
STUDIA INFORMATICA

Nr 1-2 (19) Systems and information technology 2015

Adam Drozdek, Dušica Vujanović

Duquesne University,

Department of Mathematics and Computer Science,

Pittsburgh, PA 15282, USA

Atomic-key B-trees

Abstract. Atomic-key B-trees are B-trees with keys of different sizes. This note presents

two versions of an insertion algorithm and a deletion algorithm for atomic-key B-trees.

Keywords: atomic-key B-tree, data structures, database management.

1. Introduction

In regular B-trees, the number of keys in one node is predefined and customarily

the same amount of space is used for each key. A modification introduced in prefix

B-trees allows for keys to be of different size; however, this can only be done if these keys

share the same prefix. There is thus a need to address the problem of B-trees that can store

any keys of variable length. One solution is offered by the string B-tree in which the keys

are divided and distributed between different nodes of the tree ([3, 5]). The atomic-key

B-tree offers another solution in which keys are atomic by being stored in their entirety

([4], ch. 5; [1]).

2. The static atomic-key B-tree

In the static version of insertion in the atomic-key B-tree, Hu proposes that a set

of keys is divided into 𝑓 = max (3, ⌊
𝐵

𝑘̂
⌋) subsets (keys in each set are ordered), where B

is the block size and 𝑘̂ is the average key length. Hu uses the top-down technique to build

the tree: all keys are divided up into f sets and from each set, except for the first and the

last, shortest key is chosen and all these shortest keys are put in the root. The f–2 keys in

the root then separate all keys into f–1 subsets and each of these subsets is put in a

descendant of the root. For example, from the four subsets {a, b, c}, {dd, ee, f}, {gg, h,

ii}, {jj, k, l}, the root would be {f, h} and there would be three descendants of the root,

{a, b, c, dd, ee}, {gg}, {ii, jj, k, l}. If a subset is too large and cannot be accommodated

in a node, the subset is divided into f subsets (f is determined anew for each subset

according to the average key length in this subset), the shortest key from each subset,

except for the first and the last, is put in the node, the shortest keys separate keys in the

node into groups that are put in descendants of this node. The process continues until no

node splitting is needed. It should be clear that leaves may not be on the same level.

Another problem is the appearance of empty leaves. For a block of size 50 and six keys

K1, …, K6, each of size 10, the average length is 10, f = 50/10 = 5, and thus five sets are

created, say, {K1}, {K2}, {K3},{K4}, {K5, K6}, whereby the root becomes {K2, K3, K4}

16 A. Drozdek, D. Vujanović

Systems and information technology

with two nonempty descendants, {K1} to the left of K2 and {K5, K6} to the right of K4, and

two empty descendants, one between K2 and K3, and another between K3 and K4.Another

scenario is illustrated in Figure 2.1. The shortest keys from the three sets of keys are put

in the root. The four sets of keys separated by these shortest keys are shown as tall

rectangles. They will be used to form the four descendants of the root. However, at least

the tall rectangle before A is too large to be accommodated in one node and it will be later

processed to acquire its own descendants; the same appears to be the case with the tall

rectangle after C. Because of choosing the rightmost key B from its set and the leftmost

key C from its set, the tall rectangle between them is empty resulting in an empty leaf.

Figure 2.1. Possible positions of shortest keys in their sets

3. The dynamic atomic-key B-tree

The static version requires that all keys are known before the tree is created – to

determine the average key length – which limits its applicability. A more interesting

situation is a dynamic case when one key is inserted in the tree without knowing which

keys will be inserted next. In a B-tree, the height of the tree depends on the number of

descendants: the more children each node can have, the smaller the overall height of the

tree becomes. For variable length keys, it is thus a good idea to put shorter keys high up

in the tree, since more keys can be accommodated in one node and the node can have

more children. Each algorithm for insertion in the atomic-key B-tree has to take this

consideration into account.

When the pure top-down technique from the static atomic-key B-tree is applied in

the dynamic tree, then upon a node overflow a split results in the shortest key staying in

the node being split with the remaining keys along with the new arrival being distributed

between two newly created leaves that become descendants of this node. In this way,

nonterminal nodes would contain only one key. The problem can be addressed in at least

two ways, and in this article we propose two insertion techniques to be used in the

dynamic atomic-key B-tree, one that adopts the traditional way of building B-trees

bottom-up to build atomic-key B-trees and another which combines bottom-up and top-

down ways of handling splits.

4. A bottom-up version of the dynamic atomic-key B-tree

Inserting a key into a leaf that has some room would proceed as in a regular B-tree

with updates of relevant fields in the leaf to reflect the new situation. The keys have to be

ordered – for strings this would be alphanumeric order – which most of the time requires

that the positions of existing keys are reconfigured. Otherwise, the leaf has to be split to

promote a key, which may cascade into splits of its parent, grandparent, etc.

There are two problems that need to be addressed when a split occurs while

 Atomic-key B-trees 17

Studia Informatica 1-2(19)2015

inserting a key using the bottom-up approach. One problem is the choice of a key to be

promoted to the parent.

When a leaf is full, it needs to be split. In a B-tree, the middle key is promoted to

the parent and two siblings get a half of keys each. In the atomic-key B-tree, the idea is

to promote the shortest key. However, it should not be done unconditionally. If a new key

is shortest and, at the same time, it precedes all other keys in the node, then by promoting

it to the parent one of the sibling nodes would be empty and another sibling would have

the same keys as before splitting, minus the shortest key. This might be acceptable since

the empty leaf would not be included in the tree. However, if a new key is the shortest,

but it precedes most (but not all) of the keys – or follows most of them – then, after

splitting the node and promoting the shortest key, one sibling would have very few keys

and another sibling would have most of them. That could result in a tree with some –

possibly many – nodes almost empty and consequently in a large number of nodes in the

tree, and also in a high imbalance of the tree. To avoid this problem, the shortest key is

used for promotion if at least 25% of keys in the node follow this key and when 25%

precede it. If this is not the case, then a middle key – like in a regular B-tree – is used for

promotion. Thus, in the worst case, when keys are arriving randomly, a node (except for

the root) can be only 25% full.

Here is an algorithm for inserting a new key:

insertBottomUp(key K)

 if root is null

 root = a new node that includes K;

 return;

 else node = a leaf in which K should be inserted;

 left = right = null;
 while (true)

 if there is enough room for K in node

 incorporate K in node along with pointers to left and right;
 return;

 else if the shortest key is among the first fourth or among

 the last fourth of keys in node plus K

 K = the middle key among keys in node plus K;

 else K= the shortest key among keys in node plus K;

 left = node with keys from node that precede K;

 right = a new node with keys from node that follow K;

 if node is the root

 root = a new node that includes K and pointers

 to left and right;

 return;

 else node = the parent of node; //to try to insert K in it;

If a key K to be inserted is the smallest and falls among the first fourth of keys in

a node (Figure 3.1a), or in the last fourth, then a middle key M from this node is elected

for promotion, the node is split into two, the keys are divided up evenly between the two

resulting nodes, and M is inserted in the parent of the two nodes (Figure 3.1b) if it was a

18 A. Drozdek, D. Vujanović

Systems and information technology

parent of the node before splitting; when there was no parent, a new parent is created. It

may happen, however, that there is no room in the parent, then the splitting process would

be applied to this parent and so on up the tree, possibly to the root. Shaded areas in figures

to follow indicate areas occupied by keys.

Figure 3.1. Inserting a new key K that is shorter than all keys in a full node and belongs among

the keys in the first fourth of keys; (a) before insertion, (b) after insertion

If a key K to be inserted is larger than the smallest key S in a node, but S is in the

first fourth among keys (Figure 3.2a), then a middle key M is promoted to the parent of

the node (if any; otherwise, a new parent is created) and the node is split and the nodes

obtained from splitting become descendants of the same parent (Figure 3.2b).

If a key K to be inserted is the smallest and falls in the second or third fourth of

the keys in a node (Figure 3.3a), K is moved to the parent of the node and the node itself

is split (Figure 3.3b).

If K is larger than the smallest key S and S falls in the second or third fourth of the keys

(Figure 3.4a), S is promoted and the node is split integrating K along the way (Figure 3.4b).

Figure 3.2. Inserting a new key K in a full node when the shortest key S is among the first fourth

of keys; (a) before insertion, (b) after insertion.

 Atomic-key B-trees 19

Studia Informatica 1-2(19)2015

Figure 3.3. Inserting a new key K that is shorter than all keys in a full node and belongs among

the keys in the mid-part of the node; (a) before insertion, (b) after insertion.

Figure 3.4. Inserting a new key K in a full node when the shortest key S is in the mid-part of the

node; (a) before insertion, (b) after insertion.

There is a problem with long keys, longer than the maximum length that could be

accommodated in one node. To solve the problem for such a key K, a new key can be

created with the maximum permitted length extracted from K with a special character

appended to its end to indicate the truncation and a number that would indicate the

position of the cut-off part in an overflow file. Preferably, this number would be in binary

form to assure that the same number of bytes is always used for its representation. Another

possibility is that the trailing part of an overlong key would be placed in a descendant

node. Admittedly, such a situation would be extremely rare considering the size of nodes

(normally, at least half a kilobyte).

Although the primary criterion for choosing a key for promotion is the size of the

key, the relative order of keys remains the same in an atomic-key B-tree as in the regular

B-tree; therefore, the search proceeds in the same way in both trees: when a key K is not

found in a particular node, the search continues in a descendant accessible through the

pointer shared by keys K1 and K2 for which K1<K ≤ K2, unless K precedes all keys in the

node, thus the descendant accessible through the leftmost pointer is chosen, or K follows

20 A. Drozdek, D. Vujanović

Systems and information technology

all keys in the node, in which case the search continues in a descendant accessible through

the rightmost pointer.

Several variations of the atomic-key B-tree are possible. Here are some possibilities:

1. Instead of choosing the middle key to avoid imbalance of the tree, the shortest key

among the second and third fourths of keys in a node can be found for promotion.

2. Instead of choosing a middle key, choose the key that is the closest to the middle of

the array of keys; this would divide the key area almost evenly, but it could lead to an

imbalance; for example, if a node has four keys, abcd efghijklmno, and a split must be

made, then the last key ghijklmno would be chosen for promotion since it begins in

the middle of the array, resulting in high imbalance. However, for large number of

keys in a node, such a situation would be quite unlikely.

3. In the case of a tie, when there are multiple keys of the same shortest length, choose

the key that is closest to the middle key (or, alternatively, closest to the middle of the

key area).

4. An imbalance, however, will always be possible, unlike in a regular B-tree. If this

imbalance becomes too worrisome, then instead of allowing the shortest key to be

among the second and third fourths, the key would be required to be among the middle

third of keys. On the other hand, the restriction on imbalance can be relaxed if the

shortest key for promotion can be chosen among the second, third, and fourth fifths

of keys. To be sure, other numbers can also be used.

5. Interpret percentages in terms of the amount of space rather than in terms of the number

of nodes. So, in the node of size 400, the first fourth of keys (25%) would be the keys

occupying the first 100 positions of the node (with possible spillover of the last key

to the next positions) and the last fourth would be keys in the last 100 positions.

5. A hybrid version of the dynamic atomic-key B-tree

To reduce underflow, another algorithm can be used in which an overflow during

insertion still leads to a split, but there are two possibilities: 1. if an overflowed node’s

parent has room for the shortest key from this node, then this shortest key is moved there

and the node itself is split and all keys are properly redistributed, as in Figure3.4. This is

a bottom-up insertions the way it is done in the previous algorithm and, generally, in

regular B-trees. 2. Another possibility arises when the parent of an overflowed node has

no room for the shortest key from this node, in which case two nodes are created for the

keys from this node and the newly arrived key; only the shortest key remains in this node

and the newly created nodes become its two descendants (Figure 5.1). One of them may

be overflowed, so the splitting process has to be applied to it. This is a top-down split

performed in the way proposed by Hu for his static atomic-key B-tree. Here is a

pseudocode of this algorithm:

insertHybrid(key K)

 if root is null

 root = a new node that includes K;

 return;

 else node = a leaf in which K should be inserted;

 while (true)

 if there is enough room for K in node

 Atomic-key B-trees 21

Studia Informatica 1-2(19)2015

 incorporate K in node;

 return;

 else if node  root and there is enough room in node’s parent

 to include the shortest key SK from node plus K

 move SK to the parent;

 split node and distribute its keys plus K among

 node and its newly created sibling;

 set pointer to the left of SK to node and pointer to

 the right of SK to node’s sibling;

 else SK = the shortest key among keys in node plus K;

 left = a node with keys from node that precede SK;

 right = a node with keys from node that follow SK;

 put SK in node;

 attach left and right as descendants of node;

 if left or right is overflowed

 node = left or right;

 K = the shortest key from left or right;

 else return;

Figure 5.1. Inserting a new key K in a full node when there is no room for the shortest key S is

in the parent of the node; (a) before insertion, (b) after insertion.

6. Comparison of insertion algorithms

The height of the B-tree ℎ ≤ log𝑞
𝑁+1

2
+ 1, where q =

𝑚

2
 and m is the order of the

tree([2], p. 314). This gives the number of node accesses for insertion of a new key and

the worst case for the number of accesses when searching for a key in the tree. For the

atomic-key B-tree, expected search for insertion and search is given by 𝑂 (⌈
𝑘̂

𝐵
⌉ log

1+⌈
𝐵

𝑘̂
⌉
𝑁)

([4], p. 123; [1], p. 306). To see how these two logarithmic formulas compare to one another,

consider processing keys with the maximum length = 10 (which will be the space allocated

for one key in the B-tree), the average length 𝑘̂ = 7 and to assure the same size of nodes

for both types of trees, the order of the B-tree𝑚 =
𝐵

maximum key length+size of reference/pointer
:

22 A. Drozdek, D. Vujanović

Systems and information technology

Table 6.1. Comparison of expected numbers of accesses for regular and atomic-key B-trees

N B ⌈
𝑘̂

𝐵
⌉ log

1+⌈
𝐵

𝑘̂
⌉
𝑁 log𝑞

𝑁 + 1

2
+ 1

1000

1000

1000

10000

10000

10000

100000

100000

100000

1000000

1000000

1000000

100

500

4000

100

500

4000

100

500

4000

100

500

4000

2.49

1.61

1.09

3.32

2.15

1.45

4.15

2.68

1.81

4.98

3.22

2.18

6.66

3.36

2.32

8.75

4.23

2.81

10.85

5.10

3.29

12.94

5.97

3.78

This table indicates that the average number of node accesses for search/insertion in

the B-tree is always larger than in the corresponding atomic-key B-tree; however, the

difference decreases with the increase of the size of one block/node. These are just estimates

and it is interesting to see to what extent experimental runs reflect these differences.

To compare the efficiency of insertion algorithms, implementations of the three

types of trees – the B-tree, bottom-up atomic-key B-tree, and hybrid atomic-key B-tree –

have been run on the same file that contained randomly generated strings of length 1 to 10,

with the average length equal to 7. The program was run for three different numbers N of

keys – 1000, 10000, and 100000 – which, because of the random nature of these keys,

included only small number of duplicates (ca. 10%). The program was also run for

different sizes of blocks/nodes – 100, 500 (i.e., ca. 0.5 KB), and 4000 (ca. 4 KB) –

assuming that the nodes included not only keys themselves, but also references/pointers.

The only optimization used in the implementation of the insertion algorithm in the hybrid

atomic-key B-tree was choosing a shortest key closest to the middle of the set of keys in

a node when there were at least two keys of the shortest length. The results are

summarized in the following tables:

Table 6.2. Processing efficiency of B-trees

N B B-tree

number

of

nodes

occupied

space

%

height

average

of node

accesses

1000

1000

1000

10000

10000

10000

100000

100000

100000

100

500

4000

100

500

4000

100

500

4000

344

53

9

3343

499

65

31863

4821

534

62.5

67.6

47.8

61.4

69.2

63.5

60.9

68.0

74.1

5

3

2

7

3

2

9

4

3

4.63

2.38

1.78

6.28

2.93

1.98

8.01

3.86

2.63

 Atomic-key B-trees 23

Studia Informatica 1-2(19)2015

Table 6.3. Processing efficiency of hybrid atomic-key B-trees

Table 6.4. Processing efficiency of bottom-up atomic-key B-trees

The bottom-up atomic-key B-tree consistently required fewer nodes than the

regular B-tree although both trees were of the same height and in one case the former was

even higher by one level than the latter. Except for one case, the bottom-up atomic-key

B-tree also required on the average fewer node accesses than the B-tree (average of node

accesses is defined as the ratio of all node accesses both for insertion of new nodes and

for the search of duplicates to the number N of keys). Consistently, nodes in the bottom-

up atomic-key B-tree are at least 60% full, which is similar to the B-tree; however, the

B-tree has a problem with internal fragmentation because of assigning the same amount

of space to all keys.

The hybrid atomic-key B-tree has the best averages of nodes accesses, better than

the other two trees even though it sometimes has more nodes than the other two trees. The

reason for this larger number of nodes is that always a shortest key is elected during split

and if there is only one key of the shortest length, it can be one of the leftmost or one of

the rightmost keys in the node. This means that one of the two nodes resulting from the

split will be almost full and will very likely require a split really soon.

N B Hybrid atomic-key B-tree

number

of

nodes

occupied

space

%

height

average

of node

accesses

1000

1000

1000

10000

10000

10000

100000

100000

100000

100

500

4000

100

500

4000

100

500

4000

326

65

7

3189

551

54

30824

6233

882

51.8

48.6

55.6

51.4

55.7

70.1

51.2

47.4

41.3

5

3

2

7

3

2

9

4

3

3.72

1.95

1.74

4.91

2.72

1.92

6.06

3.21

2.03

N B Bottom-up atomic-key B-tree

number

of

nodes

occupied

space

%

height

average

of node

accesses

1000

1000

1000

10000

10000

10000

100000

100000

100000

100

500

4000

100

500

4000

100

500

4000

257

52

5

2490

459

56

23918

4388

516

68.4

61.3

77.8

68.6

67.3

67.6

68.8

67.8

70.6

5

3

2

7

4

2

9

4

3

4.35

2.47

1.75

6.01

2.91

1.95

7.45

3.73

2.63

24 A. Drozdek, D. Vujanović

Systems and information technology

Table 6.5. Processing efficiency of the combined atomic-key B-tree

To restrain this occasional overabundance of nodes in the hybrid tree, the cautious

choice of the key during split as applied in the bottom-up tree can also be applied in the

hybrid tree. The results of the behavior of such a tree are presented in the table 6.5.

Disappointingly, the number of nodes in such a combined tree is the same or fairly

close to the number of nodes in the hybrid tree and, appreciably, the average node accesses

are the same or very similar to the averages obtained for the hybrid tree. The reason is

that, particularly for large blocks, there can be multiple keys of shortest length spread over

a node and thus the shortest key elected during a split would be the same as in the hybrid

method. Only when there are lone shortest keys close to the left or to the right border of

the node will the combined method chose a key guaranteeing an even split of keys.

All these results suggest that when the space is at the premium, the bottom-up

version of the tree would be preferable; if the number of accesses should be minimized,

then the hybrid version would be the tree of choice. The middle-course applied in the

combined atomic-key B-tree does not appear to provide any significant advantage over

the two other kinds of the atomic-key B-tree.

7. Deletion from the dynamic atomic-key B-tree

Another operation worth mentioning is deletion. Here is a possible algorithm.

delete(key K)

 node = the node that contains K;

 if node is a leaf

if K is the last key in node

 remove the leaf;

 else delete K from node;

 return;

 if K is the last key in node

 rebuild the tree rooted at the parent of node;

 else left = a child node to the left of K in node;

right = a child node to the right of K in node;

N B Combined atomic-key B-tree

number

of nodes

occupied

space

%

height

average

of node

accesses

1000

1000

1000

10000

10000

10000

100000

100000

100000

100

500

4000

100

500

4000

100

500

4000

297

63

7

2962

497

53

28370

5632

882

56.8

50.1

55.6

55.4

61.7

71.3

55.7

52.4

41.3

5

3

2

7

3

2

9

4

3

3.70

1.96

1.74

4.91

2.75

1.92

6.07

3.26

2.03

 Atomic-key B-trees 25

Studia Informatica 1-2(19)2015

remove K from node;

if there is enough room in node for the rightmost key

in left or the leftmost key in right

move this key to node;

if the child from which the key was moved is not a leaf

if the last key was moved from this child

 rebuild the subtree rooted at node;

else rebuild the subtree rooted at this child;

 else if the child is a leaf from which the last key was removed

 remove the leaf;

else rebuild the subtree rooted at node;

To illustrate deletion, consider the situation in Figure 7.1. If there is enough room

in the node after removal of K to place either C or D in its place (possibly shifting keys

from B onwards to the right), then C or D is placed there. If the child from which the key

was transferred is a leaf, then nothing else needs to be done if the key is C or, if it is D,

all keys in the leaf have to be shifted to the left to plug the hole. If none of the children is

a leaf, then the subtree rooted at the child from which a key was taken to replace K has to

be rebuilt using the method for static atomic-key B-tree. The deletion operation can be

performed on average in 𝑂 (⌈
𝑘̂

𝐵
⌉ log

1+⌈
𝐵

𝑘̂
⌉
𝑁) node accesses ([4], p. 144; [1], p. 311).

Figure 7.1. A situation before the deletion of K. The descendant nodes can be leaves or non-

terminal nodes

8. Conclusion

The atomic-key B-tree in some of its manifestations determined by an insertion

algorithm is a very attractive alternative to traditional B-trees. Just as B-trees can be fairly

easily changed to B+-trees, so could the atomic-key B-trees be upgraded to atomic-key

B+-trees, and thereby become used a replacement of B+-trees in implementation of

indexes in databases.

References

1. Bender M.A., Hu H., Kuszmaul B.C., Performance guarantees for B-trees with

different-sized atomic keys, Proceedings of the 29th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS), New York, ACM

2010, pp. 305-316.

2. Drozdek A., Data structures and algorithms in C++, Boston, Cengage Learning 2013.

26 A. Drozdek, D. Vujanović

Systems and information technology

3. Ferragina P., Grossi R., The string B-tree: A new data structure for string search in

external memory and its applications, Journal of the ACM 46 (1999), pp. 1-46.

4. Hu H., Cache-oblivious data structures for massive data sets, PhD diss., New York,

Stony Brook University 2007.

5. Na J.Ch., Park K., Simple implementation of string B-trees, in: Apostolico A., Melucci M.

(eds.), String Processing and Information Retrieval, Berlin, Springer 2004, pp. 214-

-215.

