
STUDIA INFORMATICA

Nr 1-2 (19) Systems and information technology 2015

Krzysztof Bartyzel

Department of Computer Image Analysis,

John Paul II Catholic University of Lublin

Al. Racławickie 14, 20-950 Lublin, Poland

e-mail: kbartyzel@kul.lublin.pl

Algorithms optimization for the image processing

and analysis by constructing parallel solutions

Abstract: This paper presents a concept of parallel programming in the context of image

analysis and processing algorithms. It demonstrates an exact implementation of the issue

of image filtration using the Microsoft .NET framework and the C# language. All

technical aspects were subject to analysis. Presented are both theoretical considerations

and nuances of implementation.

An experiment was also conducted which consisted in the creation of an appropriate

program to demonstrate an example noise filter and the recording of performance time in

the case of synchronous and parallel execution. The solution analysis was tested on a

typical, average laptop and a server with high computing power. The results unanimously

show that applying parallel algorithms can significantly improve the effectiveness of the

hardware used.

Keywords: Parallel computing, image processing and analysis, Microsoft .NET

Framework, multithread applications

1. Introduction

With the development of hardware capabilities comes the constantly increasing

importance of perfecting the algorithms used. It might seem that, having increasingly

powerful computers at one's disposal, the quality of constructed algorithms is no longer

as significant. However we are dealing with the exact opposite phenomenon. Because the

quantity of aggregated and analysed data is steadily increasing, there is an unending need

for the optimisation of existing solutions. On the other hand we have been observing for

decades a steady increase in computing power, however for more than ten years the

primary method of increasing computing power has been the placement of increasingly

numerous cores within a single central processing unit (CPU), enabling simultaneous

computation. Even now the standard is computers capable of performing computations in

8 or 16 threads. Even popular game consoles (Xbox, PS) enable the use of multithread

algorithms. The subject matter of parallel programming grows in significance, however

the lack of appropriate algorithms is noticeable. The vast majority of scientific papers

deals with theoretical matters, omitting aspects of implementation. Very infrequently can

flowcharts be found, let alone pieces of source code. In the case of asynchronous

algorithms the situation is even worse and left entirely to the audience.

6 K. Bartyzel

Systems and information technology

The field of image processing and analysis develops at a very quick pace.

A significant factor affecting it is certainly the development of technology enabling the

acquisition of multiple high quality images over a short period of time. Also the

applications of image analysis and processing are very wide: from facial and smile

recognition in digital cameras, controlling a console or computer with the Kinect device

to life-saving and military applications in unmanned aircraft assisting searches of difficult

to reach areas.

Only a few years ago the mindset of „Power is free, but transistors are expensive”

was very common, but now it seems to be closer to the truth that „Power is expensive,

but transistors are »free«. That is, we can put more transistors on a chip than we have the

power to turn on”[1].

Combining the above observations one can easily reach the conclusion that one of

the best ways of shortening the time of image processing will be modifying existing

algorithms so that they use as efficiently as possible the computing power of the

computers available.

In this paper I would like to present the notion of parallel programming in the

context of image analysis and processing algorithms. As an example I would like to

demonstrate the implementation of a parallelised image filtration done using the

Microsoft .NET framework and the C# language. In the end I will present the results of

an experiment demonstrating the expected increase in efficiency.

2. Problem outline

Before jumping into details one should consider the main issues and problems.

Realising any task in a multithread fashion requires answering a few standard questions, e.g.

 How to divide the main problem into multiple smaller subtasks.

 How numerous the subtasks should be.

 How will the subtasks be performed, both in the technological context (what

implementation provided by the environment or operating system should be used) as

well as the algorithmic context (how to divide the main tasks into subtasks so that the

division is not computationally too complex and how to combine the results).

 What technical synchronisation mechanisms should be used to prevent negative

effects of competition and to guarantee data consistency.

The above issues are universal enough that they are analysed in various forms in

most papers and courses [2-7]. In the subsequent part of this paper an attempt is made to

answer the above questions, and the best practices in the context of the solutions offered

by the .NET framework and C# language are presented. The topic of parallel image

processing has been subject to scientific consideration for many years. Papers worth

recommending include [8-9]. However, in this paper I wish to present one specific

implementation of the problem, along with detailed experiment results.

3. Detailed description of the solution

In the realisation of any multithread problem five elements can be specified:

a) Image processing variable initialisation block,

b) Multithread programming variable initialisation block,

 Algorithms optimization for the image processing and analysis… 7

Studia Informatica 1-2(19)2015

c) Dividing the task into separate subtasks and assigning control to separate

threads,

d) Awaiting completion of processing by all threads and analysis of returned

results,

e) Disposing resources.

In the simultaneous concept elements b) and d) were absent, whereas c) was

heavily modified. Taking into account the above considerations it is possible to create a

prototype of a method which would realise all five elements. This method might assume

as one of the input parameters a delegate (function pointer) realising a specific

implementation of the appropriate effect realised within a subtask. At this stage the

specificity of the realised problem does not yet matter. The exact same steps need to be

taken in image analysis as well as analysis of other problems.

Listing 1 presents an example implementation of a method realising any image

filter in a multithread fashion. As input parameters a bitmap of the original image, a

function pointer realising a single instruction block and an additional parameter

controlling the realised effect are provided. Obviously, when creating specific solutions

one may opt out of providing a function pointer or specific execution parameters,

however, then we lose the generic nature and versatility of the solution.

private static Bitmap AnyMultiThreadsFilter(

Bitmap bitmapIn,

WaitCallback filterProcedure,

int maskSize)

{

1. Image processing variable initialisation block

2. Multithread programming variable initialisation block

3. Dividing the task into separate subtasks and assigning control to separate threads

4. Awaiting completion of processing by all threads and analysis of returned results

5. Disposing resources

}

Listing 1. Elements of multithread image processing realisation

When reading the presented listing it is worth noting that variable initialisation has

been divided into two areas. In the case of multithread programming we need to prepare

mechanisms of code synchronisation [10-11]. In the case of both multithread and distributed

programming the ability to return to synchronous (single-thread) processing is a vitally

important element. One of the solutions that can be used at this point is a Blockade [12-13].

It is a construction which enables the halting of the main thread functioning until all side

threads are confirmed ready for further work (or reach a defined point).

As stated earlier, the initial task is to declare and initialise the variables related to

both image processing and subtask synchronisation. For the covered example this is

shown on listing 2.

8 K. Bartyzel

Systems and information technology

1. Image processing variable initialisation block

Bitmap bitmapOut = new Bitmap(bitmapIn.Width, bitmapIn.Height,

PixelFormat.Format24bppRgb);

BitmapData bmInData = bitmapIn.LockBits(

new Rectangle(0, 0, bitmapIn.Width, bitmapIn.Height),

ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);

BitmapData bmOutData = bitmapOut.LockBits(

new Rectangle(0, 0, bitmapOut.Width, bitmapOut.Height),

ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);

int stride = bmWeData.Stride;

IntPtr scanIn = bmWeData.Scan0;

IntPtr scanOut = bmWyData.Scan0;

int width = bitmapIn.Width;

int height = bitmapIn.Height;

int threadsCount = Environment.ProcessorCount;

2. Multithread programming variable initialisation block

_waitHandles = new WaitHandle[threadsCount];

for (int i = 0; i<threadsCount; i++)

_waitHandles[i] = new AutoResetEvent(false);

Listing 2. Variable initialisation

Applying the .NET framework we have access to implementing a thread queue

(ThreadPool class [14]). This is an exceptionally convenient solution, as it enables simple

management of a group of threads. Simultaneously, any burdens resulting from the need

to secure memory for new system objects have been limited to the absolute minimum.

This is shown on listing 3.

3. Dividing the task into separate subtasks and assigning control to separate threads

for (int i = 0; i<threadsCount; i++)

{

ThreadPool.QueueUserWorkItem(filterProcedure,

new{

yStart = i * height / threadsCount,

yStop = (i + 1) * height / threadsCount,

 width, stride, maskSize, scanIn, scanOut, waitHandle = _waitHandles[i]

 });

}

Listing 3: Task division and assigning control to separate threads

 Algorithms optimization for the image processing and analysis… 9

Studia Informatica 1-2(19)2015

In the case of filters the creation of parallel algorithms is quite a charming task.

The answer to the question of how many threads should be used and how to divide the

image is usually obvious. To maximally utilise the computing power of the central

processing unit (CPU) one should divide the image into as many parts as there are

available cores. This means that each core will be responsible for the execution of one

subtask. Figure 1 (The original “Lena” image is available as part of the USC SIPI Image

Database) shows an example of dividing the analysed image. The image has been divided

into four strips of similar size. It has been empirically tried and tested by author and it is

easily shown through theoretical consideration that any other division is less optimal. Of

course these are just theoretical considerations, in the real world we deal with significant

factors of uncertainty and indeterminism. The covered situation assumes that the

operating system aims to balance the load of each core and a single core being overloaded

is a rare occurrence. Furthermore, an analysis of the individual cores' workload is of little

help. The situation may change so dynamically that any estimates made before initiating

the main computations can become irrelevant afterwards. Using the ThreadPool class we

can rest assured that Microsoft .NET Framework takes care of proper subtask distribution.

As per documentation, upon adding to the thread pool, the tasks are initiated with no

further delay [14]. As an alternative to the ThreadPool class, use of the Task class can also

be considered, as it offers very similar capabilities [15].

Figure 1. Dividing the object into four areas

Figure 2 shows a screenshot of the Task Manager during the execution of example

computations. It is a distinctive element that for a short moment in time all cores were

working at maximum load. The screenshot comes from a machine with the following

CPU specification: Intel Xeon E5-2667 @2.9 GHz (2 processors), RAM: 32GB, OS:

Windows Server 2008R2 Standard.

10 K. Bartyzel

Systems and information technology

The final elements left to perform are the awaiting of the main thread for the realisation

of all side tasks (listing 4) and the freeing of resources and returning of results (listing 5).

Figure 2: Simultaneous use of all available cores

4. Awaiting completion of processing by all threads and analysis of returned results

foreach (WaitHandle waitHandle in _waitHandles)

{

waitHandle.WaitOne();

}

Listing 4. Blockade awaiting the completion of work by all threads

5. Disposing resources

bitmapOut.UnlockBits(bmOutData);

bitmapIn.UnlockBits(bmInData);

return bitmapOut;

Listing 5. Disposing resources and returning results

 Algorithms optimization for the image processing and analysis… 11

Studia Informatica 1-2(19)2015

Furthermore, to get a complete view of the problem and to simplify future

implementations, listing 6 shows a skeleton of the function responsible for the execution

of a subtask. The last line of the method is very important. It contains an instruction which

enables notifying the main thread of work completion in the subtask.

private static voidKuwaharaFilterThreating(Object obj)

{

Type anonymousType = obj.GetType();

int yStart = (int)anonymousType.GetProperty("yStart").GetValue(obj, null);

int yStop = (int)anonymousType.GetProperty("yStop").GetValue(obj, null);

int width = (int)anonymousType.GetProperty("width").GetValue(obj, null);

int stride = (int)anonymousType.GetProperty("stride").GetValue(obj, null);

int maskSize = (int)anonymousType.GetProperty("maskSize").GetValue(obj, null);

IntPtr scanIn = (IntPtr)anonymousType.GetProperty("scanIn").GetValue(obj, null);

IntPtr scanOut = (IntPtr)anonymousType.GetProperty("scanOut").GetValue(obj, null);

AutoResetEvent waitHandle

 = (AutoResetEvent)anonymousType.GetProperty("waitHandle").GetValue(obj, null);

Subtask implementation

waitHandle.Set();

}

Listing 6. Skeleton of a subtask processing method

4. Experiment

For the purposes of this paper an experiment was conducted, consisting in the

creation of a program illustrating an example noise reduction filter (KuwaharaFilter [16])

and recording of runtimes for synchronous execution (single thread) and parallel

execution (thread count depending on technical hardware capability).

To achieve even more interesting results, the demonstrated solutions were tested

on both an average, ordinary laptop (CPU: Intel Core i5-3210M @2.50GHz, RAM: 6GB)

and a server (CPU: Intel Xeon ES-2667 @ 2.90GHz, 2 processors, RAM: 32GB). In the

experiment the filter window size was set to 7x7 and 23x23. Quite large images were

used, at a resolution of 4256x2820 (12MP). Using less demanding settings meant that

some of the computation times balanced on the edge of statistical error and the constant

load of the CPU could impact the results. The experiment results are shown in Table 1.In

1-10 rows were placed particular results of the experiment while the two last rows provide

cumulated results: the mean and standard deviation.It was carried out only 10 repetitions,

but obtained concentration of results (based on standard deviations) leads to the

conclusion that the received results are reliable and representative.For time measurement

was usedthe built in .NET Framework System.Diagnostics.Stopwatchclass which allows

to performaccurate executionelapsed times.

12 K. Bartyzel

Systems and information technology

Table 1. Runtime comparison of synchronous and parallel executions (in milliseconds)

 Server Laptop

Mask size 23x23 7x7 23x23 7x7

Threads count

1
2
 h

read
s

1
 th

read

1
2
 h

read
s

1
 th

read

4
 th

read
s

1
 th

read

4
 th

read
s

1
 th

read

1 7919 59789 701 7683 27840 58165 3379 7528

2 7940 59815 703 7663 26499 57937 3396 7422

3 6481 59841 706 7715 27958 57351 3316 7407

4 5658 59738 682 7653 28511 57528 3340 7313

5 7118 59764 889 7656 26348 57478 3291 7541

6 5669 59801 704 7672 27773 58093 3227 7324

7 5358 59804 695 7690 26222 58384 3286 7401

8 7785 59837 698 7669 26927 57784 3311 7346

9 6365 59841 696 7661 26507 57370 3298 7423

10 6666 59794 712 7660 26679 58404 3244 7571

AVG 6696 59802 719 7672 27126 57849 3309 7428

STD 881,31 33,39 60,12 18,71 779,45 392,16 47,70 85,07

5. Conclusions

It is easy to see that the increase in efficiency is significant. The case of the server

solution resulted in a nearly 9-fold increase in efficiency (in the case of a 23x23 filter

window) or over 10-fold (in the case of a 7x7 filter window). The weaker machine gave

a less spectacular result of merely double efficiency. This leads to the obvious conclusion

that with an increase of the core count the total solution efficiency also increases.In

calculating the hypothetical efficiency growth Amdahl's law [17] can be used. It clearly

shows that when creating a parallel version of the standard algorithms one cannot expect

a linear increase of the performance. It is worth noting at this point the runtime in the case

of the single core. One can conclude that if the software used is not adjusted to use

multiple cores, then a purchase of a powerful hardware solution is not economically

sound.

In the situation where we have the hardware capability, we should always consider

transforming computationally complex portions of code so as to optimally utilise the

processor architecture. One should keep in mind that not for all algorithms a parallel

version can be developed. It should also be considered if it would bring any sizeable gain.

The problem of subtask synchronisation can significantly impact the final appraisal of the

improved solution.

It should also be noted that there exists the possibility of creating even more

 Algorithms optimization for the image processing and analysis… 13

Studia Informatica 1-2(19)2015

efficient software (especially in the field of image processing or mathematical modelling).

Using a graphics processing unit (GPU) and graphics libraries such as OpenGL or

DirectX one can obtain much better results. However, this is a completely different

technology, designed to solve entirely different issues, but which requires analysing

similar problems. The most difficult problem is still the transformation of a synchronous

algorithm into its asynchronous version.

Bibliography

1. Asanovic K., Bodik R. and others (2006) The Landscape of Parallel Computing

Research: A View from Berkeley, Electrical Engineering and Computer Sciences

University of California at Berkeley, Technical Report No. UCB/EECS-2006-183,

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

2. Kumar V., Grama A., Gupta A., Karypis G. (1994) Introduction to Parallel

Computing, Design and Analysis of Algorithms Benjamin-Cummings Publishing Co.

3. Intel® Developer Zone, Courseware - Parallel Programming Basics

https://software.intel.com/en-us/courseware-parallel-programming-basics

4. Raghavendra P. (2011) Multi core challenges and strategies Department of

Information Technology National Institute of Technology Karnataka Surathkal,

https://software.intel.com/en-us/courseware/249625

5. Yang U.M., A Parallel Computing Tutorial,

http://www.cise.ufl.edu/class/cis6930fa14pro/doc/IMA-PPtTutorial.pdf

6. Barney B., Introduction to Parallel Computing

https://computing.llnl.gov/tutorials/parallel_comp

7. Jones J., A Parallel Multigrid Tutorial

https://computing.llnl.gov/casc/linear_solvers/present.html

8. Merigot A., Petrosino A. (2008) Parallel processing for image and video processing:

Issues and challenges Parallel Computing Volume: 34, Issue: 12, pp. 694-699.

9. Nicolescu C., Jonker P. (2002) A data and task parallel image processing

environment, Parallel Computing Volume: 28, Issue: 7-8, pp. 945-965.

10. Doroshenko A.E. (1995) Programming abstracts for synchronization and

communication in parallel programs, Parallel Computing Technologies Lecture Notes

in Computer Science Volume 964, pp. 157-162.

11. Rauber T., Rünger G. (2013) Parallel Programming Models for Multicore and Cluster

Systems, Springer Berlin Heidelberg.

12. Lubachevsky B.D. (1990) Synchronization barrier and related tools for shared

memory parallel programming, International Journal of Parallel Programming,

Volume 19, Issue 3, pp 225-250.

13. Jung I., Hyun J., Lee J., Ma J. (2001) Two-Phase Barrier: A Synchronization Primitive

for Improving the Processor Utilization, International Journal of Parallel

Programming Volume 29, Issue 6, pp. 607-627, Kluwer Academic Publishers-Plenum

Publishers.

14. Micosoft Developer Network Thread Pooling, http://msdn.microsoft.com/en-

us/library/h4732ks0.aspx

15. Micosoft Developer Network Task Parallelism,

http://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx).

https://software.intel.com/en-us/courseware/249625
https://computing.llnl.gov/casc/linear_solvers/present.html

14 K. Bartyzel

Systems and information technology

16. Kuwahara M., Hachimura K., Eiho S., and Kinoshita M. (1976) Processing of RI-

angiocardiographic images, Digital Processing of Biomedical Images, K. Preston Jr.

and M. Onoe, Editors. pp.187-202, New York: Plenum.

17. Amdahl G.M. Validity of the single processor approach to achieving large scale

computing capabilities, AFIPS '67 (Spring) Proceedings of the April 18-20, 1967,

spring joint computer conference, p. 483-485.

