
STUDIA INFORMATICA
Nr 1(12) Systems and information technology 2009

Comparative analysis of database access
technology

Andrzej Barczak, Dariusz Zacharczuk,
Stanisław Jastrzębowski1
1 Institute of Computer Science, Academy of Podlasie,

ul. 3 Maja 54, 08-110 Siedlce, Poland

Abstract. The paper’s subject is comparative analysis of database access
technologies. It presents the evolution of the discussed technologies, which are
divided into the following categories: single-platform and multi-platform
technologies. Sample programs showing the use of programming interfaces, used for
initiating and establishing connections with databases and performing simple
operations on them. A database diagram, which was used for measuring efficiency of
selected technologies as well as testing plan and concept, system and hardware
parameters, tested queries and the program skeleton that was used for measuring the
efficiency of selected technologies, were presented. The results were grouped
according to 4 query types and 3 operating systems. A description was attached to
each graph. Conclusions were provided for query tests for each of the operating
systems. Finally, the most efficient technologies were discussed, potential causes of
increase or decrease in efficiency were presented, and the results were summarized.

Keywords. MySQL, Oracle, PostgreSQL

1 Introduction

A database is an important link in the process of strategic decision making
and allows for efficient functioning of each organized unit or entity. Each company
usually has a few different databases. In this case, a database management system
must be able to establish connections and communicate with different data sources.
It is a situation where database access technologies are particularly useful. Without
them, a programmer writing an application that manages different database types
would have to include the code for handling commands for each of the databases,
used by the program. It would be much more time-consuming, and expensive.
Another advantage of database access technologies is also the fact that the user
needs to learn to use only one programming interface, and s/he can still use different
databases in his or her applications.

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

16

There are a lot of technologies that make access to data available. Some of
them are more popular, others are less popular, some are more efficient and others
are less efficient. They may be commercial products or freeware, etc. The selection
of an appropriate technology and customization of a database to suit a given project
is not easy and depends on many factors such as the project scale, its use (web
network, data warehouse, etc.), the need to provide simultaneous access to many
users, database distribution, operation system or hardware configuration
(workstation, server). It is a fact that cooperation between some database interfaces
and particular databases is better, and it is worse in case of others. There are
interfaces that allow access to many different data sources, and such interfaces that
are much more efficient than others, although they allow access to only one
database.

2 Access technologies

The history of access technologies dates back to the 1970s when such
database systems as dBase, Paradox, Clipper and FoxPro dominated. Popularization
of all kinds of database solutions made their authors create access mechanisms
to various databases using different programming languages. In mid 70s Moshé M.
Zloof from the IBM Research Centre created one of the first access technologies,
which was called Query-By-Example (QBE). This technology is based on a high-
level language which manages data, and allows one to build uniform queries, make
convenient data updates or manage and control a relational database. One of the
main QBE assumptions was facilitating inexperienced database users’ learning
process. The working principle of QBE is as follows: filling an empty record whose
structure is identical to the structure of records in a database with sequences of
characters to be found, e.g. putting “Nadarzyn” in the “Place” field or “Kowalski in
the “Surname” field. The query returns a list of all the records containing a particular
sequence of characters in a given field. QBE system converts the query asked by the
user into a formal database query. Therefore, the user can execute complex database
queries even though he has no knowledge of formal methods.
 Query-By-Example gave the beginning to other data access technologies,
such as DAO (Data Access Object), ODBC (Open DataBase Connectivity), OLE
DB (Object Linking and Embedding DataBase), or ADO (ActiveX Data Object).
 Data Access Object is a component that provides a uniform interface for
communication between the application and the data source (e.g. a database or
a file). It is often connected with design templates, universal solutions (tested in
practice) to frequently appearing, repetitive design problems. Adding DAO
to a given application, results in adding another interface layer and increasing the
amount of code, which must be executed in order to perform the same action.
For this reason, in applications where efficiency is critical, DAO is not added
in order to ensure the fastest operation possible.
 Another technology that became an alternative to Query-By-Example and
Data Access Object is Open DataBase Connectivity (ODBC). Representatives of
a few companies producing both hardware and software worked for a couple of

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

17

years in SQL-Access Group (SAG) trying to define a universal data access method
in order to simplify client/server software. Microsoft company used the SAG group
results to create Call-Level Interface (CLI)1, an interface that was later used to
create Open DataBase Connectivity Application Programming Interface. Structured
Query Language (SQL)2 was selected as a language for communication with
databases.
 One of the interface types that makes it easier for programmers to use
database access technologies is Embedded SQL. It allows for using SQL queries
directly in the programming language code. Then, preprocessor definitions are
called - lower level objects, methods and functions - to which appropriate code
is assigned that refers to the database interface. Before C language compiler carries
out the final compilation of the program, all the pre-processor instructions will have
to undergo pre-compilation – changing commands from SQL into a low-level code.
 Another main type of API is the above mentioned Call-Level Interface (CLI).
It is a method of SQL instruction execution in a conventional programming
language program. First, a connection with a database is initiated using appropriate
object that handles connections. Then, an appropriate method, an object,
representing SQL instruction or an object handling connections with database is
used to execute SQL instruction. This interface type became extremely popular in
client/server-based systems. Call-Level Interface is an interface of a lower level than
Embedded SQL. Instead of placing SQL instructions in the application code,
a programmer places a sequence of standard subprogram calls, which send messages
to a given DBMS3.
 ODBC defines a low-level set of functions that make data exchange and
instruction transfer possible between client and server applications without the
necessity to possess detailed information concerning the structure of both client and
server. It applies to any operation performed within the joined area of client/server
application, irrespective of whether the client and server run on the same or different
computers, or whether they run on different programming as well as hardware
platforms.

ODBC interface ensures maximum versatility of the application, and makes
it independent of a particular source and kind of processed data. It makes it possible
to build an application that does not have to be dedicated to a particular database. It
is the user that indicates an appropriate module called a database driver, and
connects the application to a particular database containing data to be processed4.
ODBC interface defines the following:

• Library of ODBC functions that make it possible to connect with database
management system (DBMS), execute SQL queries and transfer their
results.

• Uniform method of connecting to and logging in the DBMS,

1 It defines the metod, in which programs should send queries to DBMS and methods used by
applications to handle results obtained from a database.
2 A paper on Open Database Connectivity in Wikipedia. Source:
http://en.wikipedia.org/wiki/Open_Database_Connectivity
3 P. Beynon-Davies, Systemy baz danych, Wydawnictwa Naukowo-Techniczne, Warszawa 2000, p. 123.
4 W. J. Gilmore, PHP 4.0. Poradnik dla programistów, Mikom, Warszawa 2002, p. 262.

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

18

• Uniform data types set,
ODBC interface universality ensures:

• Defining SQL queries during compilation or during application’s work,
• Using the same set of functions to connect to different DBMS,
• The possibility to connect with a numerous DBMS instances,
• Sending and receiving data in a uniform format; database driver converts

data between types defined by ODBC and particular DBMS types.
ODBC standard defines two types of drivers that are compatible, which allows one
system to use two types of drivers:

• Single-tier - the driver processes both ODBC functions as well as SQL
queries,

• Multiple-tier - this driver processes ODBC functions and sends SQL
queries to the target data source.

In a Single-tier implementation the database functionality is realized directly by the
driver. The driver executes SQL queries and acquires information from the database.
Local database drivers such as dBase, Paradox and FoxPro may be examples of such
drivers.
 In Multiple-tier configuration, the driver sends an SQL query to the server,
which processes and executes the query. An application, a driver and a driver
manager are within the system that is usually called a client. Both data source and
software that controls access to data are usually located on another computer called
a server.

3 Single-platform technologies

The fact that Microsoft created COM (Component Object Model) technology
contributed to OLE DB development. COM technology enables efficient
communication between applications by defining program components independent
of programming language. It allows to include in the developed applications
elements that belong to other programs and data exchange between individual
objects using so called interfaces. Component Object Model is used in many
applications, such as. Microsoft Office, where it allows to combine objects
dynamically e.g. from MS Excel spreadsheet to MS Word word processor
documents. It is also the basis of such access technologies to databases as OLE DB
or ADO5.
 OLE DB technology Object Linking and Embedding Database) like ODBC,
COM or ADO was developed by the Microsoft Company. OLE DB is a COM
object, which works in a way that is similar to ODBC, but this applies to any data
source, and not only to SQL databases. Applications may use OLE DB in order
to reach data directly or they may call ODBC via OLE DB in order to get access to
ODBC databases. In comparison with open interfaces such as ODBC, OLE DB is
a very complex solution and it is difficult to use. Moreover, it is not portable, and

5 CAS company website devoted to OPC (OLE for Process Control)
http://www.cas.com.pl/opc/index.php?strona=com

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

19

can only be used by software that is compatible with the Microsoft Windows
environment.
 ADO (ActiveX Data Objects) technology, which derives from COM model
and OLE DB technology is much easier and much more convenient to implement.
ADO is an object-based technology, and it is built based on a set of classes and
methods that implement defined COM6 interfaces. ADO may be used in Visual C++,
Visual Basic environment or another programming environment, which allows for
making references to the types library, and as a result the programmer has access to
objects that create these libraries. Fig. 1 presents the ODBC, OLE DB and ADO7

interactions.

Figure 3.1. Interactions between access technologies to Microsoft’s data

ODBC and OLE DB popularity resulted in the development of new

technologies. It was also connected with the fact that such programming
environments as Borland Delphi and Borland C++ Builder developed by the Borland
company appeared on the market. New environments required new data access
methods. Therefore, such technologies as IBX (InterBase Express),), IDO
(InterBase Objects), FIB (Free InterBase), ODAC (Oracle Data Access
Components), SDAC (SQL Server Data Access Components), MyDAC (MySQL
Data Access Components), Gemini, EasySoft, BDP.NET (Borland Data Provider for
.NET), BDE (Borland Data Engine) were created for these environments. Several
companies developed their own technologies for their programming environments
e.g. Microsoft (ADO), Sun Microsystems (JDBC, Java DataBase Connectivity) or

6 W. Dudek, Bazy danych SQL. Teoria i praktyka, Helion, Gliwice 2006, s. 52-53.
7 IIS 5.0 Resource Kit, rozdział 7: Dostęp do danych oraz transakcje,
http://www.microsoft.com/poland/windows2000/win2000serv/IIS/roz_07.mspx

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

20

ActiveState (DBI, DataBase Interface). ADO technology was used by other
companies. Therefore, ADO uses are not restricted to the Microsoft’s developer
environments and it may be used in applications developed using programming tools
that belong to Borland or ActiveState companies.
 In response to more and more imprecise ODBC technology specification,
a BDE (Borland Database Engine) was developed. It was developed on the basis of
IDAPI (Independent Database API) standard, created by the consortium made up of
the biggest IT companies such as Borland, Microsoft, Hewlett-Packard, IBM and
Oracle. IDAPI is a BDE programming interface, which, in order to get access to
supported databases allows for calls execution at the dBASE and Paradox
applications and C++ language level. Unfortunately, despite initial consensus of the
consortium members’ opinions, it was not widely accepted. As a result, only
Borland company supplied drivers based on this technology. The specification itself
has not been modified, despite many changes that have taken place in IT world since
it was developed.

Despite its undeniable advantages such as speed and simplicity of use, BDE
technology, which once used to be very popular, is not widely used, and Borland
company ceased to develop it. BDE’s disadvantage was its limited portability, and
applications that used it could only work in environments where BDE was
functioning. Fig. 3.2. shows how the BDE technology working principle.

 Figure 3.2. A diagram showing the BDE technology working principle

4 Multiplatform technologies

4.1 JDBC technology

Together with the development and popularization of Java, a language that was
portable and independent of system platform and hardware architecture, a need arose
to create a new database interface that would comply with the assumptions that were
similar to those the language itself complied with. The following observations were
also in favour of it:

• ODBC was a technology developed and used in environments that were
developed on the basis of C and C++. Applications created using them are
dependent on the operating system, which is in disagreement with one of
the Java language foundations – software portability,

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

21

• Rewriting ODBC in Java language did not make any sense due to the
differences in language construction between Java and C/C++,

• ODBC, in the opinion of Java authors, was too complex. The newly
developed interface was to be much simpler in use, and, at the same time,
more functional8.

This technology, written exclusively in the Java language, was called Java DataBase
Connectivity (JDBC). It quickly became popular and was widely used by more and
more Java programmers. Nowadays, it is not only used as a uniform access
technology to any database but it is also a significant element of higher level
applications/interfaces, which allow to access a database at a higher level. Examples
of such uses are presented below:

• SQLJ – SQL is embedded in Java code. This code is then pre-processed in
order to extract proper SQL commands, which are executed by JDBC.

• Java Blend – allows to map (transform) tables in a relational database
directly into Java objects.

Since not all database systems producers prepared JDBC standard implementation in
the Java language, and some of them developed hybrid solutions, four basic JDBC
driver types may be distinguished:

• JDBC-ODBC bridges – queries formulated in Java are translated into the
ODBC driver language. ODBC driver handles communication with the
database. Such a solution is connected with potential costs of ODBC
programming9.

• Java to API SZBD (Native-API partly-Java) – a program written in the
Java language communicates with the DBMS, and not with the ODBC
driver, as above.

• Direct JDBC (JDBC-Net pure Java) – JDBC driver communicates with
the intermediate server using DBMS-independent protocol. The server
translates commands into a given DBMS protocol and sends it the queries
it received. A server may act as a go-between for the data exchange
between many clients and many different DBMS. Thus, it is the most
general and heterogeneous solution, burdened with security reasons.

• Indirect JDBC (Native-protocol pure Java) – JDBC driver communicates
directly with a database using its network protocol. It is the most general
solution, successfully used in intranets.

8 Sieluszko, op. cit.
9 R. Stones, N. Matthew, Bazy danych i MySQL. Od podstaw, Helion, Gliwice 2002, p. 458-471.

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

22

Figure 4.1. JD drivers types and their uses

Using a JDBC-Net driver or a JDBC-ODBC bridge driver demands providing

software dedicated to a particular platform. Thus, none of these solutions
is independent of hardware/system platform.

4.2 ADO.NET technology

ODBC and BDE technologies success, as well as programmers’ aversion to
OLE DB caused by too complex process of configuration and implementation of this
technology made the Microsoft company develop a new data access mechanism.
This resulted in developing ADO (ActiveX Data Objects) technology, mentioned
above, which, similarly to OLE DB, is based on COM objects.

ADO developers aimed at creating a technology that provides access
to a database, without the necessity to know its internal structure. BDE technology
had a similar property. However, BDE consisted of ordinary components using
additional libraries. ADO, in turn, is both an intermediate layer and an access
technology. Another assumption ADO developers made, was providing the same
support for all database systems. Various DBMS have different functionalities.
Therefore, in order to handle all common situations it was necessary to provide
support to all functions used in all databases. It was also connected with the need to
omit a few functions specific to a given DBMS.

 Apart from access to data, ADO (like OLE DB) allows one to access Excel
files, flat files, Lotus files, HTML files and many more data sources. Objects that
create ADO were shown in fig, 4.2. They use the SQL language, and,

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

23

as a consequence, they may be treated as language components for data
manipulation.

Figure 4.2. Hierarchy of objects creating ADO technology

An object, located at the highest level in the ADO hierarchy, is the

Connection object, which, by setting appropriate properties in combination with the
Open method or just by calling it with specified parameters, allows to connect to the
data source. RecordSet object is used to handle all access methods to data. When it
is used, one works with unidirectional result streams of queries from a database,
views data on the server or views buffered query results. Changes made to the data
may be transferred to the database immediately or batch updates using search
operation and data update may be performed. The desired functionality of the
RecordSet object is defined while its instance is being created, and the obtained
RecordSet object may function in very different ways depending on the selected
properties10.
 ADO technology provides programmers, who create COM objects, with
efficient and extended interface for work with data. Since ADO objects may
be called using any programming language e.g. Microsoft Visual Basic, Microsoft
Visual C++, as well as many scripting interfaces, this technology was widely used as
an interface that provided access to many different data warehouses until its
successor, ADO.NET, was developed.

10 Doug Rothaus, Mike Pizzo, “ADO.NET dla programistów ADO”. The Microsoft company website:
http://www.microsoft.com

Connection

Errors Error

Command

Parameters Parameter

RecordSet

Fields Field

Object Collection

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

24

 Together with .NET Framework platform, Microsoft introduced ADO.NET –
an extension of data access technology, provided by ActiveX Data Objects (ADO).
ADO.NET is a new version of library, extending possibilities ADO provides. It
provides better cooperation with other platforms and scalable access to data. Due to
the fact that ADO.NET technology is a set of .NET environment classes, it is not
directly based on OLE DB. However, it is compatible and can communicate with it.
 All classes and interfaces connected with ADO.NET belong to the name
space System.Data. Mechanisms responsible for data gathering are contained in the
following classes DataSet, DataTable, DataRow, DataColumn. Data is accessed
using a set of interfaces called Data Provider. Data Provider acts as a go-between in
the exchange of data between the DataSet object and databases. Fig 4.3 shows
a hierarchy of name space and ADO.NET objects.

Figure 4.3. A hierarchy of name space and ADO.NET objects

Data providers for OLEDB or ODBC are universal providers – they may
provide access to any database, which can be communicated with using OLEDB
or ODBC. However, dedicated data providers such as providers for SQL Server or
Oracle are more efficient. The Borland Company created additional drivers, Borland
Data Provider (BDP), which allow to establish connection with other data sources
i.a. with InterBase and DB2 databases.

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

25

Each data provider consists of the following objects:
• Connection object (SqlConnection, OleDbConnection, OdbcConnection,

OracleConnection) – represents a connection with a particular database. It
contains all the information that are necessary for connecting with
a database, authorization as a defined user and carrying out further
communication.

• Command object (SqlCommand, OleDbCommand, OdbcCommand,
OracleCommand) – is used to perform commands concerning data
gathered in the database. This command may be defined as an SQL query
to be executed or as a procedure name stored in a database. The
Parameters property of the Command object contains a collection
of parameters transferred to the command. Communication with
a database takes place using Connection object,

• DataReader object (SqlDataReader, OleDbDataReader, OdbcDataReader,
OracleDataReader) – is used to read the data returned as a result of the
execution of the query saved in the Command object. Data is sent in
portions, one line at a time,

• DataAdapter object (SqlDataAdapter, OleDbDataAdapter, OdbcDataAda-
pter, OracleDataAdapter) – acts as a go-between in the communication
between the DataSet object and a database.

4.3 DBI technology

Another technology that belongs to multi-platform and portable data access
mechanisms family is DBI (DataBase Interface). It is a part of a package of a very
popular scripting language called Pearl. Pearl has a wide range of access
technologies, which is combined with portability of programs written in this
language, and DBI layer allows for easy and fast data access and modification.
A strength of this technology is simultaneous and transparent access to many
different data sources such as MySQL, SQL Server, Oracle, Informix, Sybase,
without the necessity of knowing each of them.
 The process of development resulted in creating technologies, which need
a virtual machine or such environments as .NET Framework or its independent,
multi-platform counterpart – Mono, in order to work. The development also brought
technologies dedicated to scripting languages such as Pearl, which is available on
each hardware and system platform. Thanks to such an approach, implementation of
these technologies on various systems is much easier, and their portability increases
greatly. Figure 4.4. shows the development of database access technologies, divided
into specializations and types.

5 Tests of selected database access technologies

For the purpose of performance and efficiency tests the following database
was created with the following structure:

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

26

• Departments (id, department_name, description) - Dzialy (id,
nazwa_dzialu, opis)

Figure 5.1. Developing database access technology

• Products (id, department_id, weight, price, pieces_available) - Towary
(id, id_dzial, nazwa, masa, cena, ilosc_dostepnych)

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

27

• Clients (id, name, surname, street, code, city) – Klienci (id, imię,
nazwisko, ulica, kod, miasto)

• Orders (id, client_id, product_id, order_date, completion_date, comment)
- Zamowienia (id, id_klient, id_towar, data_zamowienia, data_Realizacji,
komentarz).

The main table in the database is Orders table that stores information about
client who orders a given product, about a product, order submission date, order
completion date and about optional comments concerning this order. Performance
test of each access technology was conducted using this table.
 Technologies performance tests were conducted using the following
operating systems: Microsoft Windows XP Professional SP2, Microsoft Windows
2003 Server Enterprise Edition SP1 and Linux Fedora Core 7, installed as virtual
machines in the VMware Server, working under control of Windows XP
Professional SP2 system. Each system, which was used to test the technologies was
run on the same machine with identical configuration. However, neither the parent
system nor the virtual systems are real-time systems. Therefore, it is necessary to
remember that the obtained results are influenced by such factors as processor load
and clock speed, operating memory available, the number of running processes, etc.
For the testing purposes the number of processes was minimized, leaving only those
that were essential. Moreover, the tests results might be different if the computer’s
hardware configuration was changed.
 Table 5.1. shows the hardware and system platform used to conduct tests.
The following database servers Oracle XE, MySql, PostgreSQL and Microsoft SQL
Server were used to conduct the tests (the last one was only used with Microsoft
Windows systems).

Table 5.1. Hardware and software parameters used for the tests

Windows XP Professional
SP2

Windows 2003 Server
Enterprise Edition SP1 Linux Fedora Core 7

Procesor: Intel Pentium Mobile
1.73 GHz
Pamięć RAM: 512 MB
Dysk twardy: Seagate 80GB,
7200 RPM, 4MB cache

Procesor: Intel Pentium Mobile
1.73 GHz
Pamięć RAM: 512 MB
Dysk twardy: Seagate 80GB,
7200 RPM, 4MB cache

Procesor: Intel Pentium Mobile
1.73 GHz
Pamięć RAM: 512 MB
Dysk twardy: Seagate 80GB,
7200 RPM, 4MB cache

In order to conduct the technology performance tests, programs were

developed for establishing connection with a particular database, executing
appropriate command (SELECT, INSERT, UPDATE, DELETE) and measuring the
time, in which it was completed. After the measurement is finished, the program
shows the time, which was necessary to execute the series of queries. The
performance of four dedicated DBI drivers providing access to the most popular
databases was measured during the tests. The performance of a universal ODBC
driver was also tested:

• DBD-mysql – DBI driver for MySql
• DBD-Oracle –DBI driver for Oracle
• DBD-Pg –DBI driver for PostgreSQL

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

28

• Win32-SqlServer DBI driver for SQL Server (onlyWindows)
• DBD-ODBC –DBI driver for ODBC

 JDBC technology efficiency was measured using JDBC-ODBC driver.
It is a bridge where the queries formulated in Java are translated by JDBC into
ODBC driver language. ADO.NET technology was tested on its parent platform
.NET in the Windows systems as well as the Mono11 environment using the Linux
system. The performance of the following drivers was tested:

• MySql Connector/NET is fully managed provider and does not need
a client library.

• Npgsql .NET Data Provider for PostgreSQL is a fully managed provider
and does not need a client library.

• ADO.NET Provider for Microsoft SQL Server and Sybase uses TDS
protocol, version 7.0; it is based on FreeTDS and jTDS designs, which, in
turn, are based on JDBC.

• ADO.NET Data Provider for Oracle which is based on Oracle Call-level
interface (OCI), library of functions written in C language used to
perform operations on Oracle databases.

 Due to the fact that there is no version of .NET platform dedicated to the
Linux system, Mono environment was used. Mono was created by independent
programmers and is an open source project, which means that there is access to the
source code. The main sponsor of the initiative is the Novell company. At present,
Mono contains the implementation of most methods that .NET platform, version 2.0,
has. Methods that are part of .NET platform, version 3.0 and 3.5 are being
implemented and compatibility with these versions is being provided.
 Programs based on the skeleton presented below were developed for each of
the four DML (Data Modification Language). As a result, four programs for testing
the efficiency of access technologies were obtained for each database, installed on
three operating systems. The exception is Microsoft SQL Server, which is not
compatible with the Linux operating system.
 During efficiency measurements of database access technologies each program
worked on ten thousand records and was executed seven times. Two extreme values
obtained after time limit were omitted, and the remaining five were used to calculate
the average time of the execution of a given type of query. Table 5.2 shows queries,
which were used during efficiency measurements of each driver.

Table 5.2. Tested queries

Query content Description

SELECT nazwa, cena, imie, nazwisko,
nazwa_dzialu, komentarz
FROM zamowienia JOIN towary ON
zamowienia.id_towar=towary.id
JOIN klienci ON
zamowienia.id_klient=klienci.id

Data is fetched from table
Orders and from related tables,
for which the department name
equals “IT”, and order as well
as completion dates have
appropriate values.

11 Multi-platform version of .NET environment.

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

29

JOIN dzialy ON dzialy.id=towary.id_dzial
WHERE dzialy.nazwa_dzialu = 'IT'
AND (zamowienia.data_zamowienia BETWEEN
'2007-10-01' AND '2008-12-31')
AND zamowienia.data_realizacji='2008-03-31'

INSERT INTO Zamowienia (id_klient, id_towar,
data_zamowienia, data_realizacji, komentarz)
VALUES (1, 1, '2008-03-30', '2008-03-31',
'to jest komentarz')

A new row, which contains
sample data is inserted into
table Orders.

UPDATE Zamowienia
SET komentarz = 'to jest nowy komentarz'
WHERE data_zamowienia < '2008-03-31'

‘Comment’ field is set in
Orders table for the records,
which have appropriate order
date.

DELETE FROM Zamowienia
WHERE data_zamowienia < '2008-12-31'

All the records which meet the
date condition are deleted from
table Orders.

6 Test results of selected technologies

Database efficiency depends on multiple factors, from hardware
configurations, database server settings, selection of an appropriate access
technology to optimization of the database structure and queries. Therefore,
a programmer who writes software using databases must use the skills
administrators have and take care of appropriate indexing of significant columns as
well as optimum state space of tables, code of stored procedures or other queries.
Only then the programmer shall be able to appreciate the possibilities offered by
efficient data access technologies and drivers. Table 6.1. shows efficiency results of
the tested technologies.

Table 6.1. Access technologies efficiency within a given database and operating system

 Average time of query execution

Operating
system Database

Language
and access
technology

SELECT INSERT UPDATE DELETE

Perl – Win32-
-SqlServer 0,9343 14,7070 0,1591 0,1791

Perl – ODBC 0,1754 12,1718 0,1748 0,2192
C# - ADO.NET

Provider 0,3212 9,6558 0,2026 0,2276
SQL Server

Java - JDBC 0,1566 11,8938 0,2284 0,2248
Perl – DBD-

-mysql 0,1978 2,3406 0,3145 0,2734

Perl – ODBC 0,1783 3,0906 0,4164 0,3497
C# – MySql

Connector/NET 0,3902 3,2170 0,5464 0,4934
MySql

Java - JDBC 0,1938 2,9938 0,3750 0,3188

Windows XP
Professional

SP2

PostgreSQL Perl – DBD-Pg 0,2219 16,1353 0,3482 0,1696

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

30

Perl – ODBC 0,2613 17,7656 0,3157 0,1679
C# – Npgsql

Data Provider 0,7438 17,2594 0,7840 0,5814

Java - JDBC 0,2968 17,0408 0,4000 0,1646
Perl – DBD-

-Oracle 0,1502 23,6250 0,5969 0,2811

Perl – ODBC 0,2213 26,7937 1,6449 2,2969
C# - ADO.NET
Provider Oracle 1,7440 17,6312 1,5158 2,3816

Oracle

Java - JDBC 0,2406 23,0280 0,6782 1,7423
Perl – Win32-

SqlServer 0,2690 15,4281 0,2031 0,2164

Perl – ODBC 0,1671 11,5062 0,2127 0,2385
C# - ADO.NET

Provider 0,4964 10,9808 0,3120 0,4902
SQL Server

Java - JDBC 0,2066 11,6562 0,2532 0,2500
Perl – DBD-

-mysql 0,2409 2,1812 0,4260 0,2904

Perl – ODBC 0,1465 2,7093 0,3988 0,3031
C# – MySql

Connector/NET 0,7844 3,5248 0,9438 0,8062
MySql

Java - JDBC 0,1720 2,7996 0,4218 0,3032
Perl – DBD-Pg 0,2522 15,1816 0,3313 0,1320
Perl – ODBC 0,2894 15,2531 0,3511 0,1879
C# – Npgsql

Data Provider 0,8688 15,6112 0,8376 0,7032 PostgreSQL

Java - JDBC 0,2624 15,8592 0,3156 0,2000
Perl – DBD-

-Oracle 0,1518 22,4062 1,4250 2,5468

Perl – ODBC 0,1990 26,5562 0,8853 2,0000
C# - ADO.NET
Provider Oracle 1,5406 16,9052 1,0030 2,2092

Windows
2003 Server

SP1

Oracle

Java - JDBC 0,1782 22,8906 0,8464 1,9562
Perl – DBD-

-mysql 0,1357 2,1221 0,3704 0,2595

Perl – ODBC 0,1626 2,4762 0,3753 0,2661
C# – MySql

Connector/NE12 0,6062 3,8421 0,9175 1,0124
MySql

Java - JDBC 0,1812 2,7510 0,4030 0,2958
Perl – DBD-Pg 0,1922 13,2816 0,3313 0,1200
Perl – ODBC 0,3621 15,1100 0,4223 0,2553
C# - Npgsql

Data Provider 1,0186 12,7354 1,1156 0,8390 PostgreSQL

Java - JDBC 0,5150 15,2330 0,6268 0,4134
Perl – DBD-

-Oracle 0,1073 26,0134 1,2386 2,3901

Perl – ODBC 0,1393 31,5081 1,1346 2,4911

C# - ADO.NET
Provider Oracle 0,5092 24,4706 0,9214 2,6874

Linux Fedora
Core 7

Oracle

Java - JDBC 0,1430 25,0492 0,4262 2,4114

12 MySql Connector/NET during tests performed Rusing Linux was unstable, which caused frequent
freezing or hanging of the testing program.

 Comparative analysis of database access technology

Studia Informatica 1(12)2009

31

The best results were obtained during tests of access technologies using
MySQL database. This base is designed for use in smaller companies where small
amount of data is stored. Moreover, it is dedicated for WWW websites, which, in
a way, results in its minimalist character (e.g. in comparison with such databases
as Oracle or Sybase) and optimum efficiency.

To sum up, the obtained results allow to state that the databases themselves
have a significant influence on access technologies efficiency. Drivers written
in different technologies may be fast and efficient. However, it will not improve the
situation if the query execution time is prolonged because of the delay caused by the
database server. Thus, on the basis of the above results the following
interdependence may be observed: less complex database server – faster operation of
data access drivers and shorter times of testing queries execution; more complex
database server – slower operation of data access drivers and longer times of testing
queries execution.

References

1 Wiesław Dudek, Bazy danych SQL. Teoria i praktyka, Helion, Gliwice 2006.
2 Paul Beynon-Davies, Systemy baz danych, Wydawnictwa Naukowo-Techniczne,

Warszawa 2000.
3 William. J. Gilmore, PHP 4.0. Poradnik dla programistów, Mikom, Warszawa 2002.
4 Richard Stones, Neil Matthew, Bazy danych i MySQL. Od podstaw, Helion, Gliwice 2003.

 Barczak A., Zacharczuk D., Jastrzębowski S.

Systems of information technology

32

