
STUDIA INFORMATICA
Nr 2(9) Systemy i technologie informacyjne 2007

LCS Approach to Tasks Scheduling Problem
in the Two Processor System

Katarzyna Wasielewska1, Franciszek Seredyński2,3
1 Institute of Computer Science, Higher State School of Vocational Education,

ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
2 Institute of Computer Science, University of Podlasie,
 ul. Sienkiewicza 51, 08-110 Siedlce, Poland
3 Institute of Computer Science, Polish Academy of Sciences,

ul. Ordona 21, 01-237 Warsaw, Poland

Abstract. In this paper we propose an approach to solve multiprocessor scheduling problem with use
of rule-based learning machine – Learning Classifier System (LCS). LCS combines reinforcement
learning and evolutionary computing to produce adaptive systems. We interpret the multiprocessor
scheduling problem as multi-step problem, where a feedback is given after some number steps.
We show that LCS is able to solve scheduling tasks of a parallel program in the two processor
system.

Keywords. Learning classifier systems, scheduling problem, evolutionary technique

1 Introduction

The multiprocessor scheduling problem still remains a challenge for

researches in the whole world. This problem is formulated as optimization problem
in which a set of tasks (with a given processing times) has to be assigned to a set of
processor. The aim of this assigning is minimizing the total execution time. It can be
considered as optimal allocation of the tasks in a parallel architecture. This
scheduling problem is known to be NP-hard (i.e. algorithms have exponential time
complexity) combinatorial optimization problem. This means that finding a solution
of large problem is almost impossible. It exists some important algorithms of
scheduling (e.g. list scheduling, clustering, dynamic critical-path), but these
heuristics do not guarantee an optimal solution of the problem for general case.
Some scheduling algorithms applies techniques derived from the nature (e.g. genetic
algorithms, cellular automata, ant colony). These algorithms try to find near-optimal
solutions.

In the other hand, existing heuristics for the multiprocessor scheduling
problem can produce good solutions but still have high time complexity which often

30 Wasielewska K., Serdyński F.

Optimization

comes from the necessity of searching the large spaces of solutions and has the natural
influence on the behaviour of the realistic scheduling systems. Some approach to
reducing the time complexity is parallelization of a scheduling algorithm [1].

In this paper we propose to use the learning classifier system XCS [9] to
solve the multiprocessor scheduling problem. The XCS represents genetic-based
machine learning architecture. We investigate a possibility applying of XCS as agent
which migrates in the program graph and makes decisions about the choice of node
and allocation it on the system graph.

The remainder of the paper is organized as follows. The next section presents
the multiprocessor scheduling problem. Section 3 is an overview of learning
classifier systems. Section 4 explains proposed application of XCS to solve the
scheduling problem. Experimental results are presented in Section 5 and last section
contains conclusions.

2 Tasks scheduling problem

A multiprocessor system is represented by an undirected unweighted graph GS =
= (VS, ES) (called a system graph), where VS is the set of nS nodes representing
processors and ES is the set of edges representing bi-directional channels between
processors.
 A parallel program is represented by a weighted directed acyclic graph GS =
(VS, ES) (called a program graph or a precedence task graph), where VS is the set of
Np nodes of the graph representing elementary tasks and EP is the set of edges of the
program graph describing the communication time between the tasks.
 Figure 2.1 shows an example of the system graph which represents
a multiprocessor system consisting of two processors: P0 and P1 and an example of
the program graph with four nodes (words: tasks and nodes we will use
interchangeably) and connections between them.

Figure 2.1. Example of a system graph (left) and a program graph (right)

 The weight bk (marked on every node) of the node k describes the processing
time needed to execute a task k on some processor of the system. The weights akl of
the edges (marked near edge) describe a communication time between pairs of tasks
k and l, when they located in the neighbor processors. If the tasks k and l are located
in the same processor, then the communication time between them id equal to 0. The

 LCS Approach to Tasks Scheduling Problem 31

Studia Informatica 2(9)2007

arrows indicate direct communication between a predecessor and a successor pair of
tasks; and represent dependence and time precedence in parallel scheduling.
 The goal of scheduling is to distribute the tasks among the processors in such
a way that the precedence constraints are retained and the total execution time T (the
response time) is minimized. The response time T for a given program graph
depends on the tasks allocation in the system graph and some scheduling policy
applied in individual processors:

)_,(policyschedulingallocationfT =

 We will assume that a scheduling policy is the same for all processors of the
system. A schedule is often represented by a Gantt chart which shows allocation of
tasks on processors and times when a given task is executed.
 To formulate multiprocessor scheduling problem we used the models of
a multiprocessor system and a parallel program which are described in [5].

3 Learning classifier system XCS

 The Learning Classifier System (LCS) is a rule-based learning machine
introduced by John Holland [4] in the 1970s. This technique combines
a reinforcement learning and evolutionary computing to produce adaptive systems.
The LCS is the system that learns a syntactically simple string rules (called
classifiers). Each classifier consists of two parts: <condition>:<action>. This rule
means: “if a current observed state of the environment matches the condition, then
execute the action”.
 The problems that LCS has to solve within are divided into two classes:
a single-step and a multi-step. In single-step problems an environmental feedback is
returned on each step of the LCS. The second class contains problems where
a feedback is given after some number steps. The multi-step environment requires
a chain of actions before a feedback is received.
 An overview and applications of the LCS can be found in [4,6].
 In 1995 Wilson introduced the eXtended Classifier System (XCS) [9]. The goal of
the XCS is to form a complete and accurate mapping of the problem space through
efficient generalizations [10]. The XCS uses standard Q-learning algorithm [8] to
update the parameters of the classifiers. Figure 3.1 shows an example of this
classifier. Classifiers of XCS have three parameters: prediction, prediction error and
fitness. These parameters are just updated by Q-learning technique.

Figure 3.1. An example of a classifier of XCS

 At each time step the system receives a message from the environment. The
system compares this message with conditions of classifiers from population of all
classifiers [P] and creates a match set [M] containing classifiers from the population

32 Wasielewska K., Serdyński F.

Optimization

whose condition part matches the current input. If the [M] is empty a new classifier is
created through covering mechanism. Then for each possible action ai the system
prediction P(ai) is computed and prediction array P(A) is created. The value P(ai) gives
an evaluation of the expected reward if action ai is performed. Then, action selection is
performed. The classifiers in [M] (which propose a selected action) are placed in the
action set [A]. The selected action is sent to the environments. And an immediate reward
is returned to the system. For multi-step problems, XCS creates the previous cycle’s
action set [A] -1. Figure 3.2 shows an illustration of the XCS cycle.
 The reward is used to update the parameters of the classifiers in the action set
corresponding to the previous time step [A]-1. [A] -1 is updated using the sum of the
previous cycle’s reward and the discounted maximum of P(A).

GA is applied to the action set. It selects two classifiers with probability
proportional to their fitnesses, copies them and performs crossover on the copies and
mutates each allele with some probability.

Figure 3.2. A schematic illustration of XCS for a multi-step problem

 The XCS works in two modes: exploration and exploitation. In exploration
mode the action is selected randomly from the rules with non-zero prediction within
[M]. In exploitation mode the action with highest value of prediction is selected and
the GA is no active.

4 An approach to scheduling problem based on XCS

 We propose a multi-step approach to tasks scheduling based on decisions of
an agent-learning classifier system of the XCS. Agent is migrating in the program
graph, interpreting it as an environment, and taking decisions about allocation of the
chosen tasks to processors. The goal of the agent is finding of optimal allocation of
program tasks into processors.

 LCS Approach to Tasks Scheduling Problem 33

Studia Informatica 2(9)2007

 In the beginning the agent receives an information from the environment
about number of node which can be first allocate in the system graph. Then, the
agent receives a message from the environment describing a position of all nodes
(tasks of a parallel program) from point of view of its current position of the node
where it stays. A length of a message is equal to 2n, where n is the number of tasks
in the considered program graph. Coding the message is following:

- values 11 - these values on a given i-th position of a message says that the
node i is a current position of the agent;

- values 10 - these values on a i-th position says that the i-th task is
a successor of a task where the agent currently stays;

- values 01 – these values on a i-th position says that the i-th task is
a predecessor of a task where the agent currently stays;

- values 00 - these values on a i-th position says that the i-th task is neither
a successor or a predecessor of a task where the agent currently stays.

 An action of a classifier of XCS has two components: a label of a task to
where the agent will move from the current position after execution of this action,
and a label of a processor to which the proposed task will be allocated. Coding of the
action is following:

- action 0 – the agent will choose the task 0 and this task will be allocated into
processor P0;

- action 1 – the agent will choose the task 1 and this task will be allocated into
processor P0;

- action 2 – the agent will choose the task 2 and this task will be allocated into
processor P0;

- action 3 – the agent will choose the task 3 and this task will be allocated into
processor P0;

- action 4 – the agent will choose the task 0 and this task will be allocated into
processor P1;

- action 5 – the agent will choose the task 1 and this task will be allocated into
processor P1;

- action 6 – the agent will choose the task 2 and this task will be allocated into
processor P1;

- action 7 – the agent will choose the task 3 and this task will be allocated into
processor P1;

For example, the classifier of <11 10 10 00>:<2> can be interpreted in the following
way: the agent location is the task 0; this task has two successors: 1 and 2; and the
task 3 task is neither a successor or a predecessor of a current task, but agent can
choose task 3 if its all predecessors were allocated; and the action: “go to the task
2 and allocate it into processor P0”.
 After execution of the action the agent moves to proposed node and allocates
this task on proposed processor. Then the agent reads a perception (new actual
position) and executes successive action. The agent moves under control of XCS
until it visits last node. We don’t suppose any order constraints. The agent should
learn some scheduling policy. This is the chain of steps. In this sequential problem
of scheduling the positive reward will arrive on last step, i.e. the agent is estimated
for the cycle of the actions.

34 Wasielewska K., Serdyński F.

Optimization

5 Experiments results

The goal of experiments is to verify our approach to tasks scheduling problem

based on XCS. We will focus our attention on the system graph from Figure 2.1 and the
program graph from Figure 2.2. All weights of this program graph are set to 1. The
response time T for this program graph in the two processors system is equal 3.
 For each problem the agent migrates under control of XCS until it visits all
four nodes and receives the reward of 1000. The performance is computed as the
average number of steps to goal in the last 50 exploitation problems. The standard
statistic of LCS to multi-step problems: steps to goal means here the number of steps
which the agent needs to realize the program graph. In this problem an optimal
number of steps to goal is equals 4. Each results presented in this paper is averaged
on five experiments.

Figure 5.1. The statistics of XCS: steps to goal, population size and prediction

error for the values of parameters: P# = 0.8 and N=400 (a) and N=800 (b)

b)

a)

 LCS Approach to Tasks Scheduling Problem 35

Studia Informatica 2(9)2007

The figures below show the results of experiments. We can see on these
pictures following statistics: the number of steps to goal, the population size and the
prediction error. The parameters values of XCS were set as by Wilson in [9]:
β = 0.2, γ = 0.71, θ = 25, ε0 = 0.01, α = 0.1, χ = 0.8, µ = 0.01, δ = 0.1, Φ = 0.5,
pI = 10.0, εI = 0.0, FI = 10.0. Our experiments consist in modification of population
size parameter and P#. The parameter of P# is a probability of using a don’t care
symbol in an allele during covering. We show below results of experiments for the
values of population size parameter set to 400 and 800 and P# set as following: P# =
0.8 (figure 5.1), P# = 0.5 (figure 5.2) and P# = 0 (Figure 5.3).
 We can observe that agent learn the problem during first 50 trials. Our
experiments showed that the XCS finds the optimal solutions: the steps to goal
= 4 and the response T = 3 during initial trials. The prediction error decreases to zero
during first 50 trials too. The minimal response time T we calculate in the following way:
in every trial we count the total execution time TE and if TE ≤ T then T = TE.

Figure 5.2. The statistics of XCS: steps to goal, population size and prediction

error for the values of parameters: P# = 0.5 and N=400 (a) and N=800 (b)

a)

b)

36 Wasielewska K., Serdyński F.

Optimization

Figure 5.3. The statistics of XCS: steps to goal, population size and prediction
error for the values of parameters: P# = 0 and N=400 (a) and N=800 (b)

During last 3000 problems exploration is turned off. We can see that values
of prediction error are near equal to 0. However, figures show that a population of
classifiers has tendency to keeping a population of large number of classifiers. This
can indicate that generalization is not operating.

a)

b)

 LCS Approach to Tasks Scheduling Problem 37

Studia Informatica 2(9)2007

Figure 5.4. The statistics of XCS: steps to goal (a), population size (b), prediction
error (c) for N=1600 and the standard parameters (β = 0.2, γ = 0.71, θ = 25, ε0 = 0.01,
α = 0.1, χ = 0.8, µ = 0.01, δ = 0.1, Φ = 0.5, pI = 10.0, εI = 0.0, FI = 10.0, P# = 0.5)

a)

b)

c)

38 Wasielewska K., Serdyński F.

Optimization

We also tested the approach where the message from the environment
contains additional information about actual situation of the scheduling. In this
approach the agent has the knowledge about the allocation individual tasks. The
agent receives a message from the environment describing a position of all nodes
(tasks of a parallel program) from point of view of its current position of the node
where it stays and an information about the tasks which were allocated. A length of
a message is equal to 3n, where n is the number of tasks in the considered program
graph. The coding of the message is as follows:

- values 11 – these values on a given i-th position of a message says that the
node i is a current position of the agent;

- values 10 – these values on a i-th position says that the i-th task is
a successor of a task where the agent currently stays;

- values 01 – these values on a i-th position says that the i-th task is
a predecessor of a task where the agent currently stays;

- values 00 – these values on a i-th position says that the i-th task is neither
a successor or a predecessor of a task where the agent currently stays;

- value 0 on (2n+i)-th position says that the i-th task wasn’t allocated;
- value 1 on (2n+i)-th position says that the i-th task was allocated.

First results we have presented in [7]. We tested the program graph referred as tree7
in the 2-processor system. Our experiments showed that the system can learn the
optimal solution in short time, but the population of classifiers is not ideal. The XCS
found the optimal solutions: the steps to goal = 7 and the response T = 5. The
parameters values of XCS were set as by Wilson in [9]: β = 0.2, γ = 0.71, θ = 25, ε0
= 0.01, α = 0.1, χ = 0.8, µ = 0.01, δ = 0.1, Φ = 0.5, pI = 10.0, εI = 0.0, FI = 10.0, P# =
0.5. We show below results of experiment for the value of population size parameter
set to 1600. We can see on these pictures following statistics: the number of steps to
goal (Figure 5.4a), the population size (Figure 5.4b) and the prediction error
(Figure 5.4c). We have observed that agent learn the problem during first 400 trials.
These results are averaged on five experiments.

We used Martin Butz version of XCS [2] available free over the web from
the IlliGAL site.

6 Conclusion

 In this paper we have presented an approach to tasks scheduling problem in
the two processors system and the results of experiments. In our approach the LCS
solves one multiprocessor scheduling problem per one experiment. Our exercises
showed that the scheduler based on LCS founds the optimal solution during initial
generations. The final population is not ideal because the LCS encounters the
problems of combinatorial optimization theory. We have shown that learning
classifier system can be promising technique to solving the scheduling problem. But
the questions in this area are still open. For example, how this approach will solve
more difficult scheduling problem. Future works will concern verification this
approach for bigger program graphs and improvement of the scheduler in the sense
of the generalization.

 LCS Approach to Tasks Scheduling Problem 39

Studia Informatica 2(9)2007

References
1. Ahmad I., Kwok Y.K, (1999). On Parallelizing the Multiprocessor Scheduling Problem,

IEEE Transactions on Parallel and Distributed Systems, 10(4), 414-432.
2. Butz M.V., Wilson S.W., (2000). An algorithmic description of XCS, Technical Report

2000017, Illianois Genetic Algorithms Laboratory.
3. Holland J.H., Reitman J., (1978). Cognitive systems based on adaptive algorithms. In

Waterman D., Hayess-Roth F. (Eds), Pattern-directed Inference Systems. Academic Press,
New York.

4. Lanzi P.L., Riolo R.L., (2000). A Roadmap to the Last Decade of Learning Classifier
System Research. In: Learning Classifier Systems. From Foundations to Applications,
Lanzi P.L., Stolzmann W., Wilson S.W. (Eds), LNAI 1813. Springer, 33-62.

5. Swiecicka A., Seredynski F., Zomaya A., (2006). Multiprocessor scheduling and
rescheduling with use of cellular automata and artificial immune system support, IEEE
Trans. On Parallel and Distributed Systems, vol. 17, N3, 253-262.

6. Wasielewska K., Seredynski F., (2006). Learning Classifier Systems: a way of
reinforcement learning based on evolutionary techniques. In: Evolutionary computation
and global optimization, Arabas J. (Ed.), OWPW, 385-395.

7. Wasielewska K., Seredynski F., (2007). LCS approach to multiprocessor scheduling. In
Grzech A. (Ed.), Proceedings of the 16th International Conference on Systems Science,
OWPW, Wroclaw, Vol. 2,463-469.

8. Watkins C.J.C.H., (1989). Learning from Delayed Rewards. PhD Thesis, Cambridge
University.

9. Wilson S.W., (1995). Classifier Fitness Based on Accuracy. Evolutionary Computation,
3(2), 149-76.

10. Wilson S.W., (1998). Generalization in the XCS classifier system. Proc. of the Third
Annual Conference, 665-674.

40 Wasielewska K., Serdyński F.

Optimization

 LCS Approach to Tasks Scheduling Problem 41

Studia Informatica 2(9)2007

System control

42 Wasielewska K., Serdyński F.

Optimization

