi> can’t be found in guiding paths then j is increased by 1 and  
a new sequence is looked for in guiding paths. When the sequence is found a new 
node is chosen with conditional probability defined by guiding paths. If a sum of 
probabilities for node vi+1 from subpath <vj, vj+1, ..., vi, vi+1> is less than 1 then with 
remain probability random operation is chosen. 

 
 
 
 
 
 
 

Figure 3.3. Probabilities of choosing different operations for a new node  
from a tree of Figure 3.2 

 
Figure 3.2 shows strategy tree with operations’ names created by merging 

the name of the operation type and its identifier number. More information on 
operations classification can be found in [9]. For a tree from Figure 3.2 using 
following guiding paths: {5.1(0.4) 15.2(0.12) 5.1(0.20) idL(1.0)}, {5.1(0.4) 
15.2(0.12) idL(0.45)}, {5.1(0.4) 15.2(0.12) 15.1(0.15) 5.1(0.3)} we can specify 
probabilities of choosing specific operations for a new node (Figure 3.3): with 
probability 0.45 the strategy path will end with node vi+1; with probability 0.20 
operation ‘ROTATE5’ will be chosen; with probability 0.15 operation 
‘POSITION15’ will be selected; with probability 0.2 random operation will be 
chosen. 

With guiding paths we can also find a node in a strategy tree for removal. 
If maximal conditional probability of an operation for its all successors, according to 
guiding paths, is less than some specific value the operation node can be removed. 
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The author of the paper proposed following modified genetic operators using 
Guide-Paths technique to add new nodes and determine possibility of node removal: 
- initial population generation (GP-InitGupOp), 
- crossover (GP-CrossoverGuPOp), 
- standard mutation (GP-MutationStandardGuPOp), 
- swap mutation (GP-MutationSwapGuPOp), 
- shrink mutation (GP-MutationShrinkGuPOp). 
Each genetic operator uses Guide-Paths technique with probability determined by 
operator’s trust coefficient (wUB, wUC, wUMstd, wUMswap, wUMshrink), which allow 
applying guiding paths we do not have full confidence in. 
 
4 Experiments 

In order to test the proposed Guide-Paths technique an exemplary learning 
task, comprising unlocking a door upon touching the door handle, pushing the door 
and passing through it, was used. Applied virtual human model (avatar) borrows its 
biomechanical characteristics from robotics. The avatar has a set of joints whose 
movements can be either prismatic or revolute and are ruled by the forward 
kinematics. In the conducted experiments an avatar could rotate its arms and 
forearms (Figure 4.1), walk forward, turn and check environment state or its own 
position in respect to certain conditions. Table 4.1 presents available types of 
strategy trees nodes, which detailed description can be found in [9]. To make finding 
correct strategy trees more difficult given operations include six unnecessary ones. 
Virtual world consists of a space with a single door and walls. 

 

 

Figure 4.1. Avatars degree of freedom 
 

During decomposition of the main problem two layers were defined. The objective 
for the first layer was to came within a reaching distance of a door handle from 
random position and lay a hand on it. Second layer measured how well an avatar 
fulfilled the main task (passing through the door). The fitness measures are 
computed as follows: 
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where: 
dD - distance between an avatar and a place in reaching distance to the handle, 
dK - distance between the hand and the handle, 
dB - distance between the avatar and the place behind the door, 
pK - penalty for too many run operations and collisions, 
pO - penalty for the avatar’s wrong facing direction. 

 
Table 4.1. Operations used to build strategy trees 

 
Symbol Description Degree 
MOVE0 

ROTATE1 
ROTATE3 
ROTATE2 
ROTATE4 
ROTATE5 
ROTATE7 
ROTATE6 
ROTATE8 
ROTATE9 
ROTATE11 
ROTATE10 
ROTATE12 
ROTATE13 
ROTATE14 

POSITION15 
POSITION16, 
POSITION17, 
POSITION18 

 
POSITION19 

ORIENTATION20 
IF23 

move forward 
rotate a right arm forward 

rotate a right arm backward 
rotate a left arm forward 

rotate a left arm backward 
rotate a right arm up 

rotate a right arm down 
rotate a left arm up 

rotate a left arm down 
straighten right arm in elbow 

flex right arm in elbow 
straighten left arm in elbow 

flex left arm in elbow 
turn right 
turn left 

an avatar’s position to a door 
 

an avatar’s hands position to 
a knob in three dimensions 

a distance between an avatar 
and a door 

avatars orientation to a door 
door opened 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
 
 
3 
 
4 
4 
2 

 
The experiments were performed for GP parameters presented in Table 4.2. 
An experiments’ aim concerned determining whether applying Guide-Paths 
technique improves learning by means of layered learning genetic programming. 
The methods compared were standard layered learning genetic programming 
(LLGP) and LLGP with Guide-Paths (LLGP-GuP), where guiding paths were used 
with probability 0.9. Guiding paths used in experiments were generated from 
strategy trees obtained in ten standard LLGP runs with random fitness cases. Their 
quality was moderate. Strategy trees allowed for avatar’s unnecessary movements 
and did not find solutions for all fitness cases. Twenty runs of each type of 
experiments were performed. 
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Table 4.2. Genetic programming parameters 
 

Fitness 
Population size 

Generations 
Cases 

pC 
pM 

eq.4.1, eq.4.2 
250 
2000 
10 
0.9 
0.01 

 

Figure 4.2 shows a few shots from actual animations generated with strategy trees 
from LLGP-GuP experiments. 

 

 
 

Figure 4.2. Animations derived form exemplary strategy trees 
 
5 Results 

Two figures (5.1 and 5.2) present results of conducted experiments. An 
ordinate, form Figure 5.1 and Figure 5.2, shows percentage of fitness cases, for 
which strategies found a solution (hits). Figure 5.1 shows best strategies’ percentage 
of hits for each conducted experiment. Results were sorted from worst to best and 
connected by line for better visualization. Number of experiments, which found 
strategies with 100% of hits increased by 100% (from 6 to 12) after Guide-Paths 
application. Strategies with no less then 90% of hits are generated by 90% of LLGP-
GuP experiments and 35% of LLGP experiments. It can also be observed that the 
worst LLGP-GuP experiment generated strategies with 70% of hits, when the worst 
LLGP experiment generated strategies with 30% of hits. Figure 5.2 shows 
percentage of hits for succeeding generations calculated as average of experiments 
best strategies’ percentage. We can observe clear difference between speed, with 
which experiments finds better strategies. An average percentage obtained by 
strategies of LLGP experiments in 2000 generation was obtained by strategies of 
LLGP-GuP experiments in 200 generation. Additionally the earliest generation to 
generate strategy with all hits was 74 for LLGP-GuP and 183 – for LLGP and 
average generation was 448 and 970. 
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Figure 5.1. The best strategies for each conducted experiment. Comparison  
of experiments with and without Guide-Paths. 

 
Calculation of generated generations shows that even with experiments needed to 
define guiding paths LLGP-GuP needs less time (in number of generations) to 
generate, with specific probability, strategies with 100% of hits then LLGP. 

 

 
 

Figure 5.2. An average of experiments best strategies’ percentage  
of hits for succeeding generations. 

 
6 Conclusion and Future Work 

In the paper we have experimentally shown that the Guide-Paths technique 
shortens time needed to create strategies with layered learning genetic programming 
and improves their effectiveness. Future work should include more experiments with 
different values of operators trust coefficients. Methods for rating quality of guiding 
paths should be defined. 
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