
STUDIA INFORMATICA
Nr 2(9) Systemy i technologie informacyjne 2007

Game Theoretical Model Applied to Scheduling
in Grid Computing

Piotr Świtalski1, Franciszek Seredyński2,3
1 The University of Podlasie, Computer Science Department,
 ul. Sienkiewicza 51, 08-110 Siedlce, Poland
2 The University of Warmia and Mazury,
 ul. Oczapowskiego 2, 10-719 Olsztyn, Poland
3 Institute of Computer Science, Polish Academy of Sciences,
 ul. Ordona 21, 01-237 Warsaw, Poland

Abstract. We consider a grid computational model which consist of a number of computation nodes
and a number of users. Each user generates a computation load (jobs) requesting computational and
communication resources. A deadline for each job is also defined. We propose a scheduling
algorithm which is based on Iterated Prisoner's Dilemma (IPD) under the Random Pairing game,
where nodes (players) of the grid system decide about their behavior: cooperate or defect. In this
game players play a game with randomly chosen players and receive payoffs. Each player has
strategies which define its decision. Genetic algorithm (GA) is used to evolve strategies to optimize a
criterion related to scheduling problem. In this paper we show that GA is able to discover a strategy
in the IPD model providing a cooperation between node-players, which permits to solve scheduling
problem in grid.

Keywords. scheduling, game theory, prisoner’s dilemma, genetic algorithm, grid, task, job

1 Introduction

 A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities [1]. A grid is a decentralized heterogeneous system in
which computational resources are located in a number of computation nodes.
Computation nodes are often personal computers which have different CPU power,
amount of memory and bandwidth of communication channel. Their available
resources change in time. Each node is attributed to a user which generates
a computation load (jobs) requesting computational and communication resources.
A job composes of a number of tasks. Task scheduling is a process in which tasks
are distributed to the nodes with user’s requirements.
 From user’s perspective, a grid is a problem-solving environment in which
one or more user jobs can be submitted without knowing where the resources are or

20 Świtalski P., Serdyński F.

Optimization

even who owns the resources. The real and specific problem that underlies the grid
concept is coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations [2]. This coordinating is difficult because grid
nodes are heterogeneous and autonomous. Traditional approaches use centralized
policies that need complete state information and a common fabric management
policy, or a decentralized consensus-based policy. Due to the complexity in
constructing successful Grid environments, it is impossible to define an acceptable
system-wide performance matrix and common fabric management policy [3]. For
example SETI@home [4], launched in 1999, is a widely-known very simple grid
computing project. It uses the processing power of thousands of Idle CPU's that are
connected to the Internet. In this system, the CPU power is donated by the users who
are considered truthful, and there is no competition between them. But this problem
becomes more challenging when resource owners are being paid, or other issues
exist such as the social reputation gained by participating in the Grid society [5].
 Economical models in a computational grid are simple example of behavior
in which nodes (producers and consumers) can be cooperate [4][6][7][8]. In this
model a market concentrating producers (resource) and consumers (computation
load) are considered. Producers can sell their own resources to consumers for an
established price. A pricing policy is a determinant behavior for producers and
consumers. Current market-oriented models are based on a general equilibrium
theory. The general equilibrium theory can be transformed to an optimization
problems, which in this case is a scheduling problem. But this approach has some
disadvantages. Firstly, a grid cannot be treated as free market. In the market each
node has information about all others nodes. In grid this information is restricted to
nodes in their neighbourhood. Secondly, pricing policy do not assume deadline for
executing tasks.
 In [9] author presents promising idea of resource management system based
on the immune system metaphor, making use of the concepts of Immune Network
Theory and Danger Theory. By emulating various elements in the immune system,
manager could efficiently execute tasks on very large systems of either
homogeneous or heterogeneous resources in grids. The distributed nature of the
immune system allows efficient scheduling of tasks, even in extremely large
environments, without the use of a centralized or hierarchical scheduler.
 In this paper we will show a new concept of scheduling in grid computing.
This concept is based on game theory. The major point of using this theory is to
keep cooperation between nodes. We propose a scheduling algorithm which is based
on IPD under the Random Pairing game [14], where nodes (players) of the grid
system decide about their behavior: cooperate or defect. In this game players play
a game with randomly chosen players and receive payoffs. Each player has
strategies which define its decision. GA is used to evolve strategies to optimize
a criterion related to scheduling problem. In this paper we show that GA is able to
discover a strategy in the IPD model providing a cooperation between node-players,
which permits to solve scheduling problem in grid.
 The paper is organized as follows. In the next section, we describe task
scheduling problem in computation grid. Section 3 introduces one of game theory
model: Prisoner’s Dilemma (PD). In this section we also explain evolution of

 Game Theoretical Model Applied to Scheduling 21

Studia Infoamtica 2(9)2007

behavior in IPD under Random Pairing game. Next, in Section 4 we give details of
our computational grid model. Last section concludes the paper.

2 Task Scheduling Problem in Grid

 In such systems like computational grid, task scheduling is not easy, for the
reason that nodes are not centrally controlled and information about their state is
available only for their closest neighbourhood. Task scheduling is a core process of
resource management systems. The most important point of task scheduling is
allocating computation load (divided into tasks) to appropriate resources, attempting
to achieve some performance goals as the shortest executing time of user’s job or
load balancing on the nodes. Here, jobs can be executed both on local and remote
nodes. Scheduler (see Fig. 2.1) is a system which take decision about allocating
tasks on the nodes in Grid.

Figure 2.1. Grid and local scheduler

In grid systems we consider two types of schedulers:
- grid scheduler which allocates tasks among nodes
- local scheduler which allocates tasks in a single node after allocation by the grid

scheduler.
Grid scheduler might be de facto each node (Fig. 2.1), because this process starts
when the node needs to send several tasks for neighbour nodes. Nodes take their
decision autonomously. The scheduling policy determines how an application
should be scheduled and how the resources should be utilized. Most importantly, the
scheduling policy is responsible for defining the performance goals for the Grid
system.
In economical methods scheduling policy is a price. A price specify behaviour of
nodes. Nodes have to pay for the executing tasks if they want to send and are paid
when they execute tasks coming from the other nodes. In the commodity market
model, resource owners specify their service price and charge users according to the
amount of resource they consume. The pricing policy can be derived from various
parameters and can be flat or variable depending on the resource supply and

node #1

node #3

user’s jobs
grid scheduler

policy resources

node #n

resources

node #2

resources

resources local scheduler

22 Świtalski P., Serdyński F.

Optimization

demand. In general, services are priced in such a way that supply and demand
equilibrium is maintained [6].

2.1 Model of the task

Computation job generated by a user is divided into smaller indivisible parts
named tasks. We can consider two models of tasks:
- dependent tasks organized in directed acyclic graph (DAG),
- independent tasks.
 In the first model the job can be represented by weighed, directed and acyclic
graph Gp = (Vp;Ep) whose vertices vi are tasks zi and edges e

kl
 reflect the precedence

relations. Each task (vertices) has an execution cost. The weight of an edge is called
the communication cost of the edge. The precedence constraints of a DAG dictate
that a node cannot start execution before it gathers all the data from its preceding
nodes. Graph Gp is called a program graph or precedence task graph [10]. Figure 2.2
presents a precedence graph for four tasks in precedence relation.

Figure 2.2. An example of a program DAG graph.

 The second model is represented by a large number of various size tasks
which are independent. Each task similarly to dependent tasks has execution cost,
but there is no precedence constraints.
 The cost of task executing on the node is the total time of execution of task,
time to send of task to node and time to receive results of executed task. The
execution cost depends on a number of instructions in the task. Each processor is
characterized by a speed, i.e. by a number of instructions computed per unit time.
 Hence, time to execute of task is:

S

i
t z

z = ,

where iz is the number of task instructions, S is the speed of a processor. A grid is
heterogeneous, so processors in a grid have various speed by nature. Time of task
execution will be different in different nodes.

2.2 Model of resources

A resource is any physical or virtual component of limited availability within
a computer system [11]. A typical resource types in computers are CPU time, size of

4

2 1

6

1 3

2

 Game Theoretical Model Applied to Scheduling 23

Studia Infoamtica 2(9)2007

memory, hard disk space, network throughput. In grid systems resources are
heterogeneous. Each node may have a specified resources, which are not available on the
others nodes. A node often have also more than one resource. A scheduler needs to have
information about these resources. Tasks can require specified resources and scheduler
have to allocate tasks on nodes where those resources are accessible.

3 Iterated Prisoner's Dilemma under the Random Pairing game

3.1 Background
Participating in a grid system with no rules causes situations where nodes

willingly send their own tasks to the other nodes, but they refuse to receive tasks
from the other nodes. This behaviour is not good for a society in grid. In societies,
trust is a fact of everyday life. A decision to trust is a decision laced with risk [12].

Trust is relevant with reputation. Reputation can be described as the opinion
of the public toward a person, a group of people, or an organization [11]. In a grid
systems reputation can be interpreted as desire for cooperating. If node has a high
reputation, other nodes could cooperate with this node with minimal or without risk.

3.2 Game Theory: Prisoner’s Dilemma

Game is often described as a situation where multiple players have to make
a decision in conflicted situations. Such a situation exists when two or more decision
makers who have different objectives act on the same system or share the same
resources [14].

The Prisoner's Dilemma is non-zero-sum game in which the sum of gains and
losses by the players are always more or less than what they began with. There are two
players. The players in the game can choose between two moves, either "cooperate" or
"defect". For every move players receive payoff. Each player gains when they both
cooperate. If only one of them cooperates the other one that defects will receive the
highest possible payoff from payoff’s table. If both defect, both lose. The "dilemma" in
this game is related to the fact that, whatever the other does, each of them is better off
defecting than cooperating. But the outcome obtained when both defect is worse for each
than the outcome they would have obtained for both cooperating.

3.3 Iterated Prisoner’s Dilemma under Random Pairing

In the Iterated Prisoner's Dilemma the game is played repeatedly and players
memorize their previous encounters. Each player plays against the same opponent
for a defined number of rounds. This gives each player an opportunity to punish the
other player for previous non-cooperative behavior.

In the Iterated Prisoner's Dilemma under Random Pairing each player plays
against a different randomly chosen opponent at every round [14]. In such a case the
evolution of cooperative behavior is much more difficult than in the IPD due to short
interaction sequence. In the evolutionary version of the game a population of players
plays the IPD among themselves [14]. Each player uses his own strategy from
a population of strategies. During the evolutionary process the lower scoring

24 Świtalski P., Serdyński F.

Optimization

strategies are eliminated and the higher scoring strategies are discovered and
increased in number. The process is repeated until the best strategies are found.
4 Grid model

4.1 Model of node
In computational grid participates a large number of nodes. Each node takes

decisions autonomously in own environment. A node is a user’s system which
consist:

- resources (CPU, memory, disk space)
- capability to communicate with the neighbour nodes
- a level of trust.

 A user can generate computational load for a Grid. This load is divided into
independent tasks. For our model we assumed that tasks are incoming in time with
a Poisson distribution. This distribution is used to model the number of events
occurring within a given time interval.
 Tasks can be inserted into local queue of node or distributes into neighbour
nodes. Nodes are heterogeneous, so time to execute of each task will be different on
different nodes. Furthermore, for each task will be defined deadline for it execution.
This deadline is defined as below:

titi TFT < ,

where Tti is a real time of task execution, TFti is deadline time for task execution.

Tasks may miss their deadlines. We introduced penalty model to minimize
the loss. Each node has a level of trust (reputation). If given node continuously
exceeded deadline, level of its trust is decreasing.
 Level of trust is defined as below:

i

i
i nc

nt
tr = ,

where:
tr i is a level of trust,
nti is a number of completed tasks without exceed of deadline,
nci is a total number of tasks accepted by node.

Tasks in the local queue are scheduled by the heuristic local scheduling

algorithm which is described in the algorithm #1.

Algorithm #1

insert_place = placen;
//calculate the penalty if insert the job at insert_place
penalty = calculate_penalty(insert_place);
for (placei = from placen-1 to place0) {
 penaltyi = calculate_penalty(placei);
 if(penaltyi < penalty) {
 penalty = penaltyi;
 insert_place = placei;
 }

 Game Theoretical Model Applied to Scheduling 25

Studia Infoamtica 2(9)2007

}
insert the job at insert_place

 The approach is based on the fact that when a job is inserted, the relative
order of the jobs in the origin queue is often unchanged [15]. In this algorithm we
insert task into the queue and calculate penalty. The lowest penalty for the inserted
task is the best schedule.

4.2 Cooperating of nodes

Grid scheduler allocates tasks among nodes. Every node can be a grid
scheduler. This scheduler gain information from neighbour nodes which contains:

- level of trust,
- length of local queue,
- types of resources,
- other parameters of node.

Algorithm #2
if (trust_level_nodei is null) {
 trust_level_nodei = 0.5;
}
divide_load_into_tasks(computational_loadi);
while (get_task_from_queue is null) {
 task = get_task_from_queue;
 task_parameters = get_parameters_of_task(task);
 nodes[] = get_neighbour_nodes;
 /* get the best node for task */
 for (nodes[n] from n=0 to n=max_node) {
 node_parameters = get_parameters_of_task(nodes[n]);
 calc_rate = set_rate(node_parameters,task_parameters);
 if (rate < calc_rate)
 chosen_node = nodes[n];
 else
 rate = calc_rate;
 }
 /* take a decision */
 decision = play_game(chosen_node);
 if (decision is cooperating) {
 send_task(chosen_node,task);
 receive_results;
 } else {
 send_back_task_into_queue; }}

 This information is used to choose node which will be participate in
executing of tasks. Algorithm #2 shows scheme of node actions when user generates
computational load.
 When computational load is generated by a user within a node it is divided
into tasks and placed into temporary queue. Since this moment tasks are distributed
to nodes in neighbourhood. Scheduler is seeking for a node which is the best for
chosen task. When a node is chosen, game is played. Node have to take one of two
decisions: cooperation (accept of task) or defection (refuse of acceptance of task). If
it chooses cooperation, the task may be sent. In the other case we need to repeat this

26 Świtalski P., Serdyński F.

Optimization

procedure skipping this node. The trust at a node which accepted and executed a task
is increased.
4.3 Taking of decision

Decision of acception or refusing an offer is taking when a node is chosen by
node which has task to send. In this situation game is played. Result of this game
partly depends on parameters of the node, such as trust level and a number of
exceeded of deadlines for tasks. Nevertheless decision is taken by strategy of node.
The strategy is represented by a binary string of the length 12 (Fig. 4.1).

Figure 4.1. Coding of the strategy

 The strategy is coding decision which depends on the trust level and
a number of exceeded deadlines. Trust level was described in section 4.1. The
second parameter describes deadlines which was exceeded for a period of time. This
period defines a piece of historical information about busyness of node of local
queue. If a number of deadlines is zero, queue is empty or node can execute of tasks
from this queue without deadlines. In other case node cannot execute tasks without
deadlines.
 Let’s suppose that node i has trust level equal 0.55 and a number of deadlines
exceeded in past time is 2 then we turn down a task (see Fig. 4.1).
 This strategy is chosen from population of strategies created by evolutionary
algorithm. According to IPD under Random Pairing [13] nodes are chosen
randomly. Games can be played with known nodes (in neighbourhood). After the
game payoff is calculated from the payoff table.

5 Conclusions

In this paper, we have proposed a new approach based on game theory to the
task scheduling problem. In order to enforce cooperation of nodes in grids we have
used IPD under Random Pairing. It seems that this model can be a good solution for
task scheduling in heterogeneous and autonomous systems like computational grids.
Currently the model is implemented and will be the subject of intensive study to
verify its main assumptions.

R A A A R A A R A A A R

N M F N M F N M F N M F exceeded deadlines

 decision
A: accept a task
R: refuse of
acceptance a task

a number
of deadlines

letter

0 N

1-3 M

>3 F

trust level 0

0 – 0.3

trust level 1

0.3 – 0.6

trust level 2

0.6 – 0.9

trust level 3

0.9 – 1.0 tr i = nti / nci

tri - level of trust
nti - a number of completed
tasks without exceeded of
deadline
nci - total number of tasks
accepted by node

0 1 2 3 4 5 6 7 8 9 10 11

 Game Theoretical Model Applied to Scheduling 27

Studia Infoamtica 2(9)2007

References

1. Foster I. and Kesselman C. (ed.), (1999). The Grid: Blueprint for a Future
Computing Infrastructure, Morgan Kaufmann Publishers, USA.

2. Foster I., Kesselman C., Tuecke S., (2001). The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, International Journal Supercomputer
Applications, 15(3).

3. Ferguson D., Nikolaou C., Sairamesh J., Yemini Y., (1996). Economic models for
allocating resources in computer systems. Market-Based Control: A Paradigm for
Distributed Resource Allocation, World Scientific Press: Singapore.

4. SETI@home: http://setiathome.ssl.berkeley.edu
5. Forghanizadeh S., (2005). Grid Processor Scheduling based on Game

Theoretic Approach, CPSC532A Final Project.
6. Buyya R., Abramson D., Giddy J. and Stockinger H., (2002). Economic

Models for Resource Management and Scheduling in Grid Computing, Special
Issue on Grid Computing Environments, The Journal of Concurrency and
Computation: Practice and Experience (CCPE), Wiley Press, USA.

7. Ygge F., (1998). Market-Oriented Programming and its Application to Power
Load Management, Ph.D. Thesis, Lund University.

8. Wellman M.P., Walsh W.E., Wurman P.R., MacKie-Mason J.K., (2001).
Auction Protocols for Decentralized Scheduling, Games and Economic
Behavior, 35: 271-303.

9. Wilson L.A., (2008). Distributed, heterogeneous resource management using
artificial immune systems, International Parallel and Distributed Processing
Symposium (IPDPS '08), NIDISC.

10. Switalski P., Seredynski F., Hertel P., (2006). GAVis System Supporting
Visualization, Analysis and Solving Combinatorial Optimization Problems
Using Evolutionary Algorithms, Intelligent Information Processing And Web
Mining: Proceedings of the International IIS, 75-84.

11. Wikipedia: http://en.wikipedia.org
12. Marsh S.P., (1994). Formalising Trust as a Computational Concept. PhD

Thesis, University of Stirling, UK.
13. Camerer C.F., (2003). Behavioral Game Theory: Experiments in Strategic

Interaction, Princeton University Press.
14. Namikawa N., Ishibuchi H., (2005). Evolution of Cooperative Behavior in the

Iterated Prisoner's Dilemma under Random Pairing in Game Playing, Proceedings
of the Congress on Evolutionary Computation, IEEE Press, 2637-2644.

15. Lijuan X., Yanmin Z., Lionel N. and Zhiwei X., (2005). GridIS: An Incentive-
based Grid Scheduling, Proceedings of the International Parallel & Distributed
Processing Symposium, Denver, Colorado.

28 Świtalski P., Serdyński F.

Optimization

