STUDIA INFORMATICA
Nr 2(9) Systemy i technologie informacyjne 2007

L CS Approach to Tasks Scheduling Problem
in the Two Processor System

Katarzyna WasielewskaFranciszek Seredgki*>

! Institute of Computer Science, Higher State Schddlocational Education,
ul. Wojska Polskiego 1, 82-300 Edgl, Poland

Institute of Computer Science, University of Rasil,

ul. Sienkiewicza 51, 08-110 Siedlice, Poland

Institute of Computer Science, Polish Academy @éfces,

ul. Ordona 21, 01-237 Warsaw, Poland

2

w

Abstract. In this paper we propose an approach to solveipnottessor scheduling problem with use
of rule-based learning machine — Learning ClagsBigstem (LCS). LCS combines reinforcement
learning and evolutionary computing to produce &dapsystems. We interpret the multiprocessor
scheduling problem as multi-step problem, whereeedlback is given after some number steps.
We show that LCS is able to solve scheduling tasfka parallel program in the two processor
system.

Keywords. Learning classifier systems, scheduling problem|wionary technique

1 Introduction

The multiprocessor scheduling problem still remaias challenge for
researches in the whole world. This problem is idated as optimization problem
in which a set of tasks (with a given processinget) has to be assigned to a set of
processor. The aim of this assigning is minimizimg total execution time. It can be
considered as optimal allocation of the tasks irpaaallel architecture. This
scheduling problem is known to be NP-hard (i.eoatgms have exponential time
complexity) combinatorial optimization problem. $hineans that finding a solution
of large problem is almost impossible. It existansoimportant algorithms of
scheduling (e.g. list scheduling, clustering, dyianaritical-path), but these
heuristics donot guarantee an optimal solution of the problem deneral case.
Some scheduling algorithms applies techniques ééfiom the nature (e.g. genetic
algorithms, cellular automata, ant colony). Thdgerithms try to find near-optimal
solutions.

In the other hand, existing heuristics for the ipottcessor scheduling
problem can produce good solutions but still haigh time complexity which often

30 Wasielewska K., Serdgki F.

comes from the necessity of searching the largeespaf solutions and has the natural
influence on the behaviour of the realistic schedukystems. Some approach to
reducing the time complexity is parallelizationaocheduling algorithm [1].

In this paper we propose to use the learning dlassystem XCS [9] to
solve the multiprocessor scheduling problem. TheSX@presents genetic-based
machine learning architecture. We investigate aipdgy applying of XCS as agent
which migrates in the program graph and makes assabout the choice of node
and allocation it on the system graph.

The remainder of the paper is organized as follGe next section presents
the multiprocessor scheduling problem. Section 3aiis overview of learning
classifier systems. Section 4 explains proposedicgtipn of XCS to solve the
scheduling problem. Experimental results are ptteskim Section 5 and last section
contains conclusions.

2 Tasksscheduling problem

A multiprocessor systens represented by an undirected unweighted g@gphk
= (Vs E9) (called asystem graph whereVs is the set ofns nodes representing
processors anéis is the set of edges representing bi-directionainalels between
processors.

A parallel program is represented by a weightedatiéd acyclic grapfes =
(Vs Eg) (called aprogram graphor aprecedence task graphwvhereVsis the set of
N, nodes of the graph representing elementary taskEgais the set of edges of the
program graph describing the communication timevbenh the tasks.

Figure 2.1 shows an example of the system graplichwhepresents
a multiprocessor system consisting of two procesded and P1 and an example of
the program graph with four nodes (words: tasks awodles we will use
interchangeably) and connections between them.

31|

P

Figure 2.1. Example of a system graph (left) and a programplyfaght)

The weightb, (marked on every node) of the ndddescribes the processing
time needed to execute a tdskn some processor of the system. The weigltsf
the edges (marked near edge) describe a commumidatie between pairs of tasks
k andl, when they located in the neighbor processottheltaskd andl are located
in the same processor, then the communication tietereen them id equal to 0. The

Optimization

LCS Approach to Tasks Scheduling Problem 31

arrows indicate direct communication between a @eedsor and a successor pair of
tasks; and represent dependence and time preceidgrenallel scheduling.

The goal oschedulings to distribute the tasks among the processossich
a way that the precedence constraints are retaingédhe total execution time(the
response timeis minimized. The response time T for a givengpam graph
depends on the tasks allocation in the system gamghsome scheduling policy
applied in individual processors:

T = f(allocation,scheduling_ policy)

We will assume that a scheduling policy is the sémnall processors of the
system. A schedule is often represented Baatt chart which shows allocation of
tasks on processors and times when a given tasteuted.

To formulate multiprocessor scheduling problem used the models of
a multiprocessor system and a parallel programiwaiie described in [5].

3 Learningclassifier system XCS

The Learning Classifier SystenfLCS) is a rule-based learning machine
introduced by John Holland [4] in the 1970s. Thischnique combines
a reinforcement learning and evolutionary computimgporoduce adaptive systems.
The LCS is the system that learns a syntacticailtgpke string rules (called
classifiery. Each classifier consists of two parts: <conditisaction>. This rule
means: “if a current observed state of the envirmmrmatches theondition then
execute thectior.

The problems that LCS has to solve within are d#idi into two classes:
a single-stemnda multi-step In single-step problems an environmental feedligck
returned on each step of the LCS. The second destains problems where
a feedback is given after some number steps. THe-step environment requires
a chain of actions before a feedback is received.

An overview and applications of the LCS can benfbin [4,6].

In 1995 Wilson introduced the eXtended Classifigstem (XCS) [9]. The goal of
the XCS is to form a complete and accurate mappfrthe problem space through
efficient generalizations [10]. The XCS uses stadd@-learning algorithm [8] to
update the parameters of the classifiers. Figufle sBows an example of this
classifier. Classifiers of XCS have three paransefediction prediction errorand
fithess These parameters are just updated by Q-learagimique.

}O 1#1: /0 % I 0\5 9 0\
co;?rﬁm # \ }he.rs

. prediction .
action prediction error

Figure 3.1. An example of a classifier of XCS

At each time step the system receives a messagetfre environment. The
system compares this message with conditions skiflars from population of all
classifiers [P] and createsvaatch sefM] containing classifiers from the population

Studia Informatica 2(9)2007

32 Wasielewska K., Serdgki F.

whose condition part matches the current inpuhdf[M] is empty a new classifier is
created througltovering mechanism. Then for each possible actimrthe system
predictionP(g) is computed and prediction array P(A) is creatés: valueP(a) gives
an evaluation of the expected reward if actpis performed. Then, action selection is
performed. The classifiers in [M] (which proposeedected action) are placed in the
action sefA]. The selected action is sent to the environisiefind an immediate reward
is returned to the system. For multi-step probleXS creates therevious cycle’s
action sefA] 1. Figure 3.2 shows an illustration of the XCS cycle
The reward is used to update the parameters afldissifiers in the action set

corresponding to the previous time step_{AJA].; is updated using the sum of the
previous cycle’s reward and the discounted maxiréiP(A).

GA is applied to the action set. It selects twossifiers with probability
proportional to their fitnesses, copies them amflopms crossover on the copies and
mutates each allele with some probability.

[10111 Environment]
F 9
a;tg;t;r:
malch EffEEI‘ re
¥ .
. 1
[P] covering
rewarq
—
[M] T [A]
» P(A) >
F;"‘

update of parameters

(Al

Figure 3.2. A schematic illustration of XCS for a multi-stepplem

The XCS works in two modes: exploration and expt@n. Inexploration
modethe action is selected randomly from the rule$iwibn-zero prediction within
[M]. In exploitation modehe action with highest value of prediction isestéd and
the GA is no active.

4 An approach to scheduling problem based on XCS

We propose a multi-step approach to tasks scheglblised on decisions of
an agent-learning classifier system of the XCS.mide migrating in the program
graph, interpreting it as an environment, and @kiacisions about allocation of the
chosen tasks to processors. The goal of the agdimding of optimal allocation of
program tasks into processors.

Optimization

LCS Approach to Tasks Scheduling Problem 33

In the beginning the agent receives an informafiom the environment
about number of node which can be first allocatehm system graph. Then, the
agent receives a message from the environmentibliegca position of all nodes
(tasks of a parallel program) from point of viewitsf current position of the node
where it stays. A length of a message is equahfavkeren is the number of tasks
in the considered program graph. Coding the meds&gg#owing:

- values 11 - these values on a giwh position of a message says that the
nodei is a current position of the agent;

- values 10 - these values oni-¢h position says that théth task is
a successor of a task where the agent currentlg;sta

- values 01 — these values oni-th position says that theth task is
a predecessor of a task where the agent curreailg;s

- values 00 - these values on-th position says that thieth task is neither

a successor or a predecessor of a task where ¢né @agrently stays.

An action of a classifier of XCS has two composerat label of a task to
where the agent will move from the current positadter execution of this action,
and a label of a processor to which the proposadudll be allocated. Coding of the
action is following:

- action 0 — the agent will choose the task 0 arnsl gk will be allocated into
processor PO;
- action 1 — the agent will choose the task 1 ansl tdsk will be allocated into
processor PO;
- action 2 — the agent will choose the task 2 ansl tdk will be allocated into
processor PO;
- action 3 — the agent will choose the task 3 arnsl gk will be allocated into
processor PO;
- action 4 — the agent will choose the task 0 ansl tdsk will be allocated into
processor P1,;
- action 5 — the agent will choose the task 1 ansl ek will be allocated into
processor P1,
- action 6 — the agent will choose the task 2 ansl tdk will be allocated into
processor P1;
- action 7 — the agent will choose the task 3 ansl tdsk will be allocated into
processor P1;
For example, the classifier of <11 10 10 00>:<2m bba interpreted in the following
way: the agent location is the task O; this task twa successors: 1 and 2; and the
task 3 task is neither a successor or a predece$socurrent task, but agent can
choose task 3 if its all predecessors were alld¢atad the action: “go to the task
2 and allocate it into processor PO”.

After execution of the action the agent movesrtippsed node and allocates
this task on proposed processor. Then the ageds raaperception (new actual
position) and executes successive action. The agemes under control of XCS
until it visits last node. We don’t suppose anyesrdonstraints. The agent should
learn some scheduling policy. This is the chairsteps. In this sequential problem
of scheduling the positive reward will arrive ostlatep, i.e. the agent is estimated
for the cycle of the actions.

Studia Informatica 2(9)2007

34 Wasielewska K., Serdgki F.

5 Experimentsresults

The goal of experiments is to verify our approachasks scheduling problem
based on XCS. We will focus our attention on theteay graph from Figure 2.1 and the
program graph from Figure 2.2. All weights of tipiogram graph are set to 1. The
response timé for this program graph in the two processors systeequal 3.

For each problem the agent migrates under coofralCS until it visits all
four nodes and receives the reward of 1000. Théopeance is computed as the
average number of steps to goal in the last 50oéation problems. The standard
statistic of LCS to multi-step problensteps to goaineans here the number of steps
which the agent needs to realize the program graphhis problem an optimal
number of steps to goal is equals 4. Each restdtsepted in this paper is averaged
on five experiments.

' ' ' Séeps to goal ——
a Prediction errorioog —-—
Population —*—

Trials

Sleps al ——
b Frediction errorxionn —x—
Population —»—

20000 25000

o SO0

10000

15000

Figure5.1. The statistics of XCS: sté‘p;; to goal, populatiae and prediction
error for the values of parameterg:=P0.8 and N=400 (a) and N=800 (b)

Optimization

LCS Approach to Tasks Scheduling Problem 35

The figures below show the results of experimekie can see on these
pictures following statistics: the number of stépgoal, the population size and the
prediction error. The parameters values of XCS waat as by Wilson in [9]:
B=0.2,y=0.71,06 = 25,0 = 0.01,a = 0.1, = 0.8,n = 0.01,6 = 0.1,® = 0.5,

p = 10.0,¢ = 0.0, F = 10.0. Our experiments consist in modificatiorpopulation
size parameter and..PThe parameter of Hs a probability of using a don't care
symbol in an allele during covering. We show bel@sults of experiments for the
values of population size parameter set to 40088@dand R set as following: P=
0.8 (figure 5.1), P= 0.5 (figure 5.2) and = 0 (Figure 5.3).

We can observe that agent learn the problem duiisg 50 trials. Our
experiments showed that the XCS finds the optis@lltions: the steps to goal
= 4 and the response T = 3 during initial trials. Thedgction errordecreases to zero
during first 50 trials too. The minimal responsediT we calculate in the following way:
in every trial we count the total execution timeahd if Te<Tthen T ="E.

250

Steps to soal ——

a) Frediction errortloos ——
Fopulation —s—

Trials

350 . T T r
b) Steps to goal ——

Prediction error+lo00 ——
Population —#—

30 H

250

200 | W%

150 | 4

o0 |

I

o
o S0 10000 15000 20000 25000

Trials

Figure5.2. The statistics of XCS: steps to goal, populatiae and prediction
error for the values of parameterg:#P0.5 and N=400 (a) and N=800 (b)

Studia Informatica 2(9)2007

36 Wasielewska K., Serdgki F.

Silzeps to goal ——

a) Prediction errorsl0l —s—
Population —+—

Q 000 10000 15000 20000 25000
Trials

b Sé.eps to goal ——
Prediction errorl000 ——
Population —*—

0 5000 10000 15000 20000 25000

Trials

Figure 5.3. The statistics of XCS: steps to goal, populatiare sand prediction
error for the values of parameterg:#P0 and N=400 (a) and N=800 (b)

During last 3000 problems exploration is turned ®ffe can see that values
of prediction error are near equal to 0. Howevigiyres show that a population of
classifiers has tendency to keeping a populatiolargie number of classifiers. This
can indicate that generalization is not operating.

Optimization

LCS Approach to Tasks Scheduling Problem

37

Steps to goal ——

Steps to goal
o
4

o 5000 10000 15000 20000 25000
Trials
1300

Papulation —+—

b)

1200
1100 -

1000 -

Population

00

B0 -

700

o 5000 10000 15000 20000 25000
Trials

Prediction errarslo00 ——

Prediction error¥1000

o 5000 10000 15000 20000 25000
Trials

Figure5.4. The statistics of XCSsteps to goafa), population siz€b), prediction
error (c) for N=1600 and the standard parametgrs 0.2,y = 0.71,0 = 25,5, = 0.01,
a=0.1,=0.8,,=0.01,6=0.1,0 = 0.5, p=10.0,, = 0.0, F =10.0, = 0.5)

Studia Informatica 2(9)2007

38 Wasielewska K., Serdgki F.

We also tested the approach where the message tfiemenvironment
contains additional information about actual siatof the scheduling. In this
approach the agent has the knowledge about theasibe individual tasks. The
agent receives a message from the environmentibliegca position of all nodes
(tasks of a parallel program) from point of viewitsf current position of the node
where it stays and an information about the tadki€lwwere allocated. A length of
a message is equal 3m, wheren is the number of tasks in the considered program
graph. The coding of the message is as follows:

- values 11 - these values on a giiim position of a message says that the
nodei is a current position of the agent;
- values 10 — these values oni-th position says that theth task is
a successor of a task where the agent currentlg;sta
- values 01 — these values oni-th position says that theth task is
a predecessor of a task where the agent curreailg;s
- values 00 — these values orirth position says that thieth task is neither
a successor or a predecessor of a task where ¢né @agrently stays;
- value 0 on2n+i)-th position says that theth task wasn't allocated;
- value 1 on2n+i)-th position says that theth task was allocated.
First results we have presented in [7]. We tedtedorogram graph referred tage7
in the 2-processor system. Our experiments showatthe system can learn the
optimal solution in short time, but the populatmirclassifiers is not ideal. The XCS
found the optimal solutions: the steps to goal and the response T = 5. The
parameters values of XCS were set as by WilsoB]i3[= 0.2,y = 0.71,0 = 25,¢,
=0.04,0=0.1,y=0.8,0=0.01,6 =0.1,0 = 0.5, p=10.0,¢, = 0.0, F =10.0, R =
0.5. We show below results of experiment for thii@af population size parameter
set to 1600. We can see on these pictures follogtiatistics: the number of steps to
goal (Figure 5.4a), the population size (Figurebb.4nd the prediction error
(Figure 5.4c). We have observed that agent leamptbblem during first 400 trials.
These results are averaged on five experiments.

We used Martin Butz version of XCS [2] availabledrover the web from

the IIlIGAL site.

6 Conclusion

In this paper we have presented an approach te sa$leduling problem in
the two processors system and the results of expats. In our approach the LCS
solves one multiprocessor scheduling problem per experiment. Our exercises
showed that the scheduler based on LCS foundsptima solution during initial
generations. The final population is not ideal &ame the LCS encounters the
problems of combinatorial optimization theory. Wavlé shown that learning
classifier system can be promising technique twisglthe scheduling problem. But
the questions in this area are still open. For gajrhow this approach will solve
more difficult scheduling problem. Future works Iwidoncern verification this
approach for bigger program graphs and improveroéttie scheduler in the sense
of the generalization.

Optimization

LCS Approach to Tasks Scheduling Problem 39

References

1.

2.

8.

9.

Ahmad I., Kwok Y.K, (1999). On Parallelizing the Mprocessor Scheduling Problem,
IEEE Transactions on Parallel and Distributed Systé0(4), 414-432.

Butz M.V., Wilson S.W., (2000). An algorithmic degtion of XCS, Technical Report
2000017, lllianois Genetic Algorithms Laboratory.

Holland J.H., Reitman J., (1978). Cognitive systdmased on adaptive algorithms. In
Waterman D., Hayess-Roth F. (Eds), Pattern-dirdctiedlence Systems. Academic Press,
New York.

Lanzi P.L., Riolo R.L., (2000). A Roadmap to thest®ecade of Learning Classifier
System Research. In: Learning Classifier SystemsmM-oundations to Applications,
Lanzi P.L., Stolzmann W., Wilson S.W. (Eds), LNA13. Springer, 33-62.

Swiecicka A., Seredynski F., Zomaya A., (2006). fipubcessor scheduling and
rescheduling with use of cellular automata andieigti immune system support, IEEE
Trans. On Parallel and Distributed Systems, vol.NIF, 253-262.

Wasielewska K., Seredynski F., (2006). Learning s€lfier Systems: a way of
reinforcement learning based on evolutionary temies. In: Evolutionary computation
and global optimization, Arabas J. (Ed.), OWPW,-385.

Wasielewska K., Seredynski F., (2007). LCS appraachultiprocessor scheduling. In
Grzech A. (Ed.), Proceedings of the 16th IntermaticConference on Systems Science,
OWPW, Wroclaw, Vol. 2,463-469.

Watkins C.J.C.H., (1989). Learning from Delayed Redg. PhD Thesis, Cambridge
University.

Wilson S.W., (1995). Classifier Fitness Based omrukacy. Evolutionary Computation,
3(2), 149-76.

10.Wilson S.W., (1998). Generalization in the XCS sifisr system. Proc. of the Third

Annual Conference, 665-674.

Studia Informatica 2(9)2007

System control

