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Abstract. The job shop scheduling problem (JSSP) is one of the most researched scheduling problems. 
This problem belongs to the NP-hard class. An optimal solution for this category of problems is rarely 
possible. We try to find suboptimal solutions using heuristics or metaheuristics. The firefly algorithm is 
a great example of a metaheuristic. In this paper, this algorithm is used to solve JSSP. We used some 
benchmarking JSSP datasets for experiments. The experimental program was implemented in the aitoa 
library. We investigated the optimal parameter settings of this algorithm in terms of JSSP. Analysis of 
the experimental results shows that the algorithm is useful to solve scheduling problems.  

Keywords. scheduling, job shop, firefly algorithm, aitoa library 

 Introduction 

1.1. Scheduling problem 

Scheduling in computer science is often referred to as NP-hard problems. The nature of this 
problem is exponential with an increasing number of tasks and machines. In scheduling, we 
decide about allocation of a set of tasks (activities) to available resources (e.g. machines or 
processors). The main problem of scheduling is to find the best possible solution in an 
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acceptable time. This solution must fulfill user criteria, e.g. order of execution of tasks or 
demand to execute tasks on dedicated machines. 

In job shop scheduling problem (JSSP) we consider a set of independent 𝑛 ∈ ℕ jobs 𝐽 ={1, 2, … 𝑛}, and factory which has 𝑚 ∈ ℕ machines 𝑀 = {1, 2, … 𝑚}. Each job is composed of 
operations 𝑂 = {1, 2, … , 𝑚}. There is a sequence of operations in job 𝑗. The single 𝑜 operation 
of the job 𝑗 must be executed on the machine 𝑖. This assignment needs 𝑡 ∈ ℕ time units for 
completion. We assume that operation is performed on machine without interruption during 
execution. Operations can be run on 𝑚 machines in a different order. The main purpose of the 
problem is to find the best solution, a schedule that consists of assigning all 𝑛 jobs to 𝑚 
machines fulfilling the optimisation criterion(s). We accept only feasible solutions which must 
meet the following conditions: 

• operations of each job must be assigned to an appropriate machine and executed 
completely, 

• each operation must be executed by an uninterrupted time on a assigned machine, 
• each machine must execute only one operation at a time, 
• the precedence constraints must be respected [16]. 

The size of the search space (a number of schedules) ℤ is directly dependent on the number 
of jobs 𝑛 and a number of machines 𝑚: ℤ = (𝑛!)      (1) 

For 𝑛 = 2 jobs and 𝑚 = 4 machines we have (2!)ସ = 16 possible solutions (schedules). 
The number of solutions grows drastically even as the number of machines or jobs increases 
slightly. When an instance consists 𝑛 = 5 jobs and 𝑚 = 5 machines, a number of solutions 
come up to 207 360 000.  
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A solution can be represented as a Gantt chart. Below (see Fig. 1) an instance of JSSP with 𝑛 = 4 jobs and 𝑚 = 4 machines is presented on the Gantt chart. 

 

Figure 1. Gantt chart for an instance of JSSP with 𝑛 = 4 jobs and 𝑚 = 4 machines. Source: [16] 

 
Let us suppose that operations are processed in the following order:  

• job 1: 𝑜ଵଵ, 𝑜ଵଶ, 𝑜ଵଷ, 𝑜ଵସ 
• job 2: 𝑜ଶଵ, 𝑜ଶଶ, 𝑜ଶଷ, 𝑜ଶସ 
• job 3: 𝑜ଷଵ, 𝑜ଷଶ, 𝑜ଷଷ, 𝑜ଷସ 
• job 4: 𝑜ସଵ, 𝑜ସଶ, 𝑜ସଷ, 𝑜ସସ 

Operations must respect precedence constraints. For example, the operation 𝑜ଵ must be 
processed before 𝑜ଶ for the job 𝑗. We assume that machines have the same performance, which 
means that processing time of the given operation is equal on each machine. In this example, 
the operations need a given time (milliseconds) to be processed: 

• 𝑡ଵଵ = 3, 𝑡ଵଶ = 2, 𝑡ଵଷ = 1, 𝑡ଵସ = 2 
• 𝑡ଶଵ = 1, 𝑡ଶଶ = 3, 𝑡ଶଷ = 1, 𝑡ଶସ = 5 
• 𝑡ଷଵ = 2, 𝑡ଷଶ = 4, 𝑡ଷଷ = 1, 𝑡ଷସ = 2 
• 𝑡ସଵ = 2, 𝑡ସଶ = 1, 𝑡ସଷ = 3, 𝑡ସସ = 3 

e.g. operation 𝑜ଵଵ needs 𝑡ଵଵ = 3 milliseconds to process by machine. As we can see (see Fig. 
1), operations are assigned to machines. This assignment is feasible because we met all the 
conditions defined above. The objective of the JSSP is to find the correct permutation of all 
operations where time is minimized. In this case we minimize the makespan 𝐶௫.  

  



 
90 

 

P. Świtalski, A. Bolesta 

Makespan is defined below: 

𝐶௫  = max൫𝑂(𝑆𝑖)൯.      (2) 

Let us denote by 𝑆 as a schedule. By 𝑆 we denote the schedule on machine 𝑀. The 
completion time of the operations on machine 𝑀 in schedule 𝑆 is denoted by 𝑂(𝑆). We 
consider minimizing the maximum completion time on each machine 𝑀 across the system. In 
this example, the makespan is equal to 20 (see Fig. 1), because the completion time of the last 
executed operation occurred in machine 𝑀ଶ – this is the maximal time of all machines’ 
schedules. 

1.2. Implementations of swarm algorithms in JSSP 

The JSSP is extensively studied by many researchers. This problem is also considered in 
the categories of swarm algorithms. Pongchairerks and Kachitvichyanukul in their work [11] 
presented the particle swarm optimization (PSO) algorithm applied to JSSP. They considered 
an optimization algorithm for JSSP with multipurpose machines. This is a modification of the 
JSSP – operation has to be processed by exactly one machine from a set of machines. Lin and 
at. [7] also proposed PSO to solve JSSP. However, they used a different way of representing a 
particle. Instead of a simple conversion of values, they introduced several operators to modify 
and improve the solution.  

FA was also used in the optimization of JSSP. In work [5] the authors used this algorithm. 
They encoded a firefly as a set of operations in the JSSP instance. Each operation was assigned 
a real value. After that they sort ascendingly, thus the permutation of operations changes. 
Finally, they checked the sequence of operations and repaired when the precedence constraints 
were violated. Some researchers use hybrid methods. An example of this approach is presented 
in [9]. The authors combined the Simulated Annealing and Firefly Algorithm for the JSSP. 
Simulated annealing was used to identify optimal and near-optimal makespans for the JSSP and 
FA as an optimization algorithm. The FA was used as well as for multi-objective JSSP. In [14] 
the authors considered the combined makespan, mean flow time, and tardiness objective for 
problems of various sizes. FA was likewise studied in different optimization problems. In the 
work [15] the authors analyze different modifications made by the researchers. They were 
concerned with parameter modification, modified search strategy, and change the solution 
space. They also analyzed and compared the performance of the standard and modified versions 
of the FA. 
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 Firefly algorithm 

The Firefly algorithm (FA) is a metaheuristic that is driven by the behavior of species in 
nature. FA is a swarm-based algorithm introduced by Yang [17]. In this algorithm, a swarm of 
fireflies communicate with each other by the light produced in a biochemical process called 
bioluminescence. Communication is used to attract other fireflies. The firefly is lighter, the 
attraction is higher. We must also take into account that the intensity of light decreases with 
distance [15].   

In terms of optimization problem we assume that each firefly codes a solution in a search 
space. Fireflies are unisex, so the attractiveness of any firefly is not influenced in a different 
way. Each firefly moves through the search space toward a brighter firefly in the neighborhood. 
The brightness of the firefly is absorbed into the environment. The absorption is defined in Eq. 
3: 

𝛽 = 𝛽𝑒 ିఊೕమ ,       (3) 

where: 

• 𝛽 – attractiveness of the firefly at 𝑟 = 0, 
• 𝛾 – light absorption coefficient, 
• 𝑟 – distance between firefly 𝑖 and firefly 𝑗. 

Each firefly updates its own position in space. Let us assume that firefly 𝑖 headed to firefly 𝑗. 
The update of 𝑖-th firefly is defined as follow (Eq. 4):  𝑥௧ାଵ = 𝑥௧ + 𝛽𝑒 ିఊೕమ ൫𝑥௧ − 𝑥௧൯ + 𝛼௧𝜀௧,     (4) 

where: 

• 𝑥௧ାଵ – next position of 𝑖-th firefly, 
• 𝑥௧ , 𝑥௧ – actual position of 𝑖-th firefly and 𝑗-th firefly accordingly, 

• 𝛼௧ – randomness strength, 
• 𝜀௧ – a random vector. 

Fireflies are updated until a termination criterion is met. Usually, this criterion is determined 
by maximum number of iterations 𝐼𝑇𝐸𝑅. Below the algorithm is presented. 
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Listing 1. The pseudocode of the Firefly Algorithm. Source: [17] 

 

Set parameters of the algorithm: 𝛼௧, 𝛽, 𝛾, 𝑁 – a number of fireflies, 𝐼𝑇𝐸𝑅 – maximum number of iterations 
Randomly generate 𝑁 fireflies in search space 
For 𝑡 =  1 to 𝐼𝑇𝐸𝑅 

Compute the brightness 𝐼 of the firefly 
Sort fireflies by their brightness 

For 𝑖 =  1 to 𝑛 − 1 
For 𝑗 = 𝑖 +  1 to 𝑛 
 If 𝐼  𝐼 
  Move the firefly 𝑖 in the direction of firefly 𝑗 
 End if 
End for 

End for 

End for 

Calculate the best firefly and display the solution 

 

In the first step of the algorithm (see Listing 1) initial parameters 𝛼௧, 𝛽, 𝛾, 𝑁,and ITER  
are set. Afterwards the algorithm randomly set of 𝑁 fireflies. From this moment on, the 
algorithm computes the brightness of each firefly and compares its brightness. The firefly with 
less brightness is moved to the firefly with higher brightness in their neighborhood.  The 
algorithm is terminated when the maximum number of iterations is achieved. Then the best 
solution is presented to the user. 

 Proposed solution  

The original form of FA uses continuous values to code the solution. In JSSP we consider 
discrete values. The main issue is to find the proper method to represent the individual (particle 
in PSO, firefly in FA) that can represent a JSSP schedule. In work [10] the authors compared 
three methods to representation particles in PSO applied to JSSP: 

• Operation and Particle Position Sequence  – the particle position is joined with the 
position sequence in JSSP. When the positions of the particles are being sorted, the 
sequence of operations changes accordingly. In the next step, a new sequence of 
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positions is assigned to the machines according to precedence constraints in JSSP 
[8]. 

• Random Keys Representation - in this method we also sort particles’ positions 
(ascending order). Then, the new order of particles is joined with a sequence of jobs. 
In the next step, we bring back the original order of particles, which also the 
sequence of jobs changes accordingly. At the end, a new sequence of positions is 
assigned to the machines according to precedence constraints in JSSP [11]. 

• Multiple-type individual enhancement scheme – this scheme is composed of 
swapping operation, inversion operation, and long-distance movement operation. 
These operations are applied to the representation of real numbers. The authors 
compare the makespan obtained before the selected scheme and that obtained after 
the selected scheme. If the selected scheme is better, they update the real vector of 
the individual by the selected operation scheme [7]. 

In our approach we used the form of random-key (RK) encoding. A vector in RK consists 
of real numbers. A firefly represented by real values can act out an operation permutation 
expressed by integer values. For 𝑛 jobs on 𝑚 machines, the firefly consists of a vector composed 
of 𝑛 ×  𝑚 dimensions, thus the firefly is represented by ൛𝑟ଵ, 𝑟ଶ, … , 𝑟ൟ, where 1 ≤  𝑗 ≤ 𝑛 × 𝑚. 
Single 𝑟 corresponds to the job operation order of the job in a schedule.  

In RK each real value has assigned an integer number {𝜋ଵ, 𝜋ଶ, … , 𝜋}, where 1 ≤  𝑘 ≤𝑛 × 𝑚, which 𝜋 represents indirectly an operation order of a job. After that, the real values are 
sorted in ascending order. The assigned integer numbers change their own position in an RK 
vector. We assume that each job must consist of 𝑚 operations – individual job must be 
processed by every machine in a set of 𝑀. Therefore, we need a transformation that could 
convert integer values {𝜋ଵ, 𝜋ଶ, … , 𝜋} to job indexes. To do this, we use the following formula 
(Eq. 5): job index = (𝜋 mod 𝑛) + 1.     (5) 

Using this formula the integer values {𝜋ଵ, 𝜋ଶ, … , 𝜋} are transformed into an operation order 
sequence {𝛾ଵ, 𝛾ଶ, … , 𝛾}, where 1 ≤  𝑘 ≤ 𝑛 × 𝑚. Single 𝛾 represents a job index, 1 ≤  𝛾 ≤𝑛. Next, when we search values from 𝛾ଵ to 𝛾 we could find 𝑖 − th occurrences of each job 
index. 

Let us see an example of RK encoding. To encode the JSSP solution (schedule) presented 
in Fig. 1 we need 16 positions in each firefly (𝑛 = 4 jobs * 𝑚 = 4 machines). Suppose that the 
firefly is represented by the following values: [8.4, 1.5, 2.8, 0.2, 2.0, 0.9, 3.5, 1.3, 4.9, 0.8, 6.0, 
0.5, 2.2, 3.6, 6.3, 4.6] (see Fig. 2). Now we need to assign integer values {1,2, … , 16} to values 
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in RK vector starting from the smallest value. In our example, the smallest value 0.2 has 4th 
element of the RK vector. For this position, we assign an integer value equal to 1. The next 
value (bigger than 0.2) is 0.5 (at position 12). We set the next integer value equal to 2. We 
continue this process until all integer values are assigned. 

 

 

Figure 2. RK encoding for the schedule presented in Fig. 1. Source: own study 

In the next step, we calculate job indexes. We use a formula from Eq. 5. Integers 4, 8, 12, 
and 16 indicate the operations belonging to job 1, because (4 mod 4) + 1 = 1,  (8 mod 4) + 1 = 
1, etc. The solution will always be feasible because the operation order will never violate the 
precedence constraints. These constraints are attributed after RK encoding. In this example, the 
operation sequence is [𝑜ଵଵ, 𝑜ଷଵ, 𝑜ଶଵ, 𝑜ଶଶ, 𝑜ସଵ, 𝑜ଵଶ, 𝑜ଷଶ, 𝑜ଶଷ, 𝑜ଶସ, 𝑜ସଶ, 𝑜ଷଷ, 𝑜ଷସ, 𝑜ଵଷ, 𝑜ସଷ, 𝑜ସସ, 𝑜ଵସ]. 
From this moment on, operations can be assigned to machines according to the conditions 
described in Chapter 1. 
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 Experimental results 

The FA algorithm was implemented in Java language with the support of the aitoa library 
developed by Thomas Weise. This library is described in [16]. The experiments were carried 
out on the Dell Precision 7920 Tower workstation equipped with Intel Xeon Gold 6242 CPU 
2.80GHz (16 cores, 32 threads), 64 GB RAM, GeForce RTX 3090, Windows 10 Pro for 
Workstations 21H1. 

The code of the aitoa library was designed as a versatile and general implementation of 
metaheuristics in Java and provides the JSSP. An objective function, a search, and a solution 
space, as well as a mapping in between them, and search operators, can be composed and 
provided to a black-box optimization algorithm. They are encapsulated in an 
IBlackBoxProcess instance that can automatically remember the best solution and create 
comprehensive log files during an experiment run. 

 JSSP instances were written in the following scheme (see Listing 2): 

Listing 2. The coding scheme of the example JSSP instance. Source: [16] 

 

  
 

where in the second line, the number 𝑛 = 4 of jobs is specified, followed by the number of 𝑚 = 5 machines. The following lines describe jobs and operations. Each operation is specified 
as a pair of two numbers: machine index and the number of time units (milliseconds) used for 
the process of the operation. 

The JSSPCandidateSolution class provided by the library was used as a solution. To 
evaluate the solution, we implemented JSSPMakespanObjectiveFunction. In the aitoa 
library, there is a set of search operators. The zero-argument operator 
(FireflyNullaryOperator) is used to create a random population. The one-argument 
operator (FireflyUnaryOperator) modifies the best individual based on his current 

++++++++++++++++++++++++++ 
4 5 
1 10 2 20 3 20 4 40 5 10 
2 20 1 10 4 30 3 50 5 30 
3 30 2 20 5 12 4 40 1 10 
5 50 4 30 3 15 1 20 2 15 
++++++++++++++++++++++++++ 

Job 0: 

Job 1: 

Job 2: 

Job 3: 

processing time  
in milliseconds for 
a given operation 

number of machines number of jobs  index of machine 
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position. The principal two-argument operator (FireflyBinaryOperator) was used to 
modify fireflies based on the position of a brighter firefly and their own. 

Our model was tested on selected instances from the OR-library [2] and other libraries [18, 
19] as test benchmarks. The original data of these instances come from:  

• abz5-abz9 [1],   
• dmu01-dmu80 [3], 
• ft06-ft20 [4], 
• la01-la40 [6], 
• swv01-swv20 [12], 
• ta01-ta80 [13]. 

We experimentally set the FA parameters, including the number of fireflies (𝑛), the number 
of iterations (ITER), the light absorption coefficient (𝛾), the randomization parameter (𝛼) and 
the attractiveness parameter (𝛽). We tested each parameter in the range of 0.0 to 1.0 (for 𝛾, 𝛼 
and 𝛽) and amount of fireflies in range 10 – 50. We assumed 1000 iterations of the algorithm 
for all experiments. 

Each instance of the experiment was repeated 50 times for the assigned value of the 
parameter. After that we compared the best and averaged results and set the parameter value 
for optimal results. In the Tab. 1 the optimal values of parameters are given. 

Table 1. Optimal FA parameters set in the experiments. Source: own study 

Instance Amount 
of fireflies 

Number 
of 

iterations 
(ITER) 

Light 
absorption 
coefficient 

(𝛾) 

Randomization 
parameter (𝛼) 

Attractiveness 
parameter (𝛽)

abz5 40 1000 1.0 0.6 1.0
 

In the next part of the experiments, we used JSSP test instances. These instances contain 
various number of jobs (from 6 to 100 jobs) and number of machines (from 5 to 20 machines). 
The most complex cases come from [13]. In the Tab. 2 we show results for selected instances 
used in the experiments. 
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Table 2. Results for selected instances derived from the OR-library and other libraries used in the 
experiments. Source: own study 

Instance Number of 
jobs (n) 

Number of 
machines 

(m)

The best 
result 𝐶௫ 

[ms]

Averaged 
result 𝐶௫ 

[ms]

Lower 
bound 𝐶௫ 

[ms] 
abz5 10 10 1418 1488 1234 
abz6 10 10 1079 1135 943 
abz7 20 15 959 1006 656 
abz8 20 15 975 1041 648 

dmu01 20 15 4009 4148 2501 
dmu02 20 15 4141 4297 2651 
dmu06 20 20 5141 5304 3042 
dmu10 20 20 4644 4923 2858 
dmu16 30 20 6342 6601 3734 

ft06 6 6 55 57 55 
ft10 10 10 1180 1232 930 
ft20 20 5 1485 1554 1165 
la01 10 5 674 713 666 
la02 10 5 719 755 655 
la08 15 5 914 958 863 
la22 15 10 1257 1305 927 
la28 20 10 1665 1736 1216 

swv01 20 10 2213 2284 1407 
swv06 20 15 2778 2868 1630 
swv11 50 10 5154 5378 2983 
ta50 50 15 3219 3414 2723 
ta72 100 20 7880 8164 5181 

 

As we can see, the FA can solve both simple and most complex instances. Lower bound 
column in the Tab. 2 (the last column) shows the optimal of the makespan 𝐶௫ values for each 
instance. FA gives only suboptimal results for these instances. For instances with small amount 
of jobs and machines (e.g. instance ft06, la01, la02) the results are close to optimal values. 
When the number of jobs and the number of machines increases, the algorithm tries to find 
suboptimal solutions. Even for the biggest instance (see instance ta72 in the Tab. 2) algorithm 
found a relatively good schedule (7880 ms) vs. optimal (5181 ms).  

As we mentioned, the obtaining optimal results is difficult for most metaheuristics due to 
complex search space and the NP-hard nature of JSSP. Finding an optimal solution by 
evolutionary algorithms has been the subject of many works. Our work confirmed that FA is 
useful in the JSSP problem. This task was supported by the aitoa library. This library lets us 
focus on the algorithm rather than on implementing the whole JSSP scheduler. In our opinion, 
this library is very useful in terms of scheduling problems. 
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 Conclusions 

The FA is one of the many known metaheuristics. Our task was focused on implementation of 
the FA in the aitoa library and providing test results. The implementation was successful. This 
library is useful for any category of metaheuristics. The structure of the library is universal. It 
can represent each form of the operators used in the metaheuristic and make it simpler to 
implement the JSSP. 

We plan to modify the FA algorithm to improve the results. It can be done by modifying 
the standard operators in the FA. We can also modify the parameters of the FA by modification 
of the formulas. These parameters would be the subject of another metaheuristic. This 
metaheuristic could be a change of the parameters during scheduling. This hybrid solution could 
be more fitting to the JSSP problem.  
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