STUDIA INFORMATICA
Nr 1(10) Systemy i technologie informacyjne 2008

Algorithm CFP-SFP with parallel processing

Mariusz Kujawiak
! Institute of Computer Science, University of R,
ul. Sienkiewicza 51, 08-110 Siedice, Poland

Abstract. Existing algorithms for finding association rubls not implement parallel processing.
This paper proposes CFP-SFP (Creating FrequenerRattvith Set from Frequent Patterns
algorithm with parallel processing. The researalolives running CEP-SEP algorithm with one
thread and a dozen or so threads that are exesimedtaneously. The research was conducted
on a computer with one processor and dual-coreegemt.

K eywords. Association rules, data mining, web logs, ApriéprioriTID, AprioriHybrid, FP-Tree

1 Introduction

The first algorithm for the discovery of associatiniles was presented in

1993, and another algorithm, SETM, which usesimglat operators in the discovery
process was also presented in the same year. W, H9ery important paper by
Agrawal and Srikant [1] appeared containing two nalgorithms Apriori and
AprioriTID for discovering strong binary associatioules. Over the years, a lot of
new algorithms for discovering association ruleseNsased on these two algorithms.
The common feature of all algorithms for discovgrassociation rules is an identical
general mechanism in which the algorithm works sTgaper compares AprioriTID,
AprioriHybrid, FP-Tree and a new proposed modell¢daCFP-SFP — Creating
Frequent Patterns with Set from Frequent Patténrthe paper), which proved to be
faster than the models invented so far.
Nowadays, multi-core processors are becoming madenzore popular. Hence, it is
necessary to create algorithms that make use ofoffigortunities multi-core
processors provide. In most algorithms parallel gotation is not included. The aim
of this thesis was to propose a model for the CEP-&lgorithm that allows for
parallel processing of the patterns from the previberation.

88 Kujawiak M.

2 What are association rules?

Discovering association rules is one of the madently used, non-oriented
methods of knowledge discovery in web logs. Thelteghis method gives are also
the easiest to interpret and they present the rirdion most people image as
knowledge discovery. This process means finding@asons between occurring
groups of elements (attributes or values) in d&ts.sThe associations have the
following form: the occurrence of a certain patténply the occurrence of another
pattern. For the rules that have been found, ttheesaof coefficients defining the
strength of a given rule and the probability of #sccessive occurrence are
calculated.

Association rule has the following form=4B. Set A is called the predecessor of the
rule and Set B — the successor of the rule. Bdthaled the right side consist of
logical (true or false) statements or sentencesoéiation rules are defined by the
following coefficients:

e support — this is the ratio between the numberrahdactions from
database D, which support a given set and the nupfbal transactions
in database D. Formal definition of the suppogsdollows:

support(A)={TO D | AO T }/|D|

« If we make an assumption that A and B are the gklements from
database D, it is possible to define the followamgperty of support:

A 0O B = support(A)> support(B)

« Support for a given rule defines the part of ttemsaction in the database
where a given dependence occurs and it is calculaghe following
way:

support(A= B) = support(Al B)

« confidence — defines the probability with which tbecurrence of the
predecessor in the transaction implies the occoeresf the successor.
Confidence is calculated using the following foraul

confidence(A= B) = support(A B) / support(A)
Discovering association rules consists of the tvednnstages:

1. Finding all the frequent sets (sets with suppoat is no lesser than the
minimum defined support) on the basis of input dated minimum
support defined by the user. There are a lot obrilgns used in this
stage, the most popular being Apriori, as well teioalgorithms (which
often derive from Apriori algorithm, namely Apridiid, AprioriHybrid.

2. Finding rules that fulfil the defined criteria, lealson the sets found in the
first step. Association rules are most often used ghopping basket
analysis and they allow to make decisions as regargl promotions and
discounts, advertisements and marketing activitigeroduct distribution.

Systenmy i technologie informacyjne

Algorithm CFP-SFP with parallel processing 89

3 Algorithms CFP-SFP
3.1. Algorithms CFP-SFP for making association rules

Previous solutions focused on searching for datthénmain set. The new
model focuses on finding the association rulesragdent patterns create in the
preceding iteration. This approach reduces the @freaarch to narrowed down data
set, which results in shorter time of building asation rules.

CFP-SFP algorithm:

1: L, = {all frequent one-element sets together with a list of
transactions }

2: Ly =10Ly | I.support = mnSupport}

3: for (k=2;|Lk1| 20; k++) do begin

4: for (i=0; i<|Lkq|;i++) do begin

5: for (j=1; j<|Lka|;j++) do begin

6: if (1i0OLkr and |;0 Ly.1 such as |l1inl;| = k) then begin
7: ¢ =1 |D| i

8: if (c does not belong to Ly) then

9: L¢ add c

10: end if

11: end if

12: end for

13: end for

14: end for

3.2. CFP-SFP with parallel processing

CFP-SFP algorithm with parallel processing dividesaset generated in the
previous iteration into parts according to the wedi parameter (number of threads).
Each part is compared in the full set. This solutadlows the execution of the
algorithm on a few processors at the same timeh Baead searches a fragment of
the set of patterns and full set of patterns.

R | Pattern set
e | Part . | Part : | | Part | — | | Part r
Thread 1 Thread 2 Thread 3 Thread n

L] next pattern set

Fig. 1. Shows the concept of parallel processing proce€§R-SFP algorithm

Sudia Informatica 1(10)2008

90 Kujawiak M.

4 An example showing how CFP-SFP works (min_sup=2)

Table 1. Input data

ID | Elements
1,3,5,7
8,9,2,4
6,8,9
1,3,5,7
8,3,5,6

T
1
2
3
4
5

The halt condition for this algorithm is obtainiag empty set for the next step. In
the initial phase CFP-SFP algorithm creates a nata dtructure that is needed for
subsequent iterations. Using the data in table bhtain the following data set:

Table 2. The result afterSliteration

Pattern 1 2 3 4 5 6 7 8 9
Attributes 1,4 2 1,4 2 1,45| 3,5 1,4 2,34 2,3
The number
of attributes 1 2 1 3 2 2 3 2

Two elements — 2 and 4 are removed from table tBeysdo not meet the minimum

support condition. It is only used in the firstraon. Table 3 represents frequent
one-element patterns. As a result, the followintadset, determining frequent one
element patterns is obtained:

Table 3. The result afteristep

Pattern 1 3 5 6 7 8 9
Attributes 1,4 1,4 1,45 3,5 1,4 2,3,b 2,3
The number
of attributes 2 3 2 2 3 2

Data prepared in this way are used in the next gtephich one element patterns are
linked to make two-element patterns on the basettabutes similarity e.g. element
{1} and element {3} from table 3 have the samaihtites {1,4} Therefore, it is
possible to build a new two-element pattern {1,3%wmthe support equal 2. A given
pattern may be inserted to the nest step onlyeifrtfmimum support condition will
be met. After execution of this step we obtairsadif frequent two-element patterns:

Table 4. The result after the"®step

Pattern 1,3 1,5 1,7 3,5 3,7 5,7 6,8 8,9
Attributes 1,4 1.4 1,4 1.4 1,4 1,4 3,5 2,
The number
of attributes 2 2 2 2 2 2 2 2

Systenmy i technologie informacyjne

Algorithm CFP-SFP with parallel processing 91

In the next iteration only three-element pattemessearched for, in this case we look
for the shared part of frequent patterns. We thkefitst pattern {1,3} from the data
in table 4 and we compare it with other patterns:

{1,3} and {1,5} -> shared part {1}

It means that it is possible to build a patternalitiakes the following form {1,3,5},
with an assumption that the minimum support coaditis met. After this iteration
we obtain the following frequent patterns:

Table5. the result after the"@step

Pattern| Attributes The number
of attributes

1,35 1,4 2

1,3,7 1,4 2

1,5,7 1,4 2

3,5,7 1,4 2

The obtained set is further analysed in the seafch four element pattern. In this
case it is possible to build one such element §173, with support equal 2 by
attributes {1,4}.

The algorithm stops when it is impossible to maig pattern from the previous set.

5 Research
5.1. Research conducted using one cor e processor

The comparative analysis was conducted using a etempvith a processor
Intel Celeron Mobile 1.86 MHz z 1024 MB RAM. Thesearch was conducted using
a part of the T1014D100K.daffile. The part of the file starts at the beginnifghe
file and contains a defined number of lines. A pdirthe file containing 15000 lines
was used for this research.

—e—1thread 10thrcad —=—2Cthread ——50threac =1 thread 10threac =we=20thread =50 taread

40 18

" A "
o I \N\— v
=N g0
T \] \,
5 zl N
o \.__‘ o S

iteration iteration

Graph. 1. Execution time distribution Graph. 2. Execution time distribution
for CEP-SEP algorithm for support equal 15for CEP-SEP algorithm for support equal 25

! The dataset used for the purpose of the resemiatailable at: http://fimi.cs.helsinki.fi/data/

Sudia Informatica 1(10)2008

92 Kujawiak M.

Figures 1 and 2 show the execution of the mulgalralgorithm conducted using
one core processor. It may be noticed that tiseaeslight decrease in efficiency of
the algorithm compared with the result for one akire€T his situation is caused by the
allocation of processor time for each of the tbsgavhich causes the delay in the
execution of the algorithm. However, it may alsodiserved that the more threads
the smaller the difference in efficiency.

—+—1thread 10threac —=—20thread =—==—50thrcad =—+=1thread ===—10threac ===20thread 50thread

140 50

120 50 D e ——

100 7/@ w© /;"—"—_‘_‘
3 1.
& e 7 8 4

/ 20 Z

20 /

B4 0

0 0 ¥

0 2 4 3 8 10 0 2 4 6 8 10
iteration iteration
Graph. 3. Execution time Graph. 4. Execution time

for CEP-SEP algorithm for support equal 15for CEP-SEP algorithm for support equal 25

Figures 3 and 4 clearly show the increase in ei@tuime of the algorithm. The
differences in the execution become irrelevant ifiraater number of threads is
defined.

5.2. Resear ch using dual-cor e processor

The comparative analysis was conducted using a etempvith a processor
Intel Core2Duo 1.86 MHz z 1024 MB RAM. Research wasducted using a part of
the T1014D100K.dat file. The part of the file stgt the beginning of the file and
contains a defined number of lines. A part of fleedontaining 15000 lines was used
for this research.

=1 thread 10thread =—s—2Ctnread ===50threac =1 threac 1Cthread =+—20thread =——=>50thread

5
2 /\ 16

LN SR A
IR\ B %\
VA \N
D N

iteration iteration

second
second

10

S
~
~
=
o
5

Graph. 5. Execution time distribution Graph. 6. Execution time distribution
for CEP-SEP algorithm for support equal 15for CEP-SEP algorithm for support equal 25

Figure 5 shows that if the number of threads eq68lst does not shorten the
execution of the algorithm. To the contrary, the@xion takes up more time. The
most favourable number of threads is equal to 2@nT iterations 2,3 and 4 result in
the biggest growth in efficiency. This results frahe fact that there are a lot of

Systenmy i technologie informacyjne

Algorithm CFP-SFP with parallel processing 93

patterns to search in these iterations, which takes lot time in case of single-
thread applications.

=1 thread 10threac ==—20thread ====50 threac —o—1threed 10thread =ar—2Cthread ====50thread

second
TN
58383 a5
second
NN ow
G s 5 3

30
Y - -
A L
a [
g 2 4 6 8 10 a 2 & 6 8 10
Graph. 7. Execution time distribution Graph. 8. Execution time

for CEP-SEP algorithm for support equal 25 for CEP-SEP algorithm for support equal 25

Multi-core processors show significant increaseefficiency. However, too big
number of threads may slow down the generatiorssdaation rules.

6 Conclusions

Parallel processing model in CEP-SEP algorithmwadlao increase the
efficiency using multi-core processors. The redealso show the increase in the
efficiency using one-core processor. However, thizease in efficiency is not
always present. The proposed solution is an impnevg of the algorithm for the
new generation of processors, namely multi-corecgssors, which have recently
become extremely popular. Further research on theritam will focus on the
minimization of system memory use during the exeousf the algorithm.

References

[1] Agrawal R., Imielinski T., Swami A.N. "Mining\ssociation Rules between Sets of ltems
in Large Databases.” SIGMOD. June 1993, 22(2):207-1

[2] Agrawal R., Srikant R. "Fast Algorithms for Mig Association Rules”, VLDB.
Sep 12-15 1994, Chile, 487-99, ISBN 1-55860-153-8.

[3] Mannila H., Toivonen H., Verkamo A.l. "Efficie algorithms for discovering association
rules." AAAI Workshop on Knowledge Discovery in Rbhases (SIGKDD). July 1994,
Seattle, 181-92.

[4] Ezeife C.l.,, Su Y., Mining Incremental Assodiat Rules with Generalized FP-tree,
Proceedings of the Fifteenth Canadian Conferencértificial Intelligence (Al 2002),
Calgary, Canada (May 25-29, 2002), Lecture NotesComputer Science (LNCS),
Springer-Verlag, Berlin Heidelberg 2002.

[5] Kujawiak M., Ktopotek M.A., Wykrywanie regut zazkéw w plikach Web Logow,
Technologie przetwarzania danych, TPD 2007, Septer2007, Wydawnictwo Politach-
nika Poznaska, ISBN 978-83-7143-349-8.

Sudia Informatica 1(10)2008

