
STUDIA INFORMATICA
Nr 2(9) Systemy i technologie informacyjne 2007

Coherent synthesis of heterogeneous system –
an ant colony optimization approach

Mieczyslaw Drabowski1
1 Faculty Electrical and Computer Engineering,
 Cracow University of Technology,
 Warszawska 24, Krakow 31–155, Poland

Abstract. The paper presents an innovative approach to solving the problems of computer system
synthesis based on ant colony optimization method. We describe algorithm realizations aimed to
optimize resource, selection and task scheduling, as well as the adaptation of those algorithms for
coherent synthesis realization. We then present selected analytical experiments proving the
correctness of the coherent synthesis concept and indicate its practical motivations.

Keywords. Synthesis, scheduling, task, selection, resource coherent, ant colony, branch & bound

1 Introduction

The synthesis of computer systems consists in the selection of hardware
(choice of resources) and allocation of specific tasks (functions of the system) to
these resources, in order to find the parameters both of hardware and software,
which give the best solutions of the synthesis. It is, depending on the desired crite-
rion, either the shortest time of completion of all tasks, or the cheapest (the most
economical) realization of those tasks. You may think of the synthesis as an answer
to the question – what would the parameters of hardware have to be, for the problem
described by the graph of tasks to be performed fastest or cheapest?

You can assume that each task performed by resources is dependent on the
previous tasks and enables execution of the following tasks. Tasks are presented as
directed acyclic graphs, each vertex of which represents the task and the edges –
interrelations.

The problem of computer systems synthesis requires the list of available
hardware resources – the set describing resources – which can be used for the syn-
thesis of target system. This set may contain such resources as for example:

� processors (general and dedicated),
� operating memory,
� mass storage,
� communication ports, etc.

10 Drabowski M.

Optimization

The process of synthesis is based on iterative procedures execution:
� system analysis,
� resources partitioning,
� tasks scheduling
� solution evaluation,
� system parameters modification.
Thanks to this approach, we are able to analyze in progress every solution we

obtain, while the algorithm is trying to find solutions which give better results than
the current ones. Furthermore, you may “teach” the algorithm to choose only these
solutions, which meet our criteria (thus, besides following the principles of depend-
ent tasks scheduling, you can expect finding solution, which requires the least re-
sources, etc.).

The whole algorithm can be then presented in the form of diagram:
� specification of system assumptions
� definition of the set (libraries) of available resources
� definition of the set (functions) of the system
� definition of the set of system parameters
� modifications of system parameters
� analysis of system parameters in relation to assumptions
� resources partitioning
� tasks scheduling
� tasks and resources allocation
� verification and evaluation of the system obtained
� definition of the target system.
The synthesis based on two algorithms behaving in totally different ways lets

you not only find the (sub-)optimal solution, but also verify this solution by algo-
rithm searching through all possible solutions.

Presented algorithms let us find the solution, but at the same time they let us
evaluate the algorithms themselves. This way we can tell which of the algorithms is
faster in finding better and better solutions, which algorithm is more tolerant to
modifications of system parameters, and also which of them enables fast adaptation
to new parameters, while the system changes dynamically.

If we assume that solution is changing dynamically, it would be a big obsta-
cle for greedy algorithms, because modification of single parameter (giving eventu-
ally better parameters) forces another verification of the full set of solutions.

In our approach, the obtained solutions are considered allowing for the fol-
lowing parameters:

� number of processors and the cost of computing power,
� size and cost of operational memory,
� size and cost of mass storage,
� the time needed for scheduling the tasks.
To evaluate obtained solution, we use the method of weighted average:

evaluated are all parameters considered during the analysis with appropriate
weights; if the final grade of the new solution is better than the grade of the previous
one, the new solution is being saved.

 Coherent synthesis of heterogeneous system… 11

Studia Informatica 2(9)2007

2 Adaptation of ant colony optimization heuristic algorithm
to solve the problem of synthesis

The Ant Colony Optimization (ACO) algorithm is a heuristics using the idea

of agents (here: ants) imitating their real behavior. Basing on specific information
(distance, amount of pheromone on the paths, etc.) ants evaluate the quality of paths
and choose between them with some random probability (the better path quality, the
higher probability it represents). Having walked the whole path from the source to
destination, ants learn from each other by leaving a layer of pheromone on the path.
Its amount depends on the quality of solution chosen by agent: the better solution,
the bigger amount of pheromone is being left. The pheromone is then “vapouring” to
enable the change of path chosen by ants and let them ignore the worse (more dis-
tant from targets) paths, which they were walking earlier.

The result of such algorithm functioning is not only finding the solution.
Very often it is the trace, which led us to this solution. It lets us analyze not only a
single solution, but also permutations generating different solutions, but for our
problems basing on the same division (i.e. tasks are scheduled in different order,
although they are still allocated to the same processors). This kind of approach is
used for solving the problems of synthesis, where not only the division of tasks is
important, but also their sequence.

To adapt the ACO algorithm to synthesis problems, the following parameters
have been defined:
� Number of agents (ants) in the colony,
� Vapouring factor of pheromone (from the range (0; 1)).
The process of choosing these parameters is important and should consider that:
� For too big number of agents, the individual cycle of algorithm can last quite

long, and the values saved in the table (“levels of pheromone”) as a result of
addition will determine relatively weak solutions.

� On the other hand, when the number of agents is too small, most of paths will
not be covered and as a result, the best solution can long be uncovered.

The situation is similar for the vapouring factor:
� Too small value will cause that ants will quickly “forget” good solutions and as

a result it can quickly come to so called stagnation (the algorithm will stop at
one solution, which doesn’t have to be the best one).

� Too big value of this factor will make ants don’t stop analyze “weak” solutions;
furthermore, the new solutions may not be pushed, if time, which has passed
since the last solution found will be long enough (it is the values of pheromone
saved in the table will be too big).

The ACO algorithm defines two more parameters, which let you balance be-
tween:

� α – the amount of pheromone on the path, and
� β – “quality” of the next step.

These parameters are chosen for specific task. This way, for parameters:
� α > β there is bigger influence on the choice of path, which is more often

exploited,

12 Drabowski M.

Optimization

� α < β there is bigger influence on the choice of path, which offers better
solution,

� α = β there is balanced dependency between quality of the path and de-
gree of its exploitation,

� α = 0 there is a heuristics based only on the quality of passage between
consecutive points (ignorance of the level of pheromone on the path),

� β = 0 there is a heuristics based only on the amount of pheromone (it is
the factor of path attendance),

� α = β = 0 we’ll get the algorithm making division evenly and independ-
ently of the amount of pheromone or the quality of solution.

Having given the set of neighborhood N of the given point i, amount of
pheromone on the path h and the quality of passage from point i to point j as an
element of the table η you can present the probability of passage from point i to j as.
Formula evaluation of the quality of the next step in the ACO algorithm:

∑
∈ k

l

ijij

ijij

Nl

βα

βα

ητ
ητ

][][

][][
 when j k

iN∈

0 else

In the approach presented here, the ACO algorithm uses agents to find three

pieces of information:
� the best / the most beneficial division of tasks between processors,
� the best sequence of tasks,
� searching for the best possible solution for the given distribution.
Agents (ants) are searching for the solutions which are the collection result-

ing from the first two targets (they give the unique solution as a result). After sched-
uling, agents fill in two tables:

� two-dimensional table representing allocation of task to the given proces-
sor,

� one-dimensional table representing the sequence of running the tasks.
The job of agent involves:

1. collecting information (from the tables of allocation) concerning alloca-
tion of tasks to resources and running the tasks,

2. drawing the next available task with the probability specified in the table
of task running sequence,

3. drawing resources (processor) with the probability specified in the table
of allocation the tasks to resources,

4. task schedule realization,
5. it was the last task? (if not go to 2, if so then end).

To evaluate the quality of allocation the task to processor, the following method is
being used:

1. evaluation of current (incomplete) scheduling,
2. allocation of task to the next of available resources,

k
ijp =

 Coherent synthesis of heterogeneous system… 13

Studia Informatica 2(9)2007

3. evaluation of the sequence obtained,
4. release the task,
5. was it the last of available resources? (if not go to 2, if so then end).

The computational complexity of single agent process is polynomial and de-

pends on the number of tasks, resources and times of tasks beginning.
After initiating the tables (of allocation and sequence) for each agent, the al-

gorithm starts the above cycle, after which the evaluation of solutions takes place.
Having completed the particular number of cycles, the parameters are being updated
and algorithm continues working:

1. initiation of tables of tasks running sequence and allocation of tasks to re-
sources,

2. completing the cycle of analysis for each agent,
3. evaluation of the best solution found in current cycle,
4. for each agent – basing on the best solution – updating the tables of tasks

running sequence and allocation of tasks to resources,
5. is it the last cycle? (if not go to 2),
6. optimization/customization of system parameters.

3 Customization of the Branch & Bound greedy algorithm

to synthesis problems solving

Branch & Bound (B&B) algorithm is a greedy algorithm browsing the set of

solutions and “pruning” these branches, which give worse solutions than the best
solution already found. This kind of approach often significantly reduces the number
of solutions, which must be considered. However in the worst case scenario, “prun-
ing” the branches is impossible and as a result, the B&B algorithm analyzes the
complete search-tree. Both forms (DFS and BFS) of B&B algorithm were used for
synthesis. It let us comprehend the problem of analysis of three different kinds of
optimization (cost, power, time) without discrediting any of the problems.

B&B algorithm investigates the problem by:
� choice of the task,
� definition of initial time to which you can schedule the task,
� choice of processor on which the task will be allocated.
Because allocating the chosen task in the first available time unit or on the

first available processor is not always the best idea, all available time units and
processors are being considered. As a result, calculative complexity of algorithm
changes exponentially when new tasks are added or polynomial after addition of
new processors.

Although B&B algorithm operation process is relatively simple, the number
of solutions, which must be examined, is huge.

14 Drabowski M.

Optimization

4 Calculative experiments

Because one algorithm creates unlimited cycle and the other one takes a very
long time to finish in many cases, the results given in the tables present state of the
system after not more than three minutes of analysis. Depending on the solution
criterion, there were used both forms of B&B – DFS and BFS – for the algorithm to
be able to find a good solution in time.

Each solution given by Ant Colony algorithm will be graded on the basis of
solutions found by Branch & Bound algorithm.

quality = 100%
criterions

1 ∑
=

criterions

criterion onACOcriteri

BcriterionB

result

result

1

&

Formula for the quality of obtained solution is following.

The final grade is influenced only by these parameters, which were being op-
timized by algorithms: cost, power and time of scheduling. The total quality of pro-
posed system includes all three parameters (scheduling time, cost and power con-
sumed by the system):

� the quality higher than 100% means that ACO algorithm has found better
solution than B&B,

� the quality equal 100% means that both algorithms have found equally
good solutions,

� the quality less than 100% means that B&B algorithm has found better
solution.

The correctness of scheduling proposed by ACO and B&B algorithms was
verified on the basis of the following examples.

The algorithms were given the following resources: processors, operating
memory, mass storage.

Characteristic Processors:

Id Computation
power

Power
consumption

(active)

Power consumption
(non active)

Processor 1 1 100 10
Processor 2 2 120 12
Processor 3 4 150 15
Processor 4 8 200 20

ASIC 1 1 80 8
ASIC 2 2 110 11
ASIC 3 4 150 15
ASIC 4 8 180 18

 Coherent synthesis of heterogeneous system… 15

Studia Informatica 2(9)2007

Power consumption optimization

Time, which has passed until solution was found and the parameters of the
target system are presented in the table:

Ant Colony Branch & Bound Number of

tasks Time Length Cost Power Time Length Cost Power
Quality

%
5 2.0 7.5 3.00 900 7.5 7.5 3.00 900 100.0
10 2.5 7.5 9.50 1892 21.0 10 5.00 1930 102.0
15 42.5 8.0 10.00 2839 0.0 30 2.00 3000 105.6
20 32.5 12.5 10.00 3842 0.0 40 2.00 4000 104.1
25 8.5 12.5 11.50 4770 0.0 50 2.00 5000 104.8
30 11.0 15.0 16.50 5996 0.0 60 2.00 6000 100.0
35 20.5 15.0 19.00 6975 0.0 70 2.00 7000 100.3
40 32.0 20.0 19.00 7994 0.0 80 2.00 8000 100.1
45 12.0 16.5 19.00 8989 0.0 90 2.00 9000 100.1
50 22.0 21.3 19.00 9971 0.0 100 2.00 10000 100.3
55 35.5 24 19.00 11014 0.0 110 2.00 11000 99.9
60 50.5 23.8 19.00 12030 0.0 120 2.00 12000 99.8

The above example shows, that ACO algorithm has the advantage over the

B&B algorithm in the wide interval. The first one gives better scheduling in many
cases. that apart from very good power consumption parameters of the systems pro-
posed by ACO algorithm, their quality is much better than the quality of systems
proposed by B&B algorithm: the time of scheduling is many times shorter and their
price is only a little higher.

Cost of the system optimization

Time, which has passed until solution was found and the parameters of the
target system are presented in the table.

Ant Colony Branch & Bound Number of
tasks Time Length Cost Power Time Length Cost Power

Quality
%

5 0.0 10 2.00 1000 0.0 10 2.00 1000 100
10 0.0 20 2.00 2000 0.0 20 2.00 2000 100
15 0.5 30 2.00 3000 0.0 30 2.00 3000 100
20 1.0 40 2.00 4000 0.0 40 2.00 4000 100
25 1.5 50 2.00 5000 0.0 50 2.00 5000 100
30 4.5 60 2.00 6000 0.0 60 2.00 6000 100
35 6.0 70 2.00 7000 0.0 70 2.00 7000 100
40 6.5 80 2.00 8000 0.0 80 2.00 8000 100
45 11.5 90 2.00 9000 0.0 90 2.00 9000 100
50 20.0 100 2.00 10000 0.0 100 2.00 10000 100
55 33.0 110 2.00 11000 0.0 110 2.00 11000 100
60 42.5 120 2.00 12000 0.0 120 2.00 12000 100

This example shows that ACO algorithm can find the solution as good as the

greedy algorithm, despite the fact that this solution is an extreme case of scheduling
(all tasks are allocated at the first processor).

16 Drabowski M.

Optimization

The cost of proposed solution results from the fact, that all tasks were allo-
cated to the first processor (with computing power equal 1) and each task declares
using 1MB of operational memory and 1MB of mass storage (as a result we get the
cost of ~2.00099).

Scheduling time optimization

Time, which has passed until solution was found and the parameters of the target
system are presented in the table.

Ant Colony Branch & Bound Number of
tasks Time Length Cost Power Time Length Cost Power

Quality
%

5 0.0 1.5 25.00 1004 0.5 1.5 24.00 989 100
10 0.0 2.5 30.51 2001 0.0 2.5 30.51 2001 100
15 0.0 4.5 30.51 3128 0.0 4.5 30.51 3094 100
20 0.5 6.0 30.51 4173 0.0 6.0 30.51 4173 100
25 1.0 7.9 30.51 5282 0.0 7.9 30.51 5282 100
30 1.5 10.0 30.51 6373 0.0 10.0 30.51 6396 100
35 2.0 11.3 30.51 7448 0.5 11.3 30.51 7448 100
40 2.5 13.5 30.51 8602 0.0 13.5 30.51 8609 100
45 3.0 15.0 30.51 9636 0.0 15.0 30.51 9614 100
50 4.5 16.5 30.51 10693 0.0 16.5 30.51 10693 100
55 6.5 18.0 30.51 11772 0.0 18.0 30.51 11772 100
60 7.0 20.3 30.51 12939 0.0 20.0 30.51 12872 98.5

This example shows that ACO algorithm is able to find very good or even

optimal scheduling in the reasonable time. When the number of tasks is smaller than
the number of processors, this time is shorter than the time needed by B&B algo-
rithm. With the large number of tasks, the ACO algorithm was unable to find sched-
uling equally good to the one found by B&B algorithm, but its offers were very
similar.

Optimization of scheduling time and system cost

Time, which has passed until solution was found and the parameters of the
target system are presented in the table.

Ant Colony Branch & Bound Number of
tasks Time Length Cost Power Time Length Cost Power

Quality
%

20 59.0 10 15 4007 0.0 6.0 30.50 4173 131.7
25 60.0 9.0 20.50 5054 0.0 7.9 30.51 5281 118.3
30 12.5 9.0 19.00 6057 0.0 10.0 30.51 6394 124.5
35 16.0 12.5 19.00 1004 0.5 11.3 30.51 7448 125.4
40 15.5 15.0 19.00 8010 0.0 13.5 30.51 8568 125.3
45 42.5 16.5 19.00 9011 0.0 15.0 30.51 9654 125.7
50 26.5 18.0 19.0 10024 0.0 16.5 30.51 10693 126.1
55 34.5 20.0 19.0 11009 0.0 18.0 30.51 11772 125.3
60 44.0 21.4 19.00 12003 0.0 20.0 30.51 12872 127.0

 Coherent synthesis of heterogeneous system… 17

Studia Informatica 2(9)2007

In the multi-objective optimization it is clear that ACO algorithm exceeds the
greedy algorithm B&B in relation to the quality of solutions: solutions proposed by
ACO algorithm are better then the ones proposed by B&B algorithm even by 31.7%.

Power consumption and cost of the system optimization

This is another example of joint optimization, where we look for the cheapest

and the most efficient system.
Time, which has passed until solution was found and the parameters of the

target system are presented in the table.

Ant Colony Branch & Bound Number of
tasks Time Length Cost Power Time Length Cost Power

Quality
%

10 0.5 20.0 2.00 2000 0.0 20.0 2.00 2000 100.0
15 3.5 30.0 2.00 3000 0.0 30.0 2.00 3000 100.0
20 4.5 18.0 5.00 3780 0.0 40.0 2.00 4000 72.9
25 10.0 22.0 5.00 4732 0.0 50.0 2.00 5000 72.8
30 12.5 27.0 5.00 5670 0.0 60.0 2.00 6000 72.9
35 12.0 20.0 10.00 6677 0.0 70.0 2.00 7000 62.4
40 27.0 28.0 10.00 7869 0.0 80.0 2.00 8000 60.8
45 16.5 33.0 10.00 8835 0.0 90.0 2.00 9000 60.9
50 57.5 32.0 10.00 9673 0.0 100.0 2.00 10000 61.7
55 43.5 38.0 10.00 10766 0.0 110.0 2.00 11000 61.1
60 55.5 37.5 11.50 11822 0.0 120.0 2.00 12000 59.4
10 0.5 20.0 2.00 2000 0.0 20.0 2.00 2000 100.0

This example illustrates that ACO algorithm isn’t better than greedy algo-

rithms for all kinds of problems. The reason of such weak results is a very difficult
choice for the algorithm between power and cost. To illustrate the problem we will
try to analyze the scheduling of three first tasks. Even scheduling the first task
causes some kind of dilemma: you can do this cheaper, but the scheduling will be
longer and at the same time more power consuming, or you can do this at the higher
cost, but with less power consumption (on the faster processor, the task will be com-
pleted sooner). If the algorithm chooses the second processor – the choice of slower
processor in the next step will turn out more expensive as well as more demanding,
while staying with the faster one will let us keep the same cost and limit the power
(comparing to the slower processor). Also scheduling time will reduce significantly
(what was presented in the table above). The final quality of the system is then diffi-
cult to determine during the whole cycle – it is possible to determine only when you
know the total scheduling length (and thus the power consumed by system, in other
words – after the end of the whole cycle).

5 Conclusion

Basing on the above research you may say, that the ACO algorithm is better
suitable for both one- and multi-objective analyses. The systems obtained (as a re-
sult of ACO algorithm) even in the worst case were only insignificantly worse than
solutions obtained by B&B algorithm. Furthermore, the use of coherent analysis

18 Drabowski M.

Optimization

significantly improved the quality of obtained solutions. In the case of multi-
objective synthesis, heuristic algorithm gave comparable results for optimized pa-
rameters and at the same time, the final grade of the systems it proposed was much
better. The calculative experiments prove the superiority of coherent synthesis over
the incoherent synthesis and heuristic algorithms over the greedy ones.

The heuristic and genetic algorithms handle the NP-complete problems much
better than the greedy algorithms. It is because they approach the problem in a way
that let them pre-analyze the good solutions and immediately start the optimization
of bigger number of parameters in the consecutive steps. Thanks to such approach,
solutions are being found in the short time and the algorithms do not require addi-
tional modifications to optimize other factors (contrary to the greedy algorithms).

Acknowledgment

This work was supported by the Polish Ministry of Science as a 2007-2010 re-
search project.

References

1. Coffman E. G., Jr., (1976), Computer and Job-shop scheduling theory, John Wiley&Sons,

Inc. New York.
2. Dorigo M., Di Caro G., Gambardella L., M., (1999), Ant Algorithms for Discrete Optimi-

zation, Artificial Life, Vol. 5, No. 2.

3. Drabowski M., (2004), Coherent synthesis of heterogeneous system – a neural
approach. Proc. of Artificial Intelligence AI’2004, session IV (25).

4. M. Drabowski, K. Czajkowski, (2006), A Tabu Search approach in coherent synthesis of

heterogeneous system, Studia Informatica, vol. 1/2, 2006, pp. 31-45.
5. Drabowski M., (2006). Coherent synthesis of heterogeneous system – an evolu-

tionary approach. Proceedings of Artificial Intelligence Studies, vol. 3(26).
6. Drabowski M, Wantuch E., (2006). Coherent concurrent task scheduling and

resource assignment in dependable computer system design. In: Int. Journal of
Reliability, Quality and Safety Engineering, vol. 13, No. 1, 15-24.

7. M. Drabowski, K. Czajkowski, (2006), Minimizing Cost and Minimizing Sched-
ule Length in Synthesis of Fault Tolerant Multiprocessors Systems [in:] Parallel
Processing and Applied Mathematic, Springer-Verlag, LNCS 3911, 2006,
pp. 986-993.

