
STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

Kamil SKARŻYŃSKI1,
Waldemar BARTYNA1,

Marcin STĘPNIAK1

1 Siedlce University of Natural Sciences and Humanities
Faculty of Exact and Natural Sciences
Institute of Computer Science
ul. 3 Maja 54, 08-110 Siedlce, Poland

Human integration in an ontology-based IoT system

DOI: 10.34739/si.2020.24.04

Abstract. The IoT systems are growing field of automation. In contrast to industrial applications, where
the system is custom made for each customer or use case, the home IoT systems can be composed and
used in many, sometimes dangerous and unpredictable, ways. This paper presents a system that is based
on a common ontology as a unified and universal method of representing the environment including
humans. Such approach allows for easy integration of heterogenous devices and declarative definition of
services, tasks, and rules ensuring human safety and/or comfort.

Keywords. IoT, Ontology, Multi-robot systems, Smart Environment

 Introduction

In recent years, we have observed a continuous increase of interest in IoT devices used in
houses or single-family apartments. According to Gartner, each apartment will have over 500
smart devices by the end of 2022 [16]. Time has verified that this number is exaggerated, but
we still see a large increase in the number of such devices in homes. Each year more devices
are becoming "smart", thus joining the IoT environment, and the term "smart living" is
becoming popular. Automation using such devices makes life easier, but it carries dangers that
are not always immediately visible. Even if the device manufacturer tries to ensure a certain

54

level of safety for the family of its products, it is not able to predict the environment in which
the devices will be used. Thanks to the growing competition of companies such as IKEA [9],
Samsung [5], Fibaro [13], Xiaomi [14] and others, the prices of devices are becoming more and
more attractive, and thus more easily available. Each of these manufacturers offers its central
unit (gateway) and software solutions, often not compatible with devices produced by other
companies. Software solutions that allow the integration of various gateways, such as IFTTT
[2], Node-RED [11], Home Assistant [12] and others, have been available for a long time. This
makes it possible to provide increasingly complex functions that a single device would not be
able to provide. During the integration of such heterogeneous systems, we may encounter
security problems related to external attacks, starting from the application layer, and ending
with direct attacks on devices [15]. There are also possible conflicts in the IoT environment,
causing a threat due to conflicting tasks assigned automatically, e.g. too high level of CO2
detected by the sensor causes an automatic reaction of the system. In this case, the ventilation
system is turned on or the windows are opened. At the same time, however, a second home
temperature monitoring task may try to close windows or turn off the ventilation system to
maintain an optimal temperature. In this case, an action conflict [1, 4] appears, which may
potentially affect human safety. In most of such systems, the human condition is not monitored
or considered on an ongoing basis, which should be crucial to ensure maximum comfort and
safety. In the proposed system, monitoring is carried out by means of computer vision (CV) by
recognizing the human figure [17] and then identifying the person based on the face [18, 19,
20].

This introduces the possibility of tracking the current position of a person in the space of
a smart home and allows definition of events and corresponding actions to ensure his safety and
comfort. As in the case of the CO2 example, the conflict of action itself is not as important, as
ensuring the safety of a person in a potentially dangerous environment. Based on common
ontology in the Autero system [8], services and tasks are described in a declarative manner, and
each task is subject to the planning and arrangement process, which allows to assess the result
of the service before its execution, and thus to determine whether its performance would violate
the defined safety (comfort) rules.

 System Architecture

Figure 1 shows the architecture of the Autero system designed according to the SOA
paradigm. The system components communicate with each other by generic protocols.
Repository stores ontology and provides access to object maps for the other system components.
It has also a graphical user interface (GUI) for developing the ontology, and for its management.

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

Task Manager (TM for short) represents a client and provides a GUI for the client to define
tasks, and to monitor their realization. The tasks can also be sent by other system components,
i.e. Service Manager or Safeguards. Planner provides abstract plans for TM, that are used to
construct a concrete plan (workflow) based on information on available services registered in
Service Registry. The workflow is constructed by arranging concrete services. Arrangement is
realized by TM (via the Arrangement Module) by sending requests to services (in the form of
intentions) and collecting answers as quotes (commitments).

TM controls the plan realization by communicating with the arranged services. Service
Registry stores information about services currently available in the system. Each service must
be registered in Service Registry via Service Manager (SM). In this case, SM controls the
execution of subtasks delegated by TM and reports the success or failures to TM.

Figure 1. The system architecture. Source: own study.

Safeguards module is proposed in this work as a new addition to the system. It allows for
defining of the ontology-based rules. Validation of the rules is performed in two cases:

• during the task arrangement, to ensure the safety of intended task by checking the
expected state of the environment after task execution,

• when the object map changes. If an event is triggered, Safeguards acts by sending
a task request to TM to change dangerous environment state, if possible.

Task is defined, based on the ontology stored in Repository, as a logical formula that
describes the initial situation (optionally) and the required final situation in the environment.
For a given task, Planner returns abstract plans that, when arranged and executed, may realize
the final situation specified by the given task. More details can be found in [8].

56

 Ontology and object maps

The ontology according to Thomas Gruber [7] is: "a formal, explicit specification of
a common conceptualization". In the proposed system, it was necessary to create unified and
universal method of representing all entities used for describing the environment and the
existing or desired situations. Each entity can be treated differently depending on the user
perspective. For example, from the point of view of an ordinary user, a car is designed to
transport him/her from point A to point B, which is why it is treated only as a means of
transportation and the knowledge about such elements as a radiator or pistons is not necessary.
On the other hand, from the perspective of a car mechanic, all these elements are important in
his daily work when e.g. looking for a fault.

To model the representation of the environment for the Autero system, it was essential to
define the description only of a set of selected entities and their properties. A few versions of
the ontology for a multi-robot system were created for different iteration of the Autero system.
The ontology created for this work considers the aspect of human safety/comfort in the IoT
environment. For the purpose of experiments, we also transitioned from previously used
simulation environment to the real environment with physical devices (sensors and effectors).
Ontology and object maps are stored in a relational database and can be exported in any format
including OWL.

3.1. Basic concepts

The ontology consists of a set of definitions of the following concepts:

• attributes – define type properties, e.g., colour, shape, position,
• types – a set of attribute definitions, attribute value constraints specific to objects of

a given type,
• constraints – they define the ranges of possible attribute values for a given type and

the relations between its attributes,
• relations – define dependencies between objects,
• objects – type instances with specified attribute values and defined relations between

sub-objects.

To describe a fragment of the environment, we need to define objects that represent different
things in our surroundings. The common structure for similar objects (of the same class) is
specified as a type. Based on a given type its instance can be created by assigning values to its
properties (attributes). A collection of objects and their relations constitute an object map.

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

A definition of a type consists of:

• Type name,
• Parent type,
• Sub-objects (walls in the room, etc.),
• Attributes (position, rotation),
• Constraints:

o acceptable attribute values for a given type,
o required relations between sub-objects of a given type.

When defining a type, we can specify the parent type. All members of the parent type
automatically become members of the type being defined (as in inheritance in object-oriented
programming).

For example, we will define all the necessary concepts required to model a room. To do
this, we define its sub-objects (walls) first, and then create the type representing the room. To
begin with, we will define the type PhysicalObject; it makes creating types that have their own
physical representation (e.g. a wall) much easier.

The PhysicalObject type definition includes:

1. The sub-object of type Shape,
2. The Movable, Weight and Texture attributes,
3. Position complex attribute consisting of:

a. PositionX,
b. PositionY,
c. PositionZ,

4. Rotation complex attribute consisting of:
a. RotationX,
b. RotationY,
c. RotationZ.

After we define a base type that can be extended by all physical types, we can proceed to
the definition of the type representing the wall shape. The shape hierarchy is defined in the
ontology. The shape of the wall expands CuboidConstructionShape, which, in turn, expands
CuboidShape. The CuboidShape type has Width, Height, and Length attributes, which describe
the dimensions of the cuboid; CuboidWallShape inherits these attributes. In this case, it would
be possible to describe the dimensions of the wall using the CuboidShape type, but because of
the possibility of defining constraints (more in the Constraints section) a new type was created
to represent the shape of the wall. The constraints specified in the type definition will allow for

58

the classification of recognized objects. In most cases, objects will be recognized based on the
external appearance, that is, their shape (Figure 2).

Figure 2. Object of the CuboidWallShape type and CuboidConstructionShape type creation forms.
Source: own study.

In the next step, we define a type describing a wall. In the following Figure 3 the wall type
edition and a portion of the type tree are shown.

Figure 3. Wall type definition and types tree. Source: own study.

Additionally, the type definition specifies a constraint for the Shape sub-object (it is
inherited from the PhysicalObject type) in order to limit the types of objects that can be assigned
as the shape when creating a new Wall object. After we have defined all the types necessary to
describe the wall, we can define an instance of this type. When defining an object, we select its

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

type, provide values for all required attributes, and assign sub-objects. The attribute values and
relations between the specified sub-objects must not violate the type constraints. To create
a wall, we need an object that represents the shape of that wall. In the case of standard rooms,
it is often the case that the opposite walls, e.g. ceiling and floor, are of the same size, so we can
use the same object representing that shape.

After creating objects for the remaining walls of the room, we need to create another type,
i.e. CuboidRoom, that allows for grouping of the defined walls. Abstract types are used to group
physical objects. The type CuboidRoom extends the type CuboidClosedSpace from which sub-
objects such as Floor, Ceiling, Wall1, Wall2, Wall3, Wall4 are inherited. An additional sub-
object of type Passage was defined within the CuboidRoom. It represents the point of transition
between two rooms. The process of defining the appropriate type, shape type, and type instances
is not presented because it is similar to the process of creating a wall object. On the Figure 4
we can see the form for creating an instance of a new CuboidRoom object named
LivingRoom01. The result of the visualization of such a room is shown in Figure 5 (the ceiling
and one of the walls were hidden so they would not cover up most of the scene).

Figure 4. The CuboidRoom type and object definition . Source: own study.

3.2. Relations

In everyday life, people often use phrases such as "turn off the light in the kitchen" or "close
the blinds in the living room", which allows us to determine the range of devices required to
accomplish these tasks. While everything is understandable when communicating it to another
person, based on context and prior information, for most systems the user must precisely define

60

which device he/she wants to turn on or off. One of the solutions could be grouping of devices
of similar purpose and issuing commands to a group instead of to a particular device. The
situation is much more complex when dealing with entities that can move within, for example,
a house. To solve that problem a concept of relations was introduced.

To allow a more intuitive description of tasks and situations in the environment, we use
relation types to determine associations between specific types of objects. The following basic
relation types are defined in the ontology:

• IsIn – a relation that specifies the inclusion of an object in another object, e.g. a man
is in a room,

• IsFixedTo – the object is attached to another object, e.g. a cabinet is attached to
a wall,

• IsIntegralPartOf – an object is an integral part of another object e.g. a doorframe is
integral part of the wall which it is placed in,

• IsPartOf – an object is an optional sub-object of another object e.g. a storey is part
of a building. This allows us to group objects and add connections between them to
determine paths.

To be able to automatically evaluate relations (relations created by the Repository), they
must be defined based on attributes of specific object types. Repository interface provides a tool
supporting the process of defining relation types.

Definition of a relation type consists of:

• Relation name,
• The types of objects between which a relation can occur,
• Human-friendly description,
• Relation specification – the evaluation formula based on values of the attributes of the

related objects,
• Whether the relation is dynamic or static.

If the relation type is defined as static, each of its instances must be defined by the user in
the object map. For dynamic relation types, each time an object is updated (using, for example,
sensors to check one of its attributes), an evaluation operation is performed to evaluate potential
new relations and the need to delete those that are no longer up to date. This is necessary for
objects that change their position in the environment outside of system control, e.g. humanss.

Figure 5 shows a man in a room. The position and shape of the floor are shown on the right
side. When the man changes position, his coordinates are updated and all relation types in which

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

one of the object types is HumandBody are rechecked. In this case, only one relation type is
found. Then, all objects with which type HumanBody can form a relation, i.e. CuboidRoom in
our example, will be retrieved. Six rooms were defined for testing, so six instances of rooms
will be obtained. In order to assess whether a relation occurs or not, an evaluation of the relation
will be made for each of them; if the result is positive – an instance of the relation in the object
map will be created, if negative – the existing relation between these objects will be removed
(if it exists).

Figure 5. Room visualization with position and dimensions of the floor. Source: own study.

The formula 1 based on the IsIn relation will be evaluated for objects of type HumanBody
and CuboidRoom.

(1)

where leftObject is of HumanBody type, and rightObject is of CuboidRoom type.

An example of a filled expression for the room with the floor shape: Width: 4.45, Length:
4 and position: X: 2.333, Y: -0.03, Z: 6.477 and the man with position: X: 1.3, Y: 0.03, Z: 5.4
(the situation shown in) will look as follows on formula 2.

𝑙𝑒𝑓𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝑋 < ൬ 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑋 + 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑆ℎ𝑎𝑝𝑒. 𝑊𝑖𝑑𝑡ℎ2 ൰ && 𝑙𝑒𝑓𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝑋> ൬ 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑋 − 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑆ℎ𝑎𝑝𝑒. 𝑊𝑖𝑑𝑡ℎ2 ൰ && 𝑙𝑒𝑓𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝑍< ൬ 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑍 + 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑆ℎ𝑎𝑝𝑒. 𝐿𝑒𝑛𝑔𝑡ℎ2 ൰ && 𝑙𝑒𝑓𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝑍> ൬ 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑍 − 𝑟𝑖𝑔ℎ𝑡𝑂𝑏𝑗𝑒𝑐𝑡. 𝐹𝑙𝑜𝑜𝑟. 𝑆ℎ𝑎𝑝𝑒. 𝐿𝑒𝑛𝑔𝑡ℎ2 ൰

62

(2)

what results in true, thus an instance of the relation between objects HumanBody01 and
LivingRoom001 is created.

Example of relation evaluation for another room where there is no human (SmallRoom001)
is presented on formula 3.

(3)

which gives us a false result. No relation will be created between HumanBody001 and
SmallRoom001, and a relation of this type between these objects will be removed, if there is
one.

3.3. Constraints

The constraints are used for two purposes:

• To specify ranges of allowed values for attributes of a type,
• To specify required/allowed relations between sub-objects of a type.

As mentioned earlier in section devoted to type and object definition, it was necessary to
introduce the concept of constraints. It allowed for a clear separation of types that have the same
attribute. The distinction can be provided by narrowing the ranges of values of specific
attributes in these types.

When defining a relation, it was also necessary to be able to describe the exact dependencies
between attributes of the two related objects. Due to the approach used in the ontology, a sub-
object named Shape of type Shape was defined when creating the PhysicalObject type. This
made creation of new objects more convenient because each new shape type expands the Shape
type, and each physical object has a Shape sub-object. The problem occurs during the relation
type definition, where access to the attributes describing the shape of the object is required.
Therefore, when defining object types, it is possible to define a constraint for the sub-object.

1.3 < ൬ 2.333 + 4.452 ൰ && 1.3 > ൬ 2.333 − 4.452 ൰ && 5.4 < ൬ 6.477 + 42 ൰ && 5.4> ൬ 6.477 − 42 ൰

1.3 < ൬ 0.19 + 2.782 ൰ && 1.3 > ൬ 0.19 − 2.782 ൰ && 5.4 < ൬ −0.27 + 4.4852 ൰ && 5.4> ൬ −0.27 − 4.4852 ൰

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

For example, for the object type Wall constraint can be defined as: Shape IsOfType
CuboidWallShape. This way, when creating new objects of Wall type, only shape objects of
types inheriting from the one specified in the type constraint will be allowed as Shape sub-
object.

 Experiments

The aim of the experiments is to automate the process of managing indoor lights, switch on
lights when a person enters any of the rooms and switch off when he/she leaves the room. Three
devices were used in the experiment:

1. Wifi Sonoff GK-200MP2-B 1080P camera,
2. TRADFRI LED E27 bulb,
3. TRADFRI Gateway.

The second and third device are available as part of the IoT solutions offered by TRADFRI
[9]. Integration with the Autero system was realized with the help of the CSharpTradFriLibrary
library [10]. The main difference to the standard solution offered in IoT projects is the use of
a camera for human location in 3D space instead of detecting motion using a motion sensor or
presence sensor. To implement the scenario in the Autero system, it was necessary to:

1. Define the appropriate types in the ontology, and then define and add objects to the
object map,

2. Define the type of service and then add the service that modifies the light intensity,
3. Calibrate the video capture software to define the translation between the position

in the captured picture to the position in the object map,
4. Create events and actions in Safeguards module.

The definition of the type representing a room was presented in the Ontology and object
maps section. For the scenario, we have defined a LightBulb type that represents a light bulb
and consists of the basic attributes inherited from PhysicalObject and the LightIntensity
attribute. Based on the type we defined, we can create objects that represent light bulbs in all
the rooms. The LightIntensity attribute was also added to the CuboidRoom type as a part of the
Environment complex attribute. This attribute symbolizes the computed intensity of the light in
the room. We have also defined a HumanBody type inheriting from PhysicalObject. This type
represents a person, his/her position in the object map and his/her identity by adding
PersonFaceId.

64

Based on object types, we define a type of services that will be performed on specific
physical devices. A declarative description of the service type based on the ontology is required
to enable automatic arrangement and execution of appropriate services. For this scenario, we
need one type of service that changes the intensity of the light in the room. The definition of
precondition is empty and final conditions for a service type is defined in formula 4.

 (4)

Since the TRADFRI bulb allows us to control the light intensity, the service changing its
state takes one parameter specifying the intensity of light in the form of an integer. Then, based
on the type of service, it is possible to create a specific service in the Services Manager. The
information about the TRADFRI gateway address, the name of the device (as it was named
during the gateway configuration, e.g. "light") and a special token to establish a connection is
required in order to properly configure the new service which, from now on, will be provided
by the Service Manager.

Correct configuration of the video capture software is necessary so it would be possible to
update the position of the human object in the object map. The association between the object
map and the recognized person is accomplished by a dedicated PersonFaceId attribute, the
value of which is set accordingly when creating a HumanBody object, so that the system can
monitor multiple people at the same time. When updating information about objects in the
object map, existing relations are automatically evaluated by the Repository. This is necessary
to represent the current state of the environment and is used when defining events.

The final step is to configure the event based on which the appropriate action will be
performed. We can define events in the safeguard module, by formally defining the event and
the corresponding action. In this experiment, we detect two events; when a person appears in
a room and when a person leaves the room. The rule for the first event is defined in formula 5.

(5)

The event definition uses an IsIn relationship, which can be seen in the example in the
Relationships subsection. With this record, the user can easily define their own events and
actions. This method is similar to applications such as IFTTT[2], but events are not based on
information from devices, but on situations in the feature map. At the time of the event, the
appropriate action will be performed, which will commission the task to the Task Manager in

LighBulb<LightBulb>.LightIntensity = LightIntensityValue<Integer>

Event: human<HumanBody> IsIn room<CuboidRoom>

Action: room<CuboidRoom>.LightIntensity = 100

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

order to achieve the desired result, and in the room into which the person entered the light will
be turned on. Similarly, we define the rule in formula 6 for extinguishing the light in the room.

(6)

We create a negation of the previous event, covering all situations when a person is not in
the room and configure the action accordingly to switched off the light. This rule can be used,
for example, to save energy.

After setting up the system, the scenario can be realized. There are two ways to visualize
the experiment. The first one is through the camera image, after being processed. The second
one presents a screen shoot from the simulation environment which visualizes the current state
of the object map. The simulation continuously refreshes the positions of objects (in this case,
position of the man), so that we can easily monitor the current status of the object map during
experiments. At the start of the experiment, the light in the room is switched off and the man is
not present (Figure 6).

Figure 6. Experiments, corridor CV and visualization. Source: own study.

Event: !(human<HumanBody> IsIn room<CuboidRoom>)

Action: room<CuboidRoom>.LightIntensity = 0

66

The person is already visible in the camera image, but the light in the room is still switched
off due to the fact that the event describing the presence of a person in the room has still not
been triggered. In the above figure (Figure 6), we can also see the simulation which shows that
in the current state of the object map the person is still in the hallway and not in the room.

After entering the room, the human position in the object map is updated, the IsIn relation
is evaluated, and the events defined in the safeguard module are checked. When one or more
events are triggered by the change in the object map, the task to switch on the light in the living
room is sent to the Task Manager. In Figure 7 we see that the man entered the room, the object
map was updated, and the light is switched on. Due to hardware limitations, the whole process
takes about 1 to 3 seconds, mostly by the speed of the image processing being done on CPU.

Figure 7. Experiments, room CV and visualization. Source: own study.

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

 Conclusion

In IoT environments consisting of, e.g. Samsung SmartThings [5] or IKEA TRADFRI [9],
the test scenario can be achieved using a presence sensor or motion sensor. The advantage of
the proposed solution is the lack of cases in which the detection of movement outside the room
may cause the light to be switched on. Also, when using a presence sensor, the person must
carry an additional device. The use of object map and human position in 3D space allows for a
much wider range of applications, and the only thing that limits users is the number and types
of owned devices.

On the other hand, the human detection module requires further work. The positioning
mechanism uses one camera and identifies people by their faces. This allows for unambiguous
identification, but the human face must be visible from the position of the camera. In
environments where multiple cameras are present, the problem can be solved by implementing
the capability to process and merge data from all the cameras in a given room. That, by itself,
constitutes a challenge from the speed and efficiency point of view.

Further works will focus on expanding the ontology and range of devices that could provide
services in the system. The next scenarios will introduce more complex tasks, new events and
actions improving not only human comfort but, more importantly, his/her safety in a smart
environment.

References

1. Celik Z. B., Tan G., McDaniel P.: IoTGuard: Dynamic Enforcement of Security and
Safety Policy in Commodity IoT. In Proceedings Network and Distributed System
Security Symposium. Internet Society, San Diego, CA, 2019.

2. IFTTT (if this, then that): Helps your apps and devices work together. (https://ifttt.com/,
access date: 01.10.2020).

3. Ferry N., Nguyen P., Song H., Novac P. E., Lavirotte S., Tigli J. Y., Solberg A.: GeneSIS:
Continuous Orchestration and Deployment of Smart IoT Systems. In IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), pp. 870–875. IEEE,
Milwaukee, USA, 2019 (https://ieeexplore.ieee.org/document/8753981/).

4. Liu R., Wang Z., Garcia L., Srivastava M.: RemedioT: Remedial Actions for Internet-of-
Things Conflicts. In Proceedings of the 6th ACM International Conference on Systems for

68

Energy-Efficient Buildings, Cities, and Transportation, pp. 101–110. ACM, New York,
USA, 2019.

5. Samsung Smart things, Smart home. Intelligent living. (https://www.smartthings.com/,
access date: 01.10.2020).

6. Samsung Smart things. Developer documentation. (http://docs.smartthings.com/en/latest,
access date: 01.10.2020).

7. IDEAL (Projet), ScienceDirect (Service en ligne): Knowledge acquisition. London:
Academic Press, 1993 (http://www.sciencedirect.com/science/journal/10428143, access
date: 01.10.2020).

8. Skarzynski K., Stepniak M., Bartyna W., Ambroszkiewicz S.: SO-MRS: A Multi-robot
System Architecture Based on the SOA Paradigm and Ontology. In M. Giuliani, T. Assaf,
M. E. Giannaccini (editors), Towards Autonomous Robotic Systems, pp. 330–342.
Springer International Publishing, Cham, 2018.

9. TRADFRI - Smart Home Products - Lighting, Wi-Fi Speakers, Blinds.
(https://www.ikea.com/us/en/cat/smart-home-hs001/, access date: 01.10.2020).

10. TRADFRI - C# integration. (https://github.com/tomidix/CSharpTradFriLibrary, access
date: 01.10.2020).

11. Node-RED. (https://nodered.org/, access date: 01.10.2020).

12. Home Assistant. (https://www.home-assistant.io/, access date: 01.10.2020).

13. FIBARO | Smart Home. (https://www.fibaro.com/pl/, access date: 01.10.2020).

14. Xiaomi Mi Smart Home - category of Xiaomi smart devices and accessories for it.
(https://xiaomi-mi.com/mi-smart-home/, access date: 01.10.2020).

15. Hassija V., Chamola V., Saxena V., Jain D., Goyal P., Sikdar B.: A Survey on IoT
Security: Application Areas, Security Threats, and Solution Architectures. IEEE Access,
vol. 7, 2019 (https://ieeexplore.ieee.org/document/8742551).

16. Gartner Special Report. (https://www.gartner.com/en/newsroom/press-releases/2014-09-
08-gartner-says-a-typical-family-home-could-contain-more-than-500-smart-devices-by-
2022, access date: 01.10.2020)

STUDIA INFORMATICA
Nr 1-2 (24) Systems and information technology 2020

17. Redmon J., Divvala S., Girshick R., Farhadi A.: You Only Look Once: Unified, Real-
Time Object Detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 779–788. Las Vegas, USA, 2016.

18. Parkhi O. M., Vedaldi A., Zisserman A.: Deep Face Recognition. In Procedings of the
British Machine Vision Conference 2015, pp. 41.1–41.12. British Machine Vision
Association, Swansea, 2015.

19. Ng H. W., Winkler S.: A data-driven approach to cleaning large face datasets. In IEEE
International Conference on Image Processing (ICIP), pp. 343–347. Paris, France, 2014.

20. Face recognition library. (https://github.com/ageitgey/face_recognition, access date:
01.10.2020).

