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Recognition of the atmospheric contamination source 

localization with the Genetic Algorithm 
 

 
Abstract: We have applied the Genetic Algorithm (GA) to the problem of the atmospheric 

contaminant source localization. The algorithm input data are concentrations of given 

substance registered by sensor network. To achieve rapid-response event reconstruction,the 

fast-running Gaussian plume dispersion model is adopted as the forward model. 

The proposed GA scans 5-dimensional parameters space searching for the contaminant 

source coordinates (x,y), release strength (Q) and the atmospheric transport dispersion 

coefficients. Based on the synthetic experiment data the GA parameters like population 

size, number of generations and the genetic operators best suitable for the algorithm 

performance are identified. 

We demonstrate that proposed GA configuration can successfully point out the parameters 

of abrupt contamination source. Results indicate the probability of a source to occur at a 

particular location with a particular release rate. The shapes of the probability distribution 

function of searched parameters values reflect the uncertainty in observed data. 
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1. Introduction 
 

Accidental atmospheric releases of hazardous material pose high risks to human 

health and the environment. In the event of an abrupt atmospheric release of chemical or 

radioactive, biological materials, emergency responders need to undertake the necessary 

action quickly to reduce the release consequences. In this context, it is important to 

develop the emergency system which based on the concentration of a dangerous 

substance reported by the network of sensors, can inform about probable location of the 

release source. It is crucial to point out the contamination source location as soon as 

possible.  

The most evident way is to perform the simulation producing the material point 

concentrations comparable to registered by the sensors network. However, it is not trivial 

to create the model realistically reproducing the real situation based only on the sparse 

point-concentration data. This work requires the specification of the set of model 

parameters, which depend on the applied model. Consequently, the event reconstruction 

problem can be reformulated into a task of sampling an ensemble of simulations, guided 

by comparisons with data.  

A comprehensive literature review of past works on solutions to the inverse 
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problem for atmospheric pollutant releases can be found in (e.g. Keats, 2007). The 

problem of the source term evaluation was studied in the literature grounded both on the 

deterministic and probabilistic approach. Pudykiewicz, (1998) implemented an algorithm 

based on integrating the adjoint of a linear dispersion model backward in time to solve a 

reconstruction problem. Johannesson et al. (2004, 2005) introduced dynamic Bayesian 

modeling, and the Markov Chain Monte Carlo (MCMC) sampling approaches to 

reconstruct a contaminant source. The effectiveness of MCMC in the localization of the 

atmospheric contamination source based on the synthetic experiment data was shown in 

Borysiewicz et al. (2012ab). Wawrzynczak et al. (2014) presented the advantage of the 

Sequential Monte Carlo over the MCMC in the estimation of the probable values of the 

source coordinates.  

The task of finding the ‘best fitted’ model parameters for which a forward 

atmospheric dispersion model output will reach agreement with the real observations can 

be considered as an optimization problem.  

Metaheuristics, such as genetic algorithms (GAs), are broadly used to solve 

various optimization problems. GA was designed to imitate some of the processes taking 

place in the natural environment (Holland, 1992). The GAs are highly relevant for 

industrial applications. Reason is their capabilities of handling problems with non-linear 

constraints, multiple objectives, and dynamic components – properties that usually appear 

in the real-world problems (e.g. Goldberg, 2006). Since GA introduction and propagation 

(Holland, 1992) it has been successfully applied in a variety of areas as an alternative to 

the conventional optimization methods. For example, it was used in control engineering 

(Chwee, 1995), finding hardware bugs (Goodall and Michail, 2009), multiple criteria 

production scheduling (Bagchi, 1999) and much more. GAs have been also used in 

environmental sciences problem e.g. in the addressing air quality problem (Allen and 

Haupt, 2006)  

Application of the metaheuristics like GA requires defining several algorithm 

components and parameters. These parameters have a large impact on performance and 

efficiency of the algorithm (e.g., Eiben et al., 1999, Saremi et al., 2007, Roeva et al., 

2013). Therefore, it is important to estimate the algorithm parameters best suitable for the 

considered optimization problem. The optimal values of parameters depend mainly on a) 

the problem; b) the domain of the problem to deal with and c) the computational time that 

can be spent on solving the problem. Usually in the algorithm parameters tuning should 

be achieved a compromise between solution quality and search time. 

In this paper, we apply the GA to the problem of localization of the abrupt 

atmospheric contamination source based on the released substance concentration reported 

by the sensors network. Based on the synthetic experiment data the GA parameters, like 

population size, mutation, and crossover probability; best suitable for the algorithm 

performance are identified. 

 

2. Problem formulation 
 

The application of the GA to the issue of localization of the atmospheric 

contamination source is tested based on the synthetic data.The algorithm input data are 

the concentrations recorded by 10 sensors randomly distributed over the domain 15 km x 

15 km (Figure 1). The synthetic concentrations (Figure 1), used in algorithm testing, were 

generated by the atmospheric dispersion Gaussian plume model (e.g. Turner, 1994). In 
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the presented experiment, the contamination source was located at x = 3 km, y = 8 km, 

within the domain at the height 𝐻 = 50 𝑚 (Figure 1). The release rate was assumed to be 

Q = 5000 g/s. The wind was directed along x axis with speed U = 5 m/s.The sensors 

synthetic  concentrations provided to the GA localization algorithm were randomly 

distorted up to 20% of initial concentration. 

 

 
 

Figure 1. The location of the release source along with the spatial distribution of 10 sensors within 

the domain. The values for the sensors represent the substance concentration distorted randomly up 

to 20% percent when passed to the reconstruction procedure.  

 

An atmospheric dispersion model is necessary to calculate the concentration Ci
M 

at the points ‘i’ of sensor locations for the tested set of model parameters M at each GA 

step. To satisfy the short computational time requirement, as a forward model we selected 

the fast-running Gaussian plume dispersion model (e.g. Turner, 1994). For uniform 

steady wind conditions the concentration 𝐶(�̃�, �̃�, 𝑧) of the emission (in micrograms per 

cubic meter) at any point 𝑥 ̃meters downwind of the source, �̃� meters laterally from the 

centerline of the plume, and z meters above ground level can be written as follows: 
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where U is the wind speed directed along x axis, Q is the emission rate or the source 

strength and H is the effective height of the release equal to the sum of the release height 

and plume rise (𝐻 = �̃� + ℎ). In the equation (1) σy and σzare the standard deviations of 

concentration distribution in the crosswind and vertical direction and depends on �̃� (see 

formula below). These two parameters were defined empirically for different stability 

conditions by Pasquill (1961) and Gifford (1960). We restrict the diffusion to the stability 

class C in an urban area (Pasquill type stability for therural area). Thus, in the creation of 

the synthetic data we have fixed this coefficient as: 

 

σy = 0.22x̃  ∙ (1 + x̃  ∙ 4 ∙ 10−5)−0.5, 𝜎𝑧 = 0.2�̃� . 
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However, during the reconstruction we assume that we do not know the exact 

behavior of the plume and consider those coefficients as unknown. Thus, the parameters 

σy, σz are taken as: 

 

                              σy = z1  ∙ x̃  ∙ (1 + x̃  ∙ 4 ∙ 10−5)−0.5, σz = z2 ∙ x̃ ,                        (2) 

 

where values 𝑧1 and 𝑧2 are sampled by algorithm within the physically acceptable 

interval <0.001,0.35>.  

The simple mathematical transformation of the coordinate system is required to 

apply formula (1) to search for the contamination source position (x,y) within the domain 

15km x 15km, in which the sensors measuring concentration of the dispersed substance 

are located (Figure 1). 

To summarize, in this paper the scanned model parameter space is  
𝑀 = (𝑥, 𝑦, 𝑄, 𝑧1, 𝑧2), where x and y are spatial locations of the release within the domain, 

Q release rate, and 𝑧1, 𝑧2 are stochastic terms in the turbulent diffusion parameterization 

defined in (2). To restrict the space of the searched parameters the height of the searched 

release source was fixed during the reconstruction at the sensors height i.e. 20 meters 

(which differs from the assumed during generation of the synthetic data by 30 meters). 

The plume rise (h) was estimated to be equal 1 meter. 

 

3. Genetic Algorithm concept 
 

The localization of the contamination source within the predefined domain 

requires the recognition of the atmospheric dispersion model parameters for which the 

model output at the sensors location meets the real data. In this context, we can say that 

the problem can be seen as an optimization problem for which GA can be applied. 

 
 

Figure 2. Flowchart of the GA 
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Figure 2 presents the concept of the GA (e.g. Goldberg, 2006). The algorithm starts 

with defining the initial population. The population is composed of the predefined number 

of chromosomes, 𝑃(𝑡) = 𝑐1
𝑡 , ⋯ , 𝑐𝑛

𝑡  in the generation t. The chromosomes in the initial 

population were randomly drawn from the admissible set of values explicitly defined by 

the space of explored parameters. The chromosome is configured as a binary value 

representing the real value of searched parameters. The quality of each chromosome in 

the current population is evaluated based on the cost/objective function. Various objective 

functions can be applied; its form depends upon the problem being solved. The 

‘improvement’ of the current population can be done by applying the genetic operators.  

The information on the quality of each population chromosome is used to perform 

a selection. Then the crossover is implemented. As a result, the pairs of parents in the 

current population are replaced by their children. Children are created by blending of the 

parents’ bits at the randomly chosen crossover point. The crossover probability 

determines the number of crossovers that occurs within the population. Subsequently, the 

current population is mutated by changing some chromosome features. Possibilities of 

changing chromosome individual bits allow the algorithm to search for the entire solution 

space and not to converge to local extremes. The mutation probability determines the 

number of going on mutations. After performing the selection, crossover and mutation 

the new generation (t+1), being subject to the new evaluation, is established. After some 

number of generations the algorithm converges – it is expected that the best chromosome 

in the population represents a near-optimum (reasonable) solution. The process stops 

when the termination criterion is fulfilled. The most common termination criterion is a 

limited number of generations. 

 

3.1. Adjustment of the GA to the problem of source localization 

In the problem of the localization of the contamination source GA should find the 

applied atmospheric dispersion model parameters that fit the model output to the on-line 

arriving concentrations of given substance. In this paper, the scanned parameters space M 

is five-dimensional i.e. 𝑀 ≡ {𝑥, 𝑦, 𝑄, 𝑧1, 𝑧2}.  

Correspondingly, each population chromosome stores the following information: 

 x, y– coordinates of contamination source in meters, 

 Q – strength of the release in grams per second, 

 z1, z2 – turbulent dispersion coefficients. 

We assume that initially we have no a priori information about the parameters 

values. Accordingly, for each dispersion model parameter we randomize a real number 

draw from the predefined interval with the use of the uniform distribution. The next step 

is to encode all real numbers to a binary form. One of the most efficient ways is to perform 

particular conversion to an integer number and then to the binary number. 
 

Conversion of the real number to an integer number. 

Let consider the real number xReal from the interval <A, B> with the required precision P. 

The conversion of x Real to xInt can be achieved by: 

1. Finding the lowest value for parameter 𝑙 that fulfills the following inequality: 
 

2𝑙 − 1 ≥
𝐵−𝐴

𝑃
+ 1. 

 

Right side of inequality stands for a number of all possible real numbers from the interval 

<A, B> with precision P. 
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2. Flattening the entire interval to such form that its boundaries will be between <0, 1>, 

by formula: 
 

𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑅𝑒𝑎𝑙 =
𝑥𝑅𝑒𝑎𝑙 − 𝐴

𝐵 − 𝐴
 

𝑥𝐼𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑[𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑅𝑒𝑎𝑙 ∗ (2𝑙 − 1)]. 
 

In the problem presented in this paper the parameters M are searched within the 

intervals 𝑥 ∈< 0,15000 >, 𝑦 ∈< 0,15000 >, 𝑄 ∈< 1,8000 > 𝑧1 ∈< 0.001,0.350 > 

and 𝑧2 ∈< 0.001, 0.350 >. The parameters value precision P for parameters x,y equals 

Px,y=1m, for Q:PQ=1 g/s, and Pz1=Pz2=0.001.The example of the encoded chromosome 

presents Figure 3. 

 

 
 

Figure 3. Example of the chromosome representing the searched model parameters 

 
3.2. Evaluation of the population quality 

The population evaluation is done with the use of the objective function reflecting 

the quality of population’s chromosomes. This function compares the concentrations 

predicted by the model and registered at the sensor locations as: 
 

𝑓(𝐶𝑖
𝑀, 𝐶𝑖

𝐸) =  − 
∑ [log (𝐶𝑖

𝑀)−log (𝐶𝑖
𝐸)]𝑁

𝑖=1

2

2𝜎𝑟𝑒𝑙
2 , 

 

where f is the objective function, 𝐶𝑖
𝑀 are the concentrations predicted by the forward 

atmospheric dispersion Gaussian plume model at the sensor locations ‘i’;𝐶𝑖
𝐸are the sensor 

measurements, N is the number of sensors; 𝜎𝑟𝑒𝑙
2  is an error parameter (Monache et al., 

2008) chosen accordingly to expected errors in the observations for given sensors, 

assumed here equal to 0.2. It is evident that the greater is the objective function value for 

the given model setup M, the better is estimated the set of searched parameters M. 

 

3.3. Genetic algorithm operators – selection 

There are many ways of dealing with GA selection e.g. roulette selection, rank 

selection, hard and soft tournament. For the problem presented in this paper, all mentioned 

methods were tested. The best results were achieved with a selection based on hard 

tournament, which can be expressed by following pseudocode: 
 

FOR i=1 to N LOOP 

 FOR j=1 to TS LOOP 

  tournamentGroup(j)=drawChromosomeFromPopulation(); 

 END LOOP 

 sortTournamentGroupByObjectiveFunction(); 

 newPopulation(i) = getBestTournamentChromosome(); 

END LOOP 
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where N is the size of population and TS is tournament size, equal 2 in this paper. As the 

result of the tournament from each pair of the selected chromosomes, one with a better 

objective function value passes to the next generation.  

 

3.4. Genetic algorithm operators - crossover 

There can be distinguished many methods of dealing with GA cross over e.g. 

single point crossover, multi-point crossover, uniform crossover, arithmetic crossover. For 

a given problem, the best results were achieved applying the multi-point crossover. 

Procedure begins with performing for each chromosome the test for being a parent 

according to the crossover probability CP. From the parents’ population the unexploited 

pair is chosen. Then one crossover point for each parameter encoded in the chromosome 

is drawn, i.e. five points for the problem presented. The parents are split at the crossover 

points for each encoded parameter, then (in term of each encoded parameter) bits are swap 

resulting in two children. Pseudocode can be expressed in the following way: 

 
FOR i=1 to N LOOP 

 IF drawNumberFrom0To1() <= CP 

  currentPopulation(i).isParrent(true); 

 END IF 

END LOOP 

 

WHILE existsTwoNotUsedParents() LOOP 

 firstParent  =popParent();  

 secondParent = popParent(); 

 

 xCrossoverPoint = drawNumberFrom0ToParameterXLength(); 

 yCrossoverPoint= drawNumberFrom0ToParameterYLength(); 

 qCrossoverPoint= drawNumberFrom0ToParameterQLength(); 

 z1CrossoverPoint= drawNumberFrom0ToParameterZ1Length(); 

 z2CrossoverPoint= drawNumberFrom0ToParameterZ2Length(); 

 

 tmpXBin1= firstParent.getXParameterBinaryForm(); 

 tmpYBin1= firstParent.getYParameterBinaryForm(); 

 tmpQBin1= firstParent.getQParameterBinaryForm(); 

 tmpZ1Bin1= firstParent.getZ1ParameterBinaryForm(); 

 tmpZ2Bin1= firstParent.getZ2ParameterBinaryForm(); 

 

 tmpXBin2= secondParent.getXParameterBinaryForm(); 

 tmpYBin2= secondParent.getYParameterBinaryForm(); 

 tmpQBin2= secondParent.getQParameterBinaryForm(); 

 tmpZ1Bin2= secondParent.getZ1ParameterBinaryForm(); 

 tmpZ2Bin2= secondParent.getZ2ParameterBinaryForm(); 

 

 firstChildX=tmpXBin1(0,crossoverPoint)+    

     

 tmpXBin2(crossoverPoint+1); 

 firstChildY  =tmpYBin1(0,crossoverPoint)+   

      

 tmpYBin2(crossoverPoint+1); 

 firstChildQ  =tmpQBin1(0,crossoverPoint)+   
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 tmpQBin2(crossoverPoint+1); 

 firstChildZ1 = tmpZ1Bin1(0,crossoverPoint)+  

      

 tmpZ1Bin2(crossoverPoint+1); 

 firstChildZ2 = tmpZ2Bin1(0,crossoverPoint)+  

      

 tmpZ2Bin2(crossoverPoint+1); 

 

 secondChildX= tmpXBin2(0,crossoverPoint)+   

      

 tmpXBin1(crossoverPoint+1); 

 secondChildY= tmpYBin2(0,crossoverPoint)+   

      

 tmpYBin1(crossoverPoint+1); 

 secondChildQ= tmpQBin2(0,crossoverPoint)+   

      

 tmpQBin1(crossoverPoint+1); 

 secondChildZ1= tmpZ1Bin2(0,crossoverPoint)+  

      

 tmpZ1Bin1(crossoverPoint+1); 

 secondChildZ2= tmpZ2Bin2(0,crossoverPoint)+  

      

 tmpZ2Bin1(crossoverPoint+1); 

 

 firstChild = firstChildX + firstChildY + firstChildQ + 

        firstChildZ1 + firstChildZ2; 

 secondChild = secondChildX + secondChildY + secondChildQ + 

         secondChildZ1 + secondChildZ2; 

 

 currentPopulation(firstParent.getIndex()) = firstChild; 

 currentPopulation(secondParent.getIndex())= secondChild; 

END LOOP  

 

where N is the size of population and CP is a crossover probability. 

 

3.5. Genetic algorithm operators – mutation 

The latter applied genetic operator is mutation. The most frequently are used 

uniform mutation and non-uniform mutation. For a given problem, the best results were 

achieved with uniform mutation in which all chromosome bits are mutated with the 

mutation probability MP. Pseudocode can be expressed in the following way: 

 
FOR i=1 to N LOOP 

 FOR j=1 to L LOOP 

  IF drawNumberFrom0To1() <= MP 

   currentPopulation(i).swapBitValue(j); 

  END IF 

 END LOOP 

END LOOP 

 

where N is the size of population, L is the length of chromosome binary representation 

and MP is a mutation probability. 
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4. Numerical results  
 

Described GA was implemented in the MatLab environment and tested based on 

the synthetic data outlined in section 2. Various setups of the sensors distribution within 

the considered domain were tested to confirm the correctness of the applied methodology. 

However, for clarity results for one configuration are presented. The initial testing of the 

algorithms efficiency allowed to determine the adequate size of the population to be equal 

150 and the number of generations to 50.  

 
 

Figure 4. The average values of the objective function obtained during the 30 algorithm runs for 

25, 50, 100, 150 and 200 chromosomes in the population 

 
 

Figure 5. Influence of the population size and number of generations on the value of the objective 

function. The value of the objective function was averaged over 30 runs 

 

Figure 4 presents the increasing of the objective function value with the growing 

number of generations. One can also see that the variance of the objective function value 

decreases with increasing population size. However, there is no distinct difference 
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between the population size 150 and 200. Consequently, in the problem solution we took 

the population size equal to 150 chromosomes. Figure 5 presents how the objective 

function value changes with respect to the population size and the generation number.  

It is visible that for the chosen configuration the profile of the objective function is 

acceptable, i.e. increasing the population size from 150 to 200 does not improve the 

objective function value in the 50th generation significantly.  

 
 

Figure 6. Influence of the mutation probability and crossover probability on the objective function 

value. The value of the objective function is averaged over 30 runs 

 

Influence of the various crossover and mutation probabilities on the objective 

function value was also tested. Figure 6 presents the averaged over the population (150 

chromosomes) objective function value for 50th generation. Figure 6 illustrates that the 

objective function value increases with the decreasing of the mutation probability. The 

impact of the crossover probability on the objective function value is not apparent. 

However, performed tests endorsed that in the presented optimization problem effective 

is to apply mutation with the probability MP = 0.005 and crossover with the probability 

CP = 0.7. 
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Figure 7.  Distribution of the x and y coordinates estimate while the GA runs for the 1, 5, 15 and 

50th generation (for optimal GA setup MP = 0.005; CP = 0.7) 

 

Based on the undertaken analysis the following GA configuration was selected as 

appropriate: 

 Number of generations = 50; 

 Size of population N = 150; 

 Selection based on hard tournament of size 2; 

 Multi-point crossover with probability CP = 0.7, with 5 crossover points (5 is the 

number of searched parameters); 

 Uniform mutation with probability MP = 0.005. 



38  A. Wawrzynczak, M. Jaroszynski, M. Borysiewicz 

Systems and information technology 

 
 

Figure 8. Probability distributions of the model parameters M for the 5th generation (for optimal 

GA setup with MP = 0.005 and CP = 0.7). The red vertical line represents the target value 

 

 
 

Figure 9. Probability distributions of the model parameters M for the 15th generation (for optimal 

GA setup with MP = 0.005 and CP = 0.7). The red vertical line represents the target value 
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Figure 10. Probability distributions of the model parameters M for the 50th generation (for optimal 

GA setup with MP = 0.005 and CP = 0.7). The red vertical line represents the target value 

 

Results obtained from the recommended GA configuration are presented in 

Figures 7, 8, 9 and 10. Figure 7 illustrates the distribution of the estimated by the GA 

contamination source coordinates x and y in subsequent generations. It is seen for the 1st 

generation that the chromosomes are equally distributed within the scanned domain. 

However, the used genetic operators improve the population quality in subsequent 

generations and chromosomes gradually focus nearby the actual source location. Finally, 

for 50thgeneration the contamination source location determined by the GA reach the 

target position. The development of the chromosomes for subsequent generations for all 

examined parameters is clearly seen from Figures 8, 9 and 10 where the probability 

distributions of all five searched parameters are shown. The presented probability 

distributions were calculated based on the distribution of chromosomes in given 

generation. The red vertical line marks the target value. Figure 8 shows the probability 

distribution of searched parameters for the 5th generation. It is seen that, at this stage none 

of the parameters target value was reached. This is changing with the growth of the 

population quality by applying genetic operators. Then, for the 15th generation (Figure 9) 

the near real value of parameter x is reached with probability P(x) = 0.37; parameter y 

with P(y) = 0.43 and parameter z1 with probability P(z1)= 0.46. Still, the target value for 

Q and z2 parameter is not marked as the most likely. Finally, for the 50th generation 

(Figure 10) as the most probable values of all searched parameters GA marks values close 

to the target value i.e.: 

P(x=3075±75)=0.99, while target value is x=3000; 

P(y=8025±75)=0.99, while target value is y=8000; 

P(Q=5480±40)=0.21, while target value is Q=5000; P(z1=0.22575±0.00175)=1, 

while target value is z1=0.22; P(z2=0.20125±0.00175)=0.19, while target value is 

z2=0.2. 
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As the estimated parameter value, we provide the central value of the histogram 

bar with the highest probability and as the error the half of the bar width. The target 

parameters value lies within the intervals pointed by the GA as the most probable. Only 

for the release rate the algorithm overestimated Q by ~440 g/s. However, considering the 

dispersion of the substance over the domain 225 km2 and taking into account that the 

source height was fixed 30 m below its real location, this difference is not physically 

significant.  

The profile of the objective function value during the subsequent generations 

presents Figure 11.  

 

 
 

Figure 11. The objective function value for the subsequent generations (for optimal GA setup with 

MP = 0.005 and CP = 0.7) 

 

For the comparison Figure 12 presents the probability distributions of all 

parameters in 50th generation derived from not optimal GA configuration in which the 

mutation probability was increased to MP = 0.03 and crossover probability decreased to 

CP = 0.5. It is obvious that the results are worse than obtained for the preferred parameters 

(i.e. MP = 0.005; CP = 0.7). Yet, although the target values of Q and z2 were not marked 

as the most probable, the most important (in practical application) the contamination 

source coordinates x and y relatively close to the target value were marked as the most 

probable i.e. P(x = 3525±75)=0.14 and P(y = 7725±75) = 0.24. 
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Figure 12. Probability distributions of the models parameters M for the 50th generation (for NOT 

optimal GA setup with MP = 0.03 and CP = 0.5). The red vertical line represents the target value 

 
5. Conclusion  
 

We can conclude that the applied GA configuration effectively localized the 

contamination source parameters based on the sparse point concentrations data. The 

presented algorithm successfully provided the solution to the stated inverse problem i.e. 

having the downwind concentration measurements and knowledge of the wind field; the 

algorithm found the most probable location of the source and its strength. The presented 

probability distributions of all searched parameters encoded in the population’s 

chromosomes allow reflecting the level of confidence in the obtained results. The 

probabilistic aspect of the solution optimally combines a probable answer to the 

uncertainties of the available concentrations data driving the calculations. 
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