STUDIA INFORMATICA
Nr 2(13) Systems and information technology 2009

Online forms - security,
validation and functionality

Andrzej Barczak, Dariusz Zacharczuk
Institute of Computer Science, University of Podlasie,
St. 3 Maja 54, 08-110 Siedlce, Poland

Abstract: The article discusses the problem of web forms security, and how the
verification of data entry.

Key words: html, web forms

1 Introduction

Forms encounter at every step on the Internet. From the simplest to enable
typing an email and subscribe to a newsletter, a very complex forms such as
multipages orders, where we give contact details, etc. As a users we never wonder
on what safeguards - if any - have the field against intentional or accidental
introduction of erroneous data. It is look differently from behind. A good
programmer should think not only about the functionality of created forms, but also
about its security. After all, the contents of the fields usually consist of a query to the
database and this may pose a potential danger.

The principle of the forms is simple. Having a code:

<form action="zapisz.php" method="post">

<input type="text" name="email" />
<input type="submit" />

</form>

Our form will send data to a file “zapisz.php” using method “post’. Let's say the
destination file execute SQL query content:
,INSERT INTO emaile (email) VALUES ('$_POST [email])”;

and after save, return to the page with the form:
header ("HTTP/1.0 302 Redirect");
header ("location: index.php");

22 Barczak A., Zacharczuk D.

Is something wrong can stand up to that (how trivial) case? Whether such a form
needs protection? Are we able to increase its functionality in itself, since it barely
has issued with one? Yes, yes and yes. We'll explain later.

2 Characteristics of 'user-friendly' forms

Consider what you might expect, use our form, but Let us reject the wishes
about interface:
e small number of fields to fill,

« precise information about what happens after when you click (eg. such as

icon: &),
¢ 1in case of error did not have to reenter all that data.

Number of fields depends on the task that form realize and usually it can not
be very minimized. However, you can divide the long form to several smaller and
fill it in several steps. You willingly enters data in two or three steps every time,
seeing a few fields than a dozen on a single page that you need to constantly scroll
to get to the next position.

If your form contains only one field set a clear indication next to icon to
a confirmatory entry example: "Click to save your data”, otherwise you just confuse
and scare the user. Of course, if the matter concerns the form discussed in the
introduction, place icons like above should be enough :-).

However, there is nothing irritates internet user - such as the need to re-enter
data, which laboriously introduced in the last 10 minutes, pointing his finger on the
keyboard one letter after another. Even if contain only two or three fields, we will
ensure that the errors do not cause the reset form.

These three simple rules should always be taken into account when designing
web pages, so that our forms are user-friendly.

In order to discuss all aspects, we will assume that we have to create a form,
which will contain a variety of fields. In addition, divide it into three pages.
The basic version will look like this:

<!-- form - krokl.php -->

<form action="krok2.php" method="post" >

<select name="wybor">

<option value="1">jeden</option>
<option value="2">dwa</option>
<option value="3">trzy</option>

</select>

<input type="submit" value="go to krok2" />
</form>
<!-- form - krok2.php -->

<form action="krok2.php" method="post" >
<input type="text" name="email” />

Systems and information technology

Online forms — security, validation and functionality 23

<input type="submit" value="go to krok3" />
</form>

<!-— form - krok3.php -->
<form action="zapisz.php" method="post" >
<input type="checkbox" name="zgoda"
value="tak"" />
<textarea name="opis"></textarea>
<input type="submit" value="save all" />
</form>

The first thing we will be the third - the most important point from
the previous chapter, remembering data entered by the user, in case of error or other
circumstances. There are several methods to such action:

1. write to the database each time after sending the form of a step,
[+] Saved data may remain on a very long time - we have full control over
time,

[-] save a record each time it sent by form,
[-] Need to check (in step 1) and possibly load data from database before
displaying any form,
[-] The mechanism is not self-sufficient, for example, use the session,
cookies to remember a unique identifier under which the data are stored
in the database,
[-] A longer time taken to generate the page,
[-] We need to develop mechanisms for the treatment of temporary data
base that will remain after the forms are not complete.

2. session, and remember the fields values into sessions variables,
[+] Short time taken to generate the page,
[/] We have control over time, however, limited (see the following
subitem),
[-] Session expires after a few/several minutes, depending on server
settings (usually we do not make any impact), if something turns the
user's attention for a few moments, after the return all of data (regardless
of which step we are) may be lost,
[-] Browser must accept cookies.

3. transmission of data in a form - hidden fields
[+] Does not write/read from the database - so a shorter time taken to
generate the site,
[+] We have full control over the keeping of the data (for example, we
can put timestamp in a hidden field),
[+] Does not need additional mechanisms to delete temporary data,
[+] Do not need cookies,
[-] That does not work out that we found an ideal method need to mention
the two small drawbacks, the first: the data transmission method “post’ in
the refresh time pop out message like: ".. to see the page your browser
must resubmit the data ..." and "get” makes the url can grow very,

Studia Informatica 2(13)2009

24

Barczak A., Zacharczuk D.

[-] All data will remain confidential and we must reckon with the fact that
having the right tools you can even modify the value of “hidden" fields eg
using Web Developer plugin for Firefox.

Taking into account all pros and cons, in most cases the best choice would be the
third option and it will also continue to analyze. There is nothing but an obstacle to
combine several methods of exploiting their advantages. Transmission of data in
a form can be realized by "post” or ‘get’. Table 2.1 presents the basic characteristics

of both methods.

Table 2.1 POST vs. GET

Method POST

Method GET

Does not affect the url address so you can say Attaches to the url string "key=value®

that it is more elegant.

Data is transmitted implicitly.

Complicated redirects structure. The POST
method is available only with the form.
Therefore, if necessary, redirect the POST
method, we need to generate an intermediary
page. It will contain a form with hidden
fields, which we need and will be
automatically sent using JavaScript such as:

<script>

document. forms.form js.submi
t0;

</script>

In the absence of scripting we have to make
sure the is a submit button that the user will
need to click.

Last but perhaps most importantly - this
method is more secure. For example, if the
form you enter your personal password,
secret data transfer protects them (at least in
the basic degree) before the eyes of third
parties. Remember that POST calls record in
the history of the browser and can be re-call -
and thus to read the data set using
appropriate tools.

for each parameter in the form. In the case of
a large number of fields url address can reach
hundreds of characters long. The advantage
is that you can keep the address, which
(because it contains string data)
automatically complete the form.

Field names and values are explicitly
transmitted in the URL.

Very simple design redirects, links, etc. - just
add to the address of the pair "key=value’.
The GET method can be used in forms, and
links directly to the PHP script code
example:

header("location:
index.php?klucz=wartos¢");

Taking on the form field type "password’,
which is used to hide input password (such as
when you register a new user) password that
become completely visible to outsiders
people, as it is displayed directly in the URL.
Not to mention the fact, that such a link with
all the information that we gave up recorded
in history, and unlike POST - do not need
any tools to read it.

Selecting one of the methods depends on various factors. We will use both
simultaneously. We abandon the separate files krok1.php, krok2.php, krok3.php, in
order to distinguish step, we use the GET method (see the argument of “action’):

Systems and information technology

Online forms — security, validation and functionality 25

<form action="krok.php?krok=2" method="post" >

The data form will be sent implicitly and remembering the value realize of
simple instructions:
<input type="text" name="email”
value="<?php echo $ POST[email] ?>" />

In addition, in order to increase security we use session variables. At the time
of first entry in "krok.php" regardless of the value of the parameter ‘step” we start the
session and create a timestamp:

session start();

$ SESSION['start'] = time();

Timestamp use to overcome the disadvantages of the POST method. Imagine
that fill in a form and after a few minutes, another person uses the same computer. If
you have not cleaned the history, that person (even if quite by accident) can re-send
the data to form, which will appear them on the page (as ensured the opportunity to
improve the functionality). Using the session, we can first check that has not expired
and if so - to reset the form, eg like this:

session_start();

if (S _SESSION['start']=='"' ||

time () - $ SESSION['start'] > 60 * 5)
foreach ($ POST as Sk => $Sv)
$_POST[S$k] = '';

Why such a solution:

e PHP code will not be duplicated in several files - making it easier to do
a possible modification,

e thanks to the variable “step” in the URL will continue to have a direct link
to the form,

e using advantages of session form will stay safer - after more than
5 minutes of inactivity data sent back by the browser does not display the
in form, so access to them will be severely hampered.

After applying the above tips, form becomes more user friendly. Another
action will be validation.

3 Validation of data

For each field we expect the value of a certain type such as asking about
the zip code you want the person gave a string in the form of 5 digits and a hyphen:
"08-110". Validation of data helps us users:

e protects against the intentional introduction of erroneous data,

e helps to catch errors and random errors,

e allows you to filter the data before writing to the database.

Studia Informatica 2(13)2009

26 Barczak A., Zacharczuk D.

The validation process may take place on the user side (using JavaScript) or
server side (using PHP function). The best solution is to .. use both ways. With the
javascript does not relieve the server side, does not need to overload the page when
errors were detected. But we can not trust this method on 100% because support
javyscript can be simply turn off. Thus, mandatory check the data just before writing
them into the database.

There are ways to tell user about the need to integrate javyscript example:

<div id="js">

Site to work properly requires JavaScript!
</div>
<script type="text/javascript">
document.getElementById('js') .style.display
="none";
</script>

This code will be visible on the site only when the service is disabled
javyscript. If you want to be more persuasive and somehow force them to enable this
option, we can use the following code:

<style> #form js { display:none; } </style>

<div id="js">Enable JavaScript!</div>

<form action="krok.php?krok=2" method="post"
id="form js”>

<script type="text/javascript">
document.getElementById('js') .style.display
="none";
document.getElementById('form js').style.display
="block";
</script>

In this case, without javyscript form in general does not appear, and instead
will could see the words "Enable JavaScript". When the 'power of persuasion' have
convinced user to use javascript, we can begin to check the data entered by him. For
this purpose, use the “onsubmit’ event:

<form action="krok.php?krok=2" method="post"
id="form js”

onsubmit="return spr form()"”>

This construction implies that after the approval of the form function is called
‘spr_form ()°, which will carry out validation of the fields and if everything is in
order returns ‘true’. Otherwise, we will get “false’ and not execute the form -
the data will not be forwarded and you will have to correct the errors found.

For data validation (both using javascript and PHP) is best to use regular
expressions. Table 3.1 shows examples of functions that verify the correctness of the
given parameter values.

Systems and information technology

Online forms — security, validation and functionality 27

Table 3.1 Features that use regular expressions in order to verify the figures provided

Language Description/code
Verify your email address:

JS function czyEmail (e) {
if (e.match(/"[0-9a-z .-1+@([0-9a-z-]+\.)+[a-
z1{2,6}$/))

return true;
else return false;
}
PHP function czy email (Se) {
return (
preg match (
"/~ la-zA-Z0-9 \-]1+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-

\.]1+s/",
$e)>0);
}
Verify zip code:
IS function czyKod (t) {

if (t.match(/*~[0-9]1{2}-[0-91{3}$/)) return true;
else return false;
}
PHP function czy kod (Se) {
return (preg match ("/"\d\d-\d\d\d$/", $e)>0);
}

Verify PESEL number:
JS function check pesel (PESEL) {
var factor = new Array(1,3,7,9,1,3,7,9,1,3);
s = 0;

for (i=0;1<=9;1i++)
s += PESEL.charAt (i) *factor[i]:;

eleven = (10-s%10)%10;
return (eleven==PESEL.charAt (10));
}
PHP function czy PESEL(Sstr) {
if (!preg match('/"[0-9]{11}$/',$str)) return
false;
//tablica z wagami
SarrSteps = array(l, 3, 7, 9, 1, 3, 7, 9, 1,
3);
SintSum = 0;
for ($i = 0; $i < 10; Si++) {
$intSum += SarrSteps[S$i] * Sstr[$i];
1
Sint = 10 - $intSum % 10;
SintControlNr = ($int == 10)?20:31int;
if ($intControlNr == $str[10]) return true;
return false;

Studia Informatica 2(13)2009

28 Barczak A., Zacharczuk D.

Validation of a telephone number. Sometimes we have to give the user more
freedom. The telephone number is a good example. You can make a webuser to
provide the exact number of the form: +48 (25) 123 456 78, but whether would be
the terrible fault if someone type it as: 25-12345678? Probably not. In such cases
we just restrict the verification characters used and the length of a string - which is
more than enough.
JS function czyTel (t) {
if (t.match(/~[\(\)0-9-]4$/)) return true;
else return false;

}
PHP function czy telefon (Se) {
return (preg match ("/~[\d\ (\)\+\- 1{9,20}$/",
$e)>0) ;
}

While identifying errors in the form it is good not stop at the first encounter
position. Very annoying thing is when you improve the indicated error and soon
learns the next, etc. So show at once which errors occurred and where. Denote the
fields that should be corrected and set the cursor to the first incorrectly completed
the field.

According to the second point section 2 let's also do the proper information
when you click the “submit’. Deactivate button that could not be click again (in case
of nerve users, or a slow internet connection) and bring up some text in the style of
"The form is sending”, it was known that "what happens".

4 Security

What are we to understand about the concept of security in the forms? There
are two issues to which we must draw attention but both have a common
denominator: dangerous characters. Referred to here is the * " and " - quotation
marks and apostrophe, respectively. At first glance, do not look too dangerous but
they can complicate life well, the html code or content of the database! Small
example, we have the form:

<form action="zapisz.php" method="post" id="form js”>

<inpyt type="text” name="login”
value="<?php echo $ POST['login']; 2>" />
<inpyt type="password” name="haslo” />

</form>

and the “zapisz.php” with the sql query:
»SELECT * FROM tabela WHERE
login = 'S POST[login]' AND
haslo = '". md5($_POST['haslo']) Y)Y

Imagine now the two situations:
1. User complete box login value: ‘'moj'login’ and password: “abc’.
2. User gives a login: ‘'my 'username' and password "forgot'.

Systems and information technology

Online forms — security, validation and functionality 29

In the first case, after sending data to php file, and substituting them into
a SQL query we get:
»SELECT * FROM tabela WHERE
login = 'moj'login' AND
haslo = '"”. md5('nie znam') .'"')”;

Query, of course, will fail because of the string: 'moj'login'. Such termination
is fairly mild, imagine a situation where the query is performed to deleting records
and someone enters for fun the string: * 'OR 1'. The consequences can be much
more serious.

The second case. User has entered incorrect data and login could not be done.
However, our userfriendly form, which is obviously remembers the value of the
username and complements them automatically, so surfer does not have to re-enter
it. HTML code now look like this:

<inpyt type="text” name="login” value="moj”login” />

Browser displays the value of ‘'moj’. So we have a double problem: wrong
value for the login field and an error in your HTML code. Such cases could be
multiplied and the solution is trivial. In the case of PHP and SQL just add the escape
character to * " or *" °, depending on what character you are using the string or use
a ready-made function ‘'mysql_escape_string’.

In the case of HTML is sufficient to replace the apostrophe to the "''and
quote to ""’. Sometimes you may also need to convert "<' and "> respectively
“<” and >

After all of the aforementioned endeavors amount of junk e-mail records in
our database should be sought to zero.

S Summary

At the end we have to remember: how far advanced our security and
validation was not, if the surfer wishes to deceive us — he cheat and give false data in
spite of everything. All the methods discussed above, increased functionality and
safety facilitating our life, help to avoid simple mistakes and "attacks" frustrated
Internet. Nothing, however, do not give us a 100% guarantee.

There are many other methods, more efficient, eg by sending a verification
email message with activation link or captcha technology, verification by SMS.
However, the "stronger" method for the greater reluctance of person completing
form.

References

1. “Tworzenie stron WWW. Biblia. Wydanie 111, One Press, Pazdziernik 2009.
2. “Projektowanie stron WWW. Uzytecznos¢ w praktyce”, Wydawnictwo Helion, Grudzien
2008.

Studia Informatica 2(13)2009

30

Barczak A., Zacharczuk D.

9,

“Projektowanie nawigacji strony WWW. Optymalizacja funkcjonalnosci witryny”, Wy-
dawnictwo Helion, 25 Czerwiec 2008.

Open-source free PHP CAPTCHA scripts: http://www.phpcaptcha.org/

Form Validation Using PHP: http://www.php-mysql-tutorial.com/wikis/php-tutorial/form-
validation-using-php.aspx

JavaScript Form Validation: http://www.w3schools.com/jS/js_form_validation.asp

Systems and information technology

