
STUDIA INFORMATICA
Nr 1-2 (20) Systems and information technology 2016

Mateusz WIŚNIEWSKI
Artur NIEWIADOMSKI

Siedlce University of Natural Sciences and Humanities,
Institute of Computer Science,
ul. 3 Maja 54, 08-110 Siedlce, Poland

Applying artificial intelligence algorithms in MOBA games

Abstract. Multiplayer Online Battle Arena games focus mainly on struggles between two teams of
players. An increasing level of cyberbullying [1] discourages new players from the game and they often
chose a different option, that is, a match against opponents controlled by the computer. The behavior of
artificial foes can be dynamically fitted to user’s needs, in particular with regard to the difficulty of the
game. In this paper we explore different approaches to provide an intelligent behavior of bots basing on
more human-like combat predictions rather than instant, scripted behaviors.

Keywords: Multiplayer Online Battle Arena (MOBA), Artificial Intelligence (AI), Genetic Algorithm
(GA), computer game, computer game agents, bots

1. Introduction

The popularity of MOBA games has grown rapidly over the past few years becoming
a worldwide trend. Increased usage of social media, and in particular live streaming website –
Twitch [2], revealed plenty of gaming social problems [1]. The most experienced players
bully not only newcomers but also skillful players what turns the joy of the game into
discouragement and frustration. Usually, the disheartened gamesters find serenity in
skirmishes against AI-controlled opponents. The companies developing games often do not
put a big effort in this mode, because handling a vast amount of game rules is extremely
difficult to implement. Moreover, it consumes a significant amount of computing power
during the game [3].

 The main contribution of this paper is a comparison of several algorithms applied
to planning moves of the MOBA game characters. We analyze not only the theoretical
complexity of the algorithms, but we also investigate how they deal with a dynamic battlefield
environment. To this aim we performed a number of experiments in form of duels between
heroes controlled by different algorithms. We compare the behavior and the efficiency of
particular planning methods using several statistics collected during individual and team
struggles.

54

M. Wiśniewski and A. Niewiadomski

 The rest of the paper is structured as follows. In the next section we briefly
describe the related work. Then, we focus on the general concepts of our approach and we
discuss the compared algorithms. The two last sections are devoted to the analysis of the
experimental results and conclusions.

2. Related Work

One of the most common solutions to control the behavior of bots, i.e., autonomous
game characters, makes use of priority lists dividing the gameplay into long- and short-term
objectives. An example of the former is to get necessary means for the battle, or push the front
line towards the enemy base. On the other hand, the short term scripts mostly react to the
current events, like, e.g., if an opponent approaches too close, then it should be attacked, or
the retreat in response to received damage, etc.

This concept has been implemented in a patch for the game Heroes of Newerth [4]
released in 2013. The possible hero behaviors are stored in a list ordered by their utility. If a
tested condition is not satisfied, the algorithm checks the next one. The cases are inspected in
short, 250 ms interval, loops. There are two main goals – a team attack or a team defense. The
strategic decisions are dictated by a team controller which does not take in consideration the
current state of the game. The system follows a simple algorithm where players scattered
around the map are formed into a group once every few minutes regardless of the conditions.

Behavior Trees (BTs) [5] can be seen as an extension of the priority lists concept. BTs
usually consist of hierarchically ordered nodes containing test conditions and operators
controlling the flow of the decision process. The leaf nodes represent specific scripts and
commands to be executed by bots. Comparing this approach to ours, BTs are focused on
concrete decisions what results in more predictable behaviors. These are desirable features at
the design of a tutor agent [6] or medium-advanced opponents.

Besides the low-level bots control, the AI algorithms are often applied to make
strategic decisions at higher level of abstraction. For example, the authors of [7] exploit
algorithms basing on Influence Maps (IM) to this aim. In the simplest case an IM is a matrix
covering the battleground and aggregating information on the current and historical states of
the game. An example advantage of IMs is a clear divide of the battlefield into safe and
danger zones. In our approach, we implemented to this aim an alternative method based on
dynamic computations of distances between bots [8].

Another interesting example of application AI algorithms in MOBA games is the
paper [9] where the authors exploit Genetic Algorithm (GA) [10] to change parameter values
of procedures controlling the basic bots behavior. The algorithm makes use of non-standard
genetics operators. The crossover-like operator is used when a character interacts with an ally
to mimic the behavior of a better acting team mate. On the other hand, an interaction with an
enemy results in applying a mutation-like operator. Thus, GA runs and improves the
characters’ behavior during the whole game.

The crucial difference between [9] and our approach is that we use (and compare each
other) several algorithms, including GA, working in a short-term scale to control the basic,
low-level bots behavior and react to the state of the battlefield. In order to evaluate different

Applying artificial intelligence algorithms in MOBA games 55

planning methods, we implemented a simple MOBA game using the Unity 3D [11]
environment, as shown in the next section.

3. Solution overview

Our approach focuses on planning and executing of combat tasks in team fights.
Instead of checking rigid scripts, several AI algorithms (from simple heuristics to Genetic
Algorithm) try to estimate the hero’s chances and predict the nearest moves. The designed
game characters work in a loop consisting of computing multiple solutions (called also paths
or plans), assessing them, and choosing and executing the best one before a new iteration
starts. A new plan is computed also in the case when a new threat appears on the battlefield.
An example path of length 3 is depicted in Fig. 1. The cross-marked green line corresponds to
the movement track, and the numbers show the estimated arrival time to the subsequent points
of the path. The red line visualizes the planned attack while the short, yellow line on the right
shows the distance between the actual and the expected position of the opponent.

Figure 1. A currently executed solution by the hero on the left. After moving to the convenient position it
will fire a projectile towards the opponent on the right. The green line shows the planned moves and the numbers
correspond to estimated arrival time to the points marked with the crosses. The red line represents the planned
attack and the yellow line corresponds to the estimated move of the opponent.

Figure 2. The ScoreTowards function computes the next step of the plan (B) basing on the previous location
(A), the chosen direction (angle), the distance to cover in one step, and the movement speed.

A single track consists of several steps, each one reachable after some delay. The
coordinates of the destination point and the estimated arrival time is calculated basing on the

56

M. Wiśniewski and A. Niewiadomski

current location, the speed of the hero, and the chosen movement direction by the
ScoreTowards function (Fig. 2).

In every step of the plan, a hero can use its “abilities” which allow to attack an
opponent or to protect itself. In order to select the best combination of movement and
retaliation each solution has to be rated. The scoring process consists of additions of the
benefits and subtractions of the downsides of the assessed plan. For example, some
considered destination point may be a good place for an assault, but moving there would be
unprofitable because it is located on a trajectory of an enemy’s projectile. Even a short stay in
a danger zone has a significant impact on the overall plan evaluation.

The rating of an offensive ability is based on the evaluation of profitability, expressing
to what extent the potential hit will affect the target, and effectiveness - estimating the
chances to hit the target. Similarly we can assess the threats. For example, if the enemy
missile cannot affect the hero, then there is no point in dodging it.

However, our experiments have shown that relaying too excessively on the prediction
can be disastrous, because it may turn out that a currently executing solution is already
outdated. Since the AI agents have to recalculate plans whenever a new threat appears on the
battleground, the duels involving a significant number of players and abilities enforce
switching the CPU context very often, resulting in heavy computations. Thus, in our real-time
battle environment, the algorithms providing a solution quickly often take advantage over the
slower ones, even if the quality of the latter is better.

4. State space search algorithms

The game characters usually traverse a two dimensional surface divided into a grid of
squares or other geometric shapes forming a Navmap [12]. Both of the approaches are very
popular, however we decided to follow another, more flexible concept. Our MOBA game
environment, developed to compare the considered algorithms, builds a graph-like structure
dynamically. Moreover, describing the agent position with float precision numbers allows the
characters to wander through the battleground in a more organic, human-like, unpredictable
manner. This also opens endless possibilities of choosing the points on the map.

Thus, to conduct performance tests comparing different algorithms, some variables
need to be fixed. Those include: the number of steps in the plans, the distance covered in each
step, and the number of possible directions. Below, we describe several methods of searching
the state space. In the following five figures we have assumed 6 possible movement
directions.

Applying artificial intelligence algorithms in MOBA games 57

Figure 3. A visualization of paths evaluated by the Brute Force algorithm. The numbers correspond to
ratings computed for the points marked with the crosses. All possible combinations of moves are considered.

Figure 4. The paths considered by the Directional algorithm. The numbers correspond to ratings computed
for the points marked with the crosses. The algorithm chooses a direction with the best rating and explores it
further ignoring the remaining directions. In this example the direction “right” leads to the point with the highest
rating (1.23), and it has been chosen in the first step. In the next steps “right-down” (with rating 1.3) and then
“left-down” (with rating 1.19) have been selected.

The Brute Force (BF) algorithm, see Fig. 3, follows the simplest concept, but it is the
most computationally complex of the implemented methods. To estimate the computational
complexity we take into account the number of potential locations assessed by the particular
algorithms. In the case of BF, all possible combinations of the available moves are
considered. Notice that the same points can be calculated multiple times with different delays
or various arrival directions. Assuming that n represents the number of possible directions and
k stands for the length of the plan, the first step of BF is n computations concerning the
locations reachable from a current position. Then, every point computed and assessed in the
previous step is treated as a start location to plan the next move. That is, in every of the n new
points again n directions are considered. Thus we have to compute and assess n2 locations in
the second step, and nk positions in the general case. Thus, the computation complexity of BF
is O(nk). It is not surprising that, due to its exponential complexity, the BF algorithm is
extremely inefficient.

58

M. Wiśniewski and A. Niewiadomski

The Directional algorithm (Fig. 4) is a greedy version of BF. In each point of each
path, the algorithm considers all the available directions, chooses only the most promising one
and explores it further. That is, in every of k steps of the algorithm the n new points are
computed and assessed. Thus, the computation complexity of this algorithm is O(k*n). A
good performance, the straightforward implementation and a linear scalability makes it a very
viable option to consider while designing a game logic.

Figure 5. The paths generated by the Split algorithm. The computed points appear beyond the “hexagonal
grid” created by the other methods. Every point computed in a previous step of the algorithm is considered as a
start location for two potential moves using two new directions.

The Split algorithm starts from computing single steps using all available directions.
Then, every obtained point is explored further, but only in two, new directions. An angle
formed between the new directions is the same as the angles between the subsequent
directions of the first step. For example, in Fig. 5 which depicts a plan of length 2 considering
6 possible directions, the angles formed between the subsequent directions in the first step
equal 60 degrees, and so are the angles formed between the pairs of new directions in the
second step. This algorithm prevents from generating backtrack paths, what allows to reach a
safe distance from threats. Analyzing the computational complexity, we start from n
computations in the first step. It is easy to observe, that the number of points computed in
each subsequent iteration is two times greater than the number of locations generated in the
previous step. Therefore, for n directions and k steps the computation complexity of Split
equals:

n + n ∗ 2 + n ∗ 4 + … + n ∗ 2k−1 = n ∗� 2𝑖𝑘−1
𝑖=0 ,

what, using the O notation, gives us the computational complexity of O(n*2k-1). Thus,
Split scales worse than Directional according to the length of the plan, since every new step
doubles the size of the state space.

Applying artificial intelligence algorithms in MOBA games 59

Figure 6. Example paths considered by the Monte Carlo algorithm. The numbers correspond to ratings
computed for the points marked with the crosses. The algorithm randomly selects the number of explored
directions and the lengths of the paths.

The Monte Carlo algorithm (Fig. 6) is the most unpredictable of the described
algorithms. The number and lengths of the paths are chosen randomly. A hero controlled in
this manner often stays still for some time, if none of the calculated destinations is better than
a currently occupied point. Staying in the same place increases the recalculation frequency
which makes this method extremely responsive to the environment changes.

The pessimistic computation complexity of Monte Carlo is O(n*k), because the
algorithm randomly selects the number of considered directions from 1 to n, and then, for
every direction, it chooses randomly the number of steps from 1 to k. Thus, the pessimistic
complexity is the same as for the Directional algorithm, however the experiments show that
the average complexity is much lower.

The last of the considered planning methods is Genetic algorithm [10]. It maintains a
population of individuals, where each one of them is a potential solution encoded as a vector
of k integers. Every integer, i.e., a gene, stands for a move direction chosen in the subsequent
steps, thus there are n possible values for a single gene. The evolutionary process is divided
into several iterations. In every step of the algorithm, the individuals are assessed and
modified using standard genetic operators, becoming a new generation processed in the next
iteration. The implemented operators include a roulette wheel selection, a single-point
crossover, and a random mutation. The initial population is generated randomly. Basing on
several experiments, we set the crossover probability to 0.8, and the mutation probability to
0.05. Since the computations in the real-time environment have to be quick, we set the
number of iterations (I) and the population size (S) to 10.

60

M. Wiśniewski and A. Niewiadomski

Figure 7. Example paths generated by GA. After several iterations, the trend to keep a safe distance from
the opponent can be observed. The colors of the tracks correspond to the ratings of the particular points: the
green lines are of high ratings, while the red ones are of low ratings.

Estimating the computational complexity using the same assumptions as for the other
algorithms, it is easy to observe that the GA complexity depends on the I, S, and k parameters.
During every iteration, so I times, the algorithm computes and evaluates S*k points.
Moreover, at the start of the algorithm the initial population has to be assessed, so additionally
S*k locations are processed. This gives us the computational complexity equals
O((I+1)*S*k).

5. Experimental Results

The experiments have been conducted in the form of short (5 min.) skirmishes
between bots having the same abilities but controlled by different algorithms. The tests have
been performed using several different values of the parameters: the algorithm to control the
bots in each squad, the number of team members (b), the number of available movement
directions (n), and the length of planned paths (k). The other worth mentioning parameters
are, e.g., the movement speed (set to 1.5 body length per second), the update interval (250
ms), the initial number of life points (1000), the damage made by a projectile (120 life points),
and the minimal interval between subsequent shots (1 second). Overall, 600 encounters have
been performed for all possible combinations of different algorithms, with the following
values of the parameters: b ϵ {1, 2}, and (n, k) ϵ {low = (6, 2), high = (8, 3)}. That is, one-on-
one and two-on-two duels, with low and high settings, have been fought.

The results are summarized as four the most expressive statistics showing the average
percentage of: the life points remaining after the fight (Fig. 8), the games won by particular
algorithms (Fig. 9), the accuracy of fired projectiles (Fig. 10), and the efficiency of performed
dodges (Fig. 11).

Applying artificial intelligence algorithms in MOBA games 61

Figure 8. The average percentage of life points remaining after the fight. This chart shows the dominance of
particular algorithms slightly better than win / lose ratio.

The teams controlled by the Brute Force algorithm have not won barely any battle.
This can be explained by the excessive search for the best place to take a shot which is
computationally expensive, even for small parameter values. The executions of the computed
plans have been often interrupted by the emergence of new factors on the battlefield. The
methods generating the paths faster fired bullets more frequently and fared much better. The
quicker opponents had more time to react and change positions for counterattack. What would
benefit BF, is a longer time needed to regenerate the shooting ability. However, even from its
defeat we can learn that predicting too far ahead and offensive abstention can be disastrous.

Figure 9. The average percentage of games won by particular algorithms.

62

M. Wiśniewski and A. Niewiadomski

Figure 10. The average accuracy of fired projectiles.

On the other hand, the Directional algorithm has had the longest average encounter
time of all considered methods. This success results from performing the best dodges.
However, similarly to BF, it also restrained from shooting which did not allow it to show its
full potential.

Figure 11. The average percentage of efficient dodges.

The Split algorithm appears the definite winner of duels with small parameter values.
Its biggest competitor is Directional, but looking at the number of life points remaining after
5 minutes timeout it is easy to deduce that Split would have won if it had more time. One of
its advantages is using the offensive abilities more often than BF and Directional.

Applying artificial intelligence algorithms in MOBA games 63

Monte Carlo has the highest ratio of fired projectiles, but the lowest accuracy, just
opposite to BF. The “stand still” policy often presenting by this method causes a high rate of
recalculations and shooting, believing that the current place occupied by the character is the
best. This method would cope much worse if the minimal interval between two attacks was
longer. It also revealed how important are the often updates. On the other hand, standing still
makes the bot an easy target for the enemy’s projectiles.

The Genetic Algorithm certainly has behaved as intended, however our expectations
were definitively higher. It seems that the designed GA implementation is too heavy to cope
with the real-time constraints properly. We plan to further investigate and optimize it,
however, other more lightweight solutions, like, e.g., simulated annealing [13], seem to be
also worth to follow.

6. Conclusion and future work

In this paper we have introduced a new approach to controlling heroes of MOBA
games. The results obtained can be a basis to build lightweight AI-based game systems
without using Navmaps or grids surprising players with its quality and uniqueness.

There are many possible space search algorithms to be exploited in MOBA games.
However, due to tight time constraints related to the dynamics of battlefield, the methods
quickly providing a solution would be preferred. The experiments have shown that the
prediction time should be rather short, and the update intervals should be based on the status
of the opponent abilities.

The implementation can be further developed in several directions, e.g., by modifying
the function used to assess the plans, applying new planning algorithms (like, e.g. [14], [15]),
or by introducing new variables to simulate more complex bots behavior. The latter include
estimating positions of players hidden behind walls, increasing rating in a safer position near
walls, covering wounded teammates from inevitable death or even simply learning of
successful solutions to mimic them in future. We plan also to develop and evaluate the
approach based on machine learning techniques, switching between several planning
algorithms in reaction to the environment changes.

References

1. Kwak Haewoon, Blackburn Jeremy, Han Seungyeop. Exploring Cyberbullying and Other
Toxic Behavior in Team Competition Online Games, CHI '15 Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, pp. 3739-3748,
2015.

2. Hamilton A. William, Garretson Oliver, Kerne Andruid, Streaming on Twitch: Fostering
Participatory Communities of Play within Live Mixed Media, CHI '14 Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 1315-1324, 2014.

64

M. Wiśniewski and A. Niewiadomski

3. Nae Vlad, Iosup Alexandru, Prodan Radu. Dynamic Resource Provisioning in Massively
Multiplayer Online Games, IEEE Transactions on Parallel and Distributed Systems: 22(3),
pp. 380–395, 2011.

4. Kvanli Erik, Hammerstad Eirik M. A Coalition based Agent Design for Heroes of
Newerth, Norwegian University of Science and Technology, Master’s Thesis, 2014.

5. Lim, C. U., Baumgarten, R., Colton, S. Evolving behaviour trees for the commercial game
DEFCON. In Applications of Evolutionary Computation, pp. 100-110, Springer, 2010.

6. Victor do Nascimento Silva, Chaimowicz Luiz. A Tutor Agent for MOBA Games,
Proceedings of the XIV Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames 2015), pp. 220-223, ISSN: 2179-2259, 2015.

7. Victor do Nascimento Silva, Chaimowicz Luiz. On the Development of Intelligent Agents
for MOBA Games, Proceedings of the XIV Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames 2015), pp. 131-139, ISSN: 2179-2259, 2015.

8. Wiśniewski Mateusz. Zastosowanie Algorytmów Sztucznej Inteligencji w Grach typu
MOBA (in Polish), Siedlce University of Natural Sciences and Humanities, Master’s
Thesis, 2016.

9. Siddhesh V. Kolwankar. Evolutionary Artificial Intelligence for MOBA / Action-RTS
Games using Genetic Algorithms, International Journal of Computer Applications (IJCA)
(0975 – 8887), pp. 29-31, 2012.

10. Whitley Darrell. A genetic algorithm tutorial, Stat Comput. 4: 65,
doi:10.1007/BF00175354, 1994.

11. Creighton Henson Ryan. Unity 3d Game development by Example, ISBN
9781849690546, Packt Publishing, 2010.

12. Brand Sandy. Efficient obstacle avoidance using autonomously generated navigation
meshes, Delft University of Technology, Master’s Thesis, 2009.

13. Kirkpatrick, S., Jr, C. G., Vecchi, M.: Optimization by simulated annealing, Sci., 220, pp.
671–680, 1983.

14. Niewiadomski A., Skaruz J., Świtalski P., Penczek W. Concrete Planning in PlanICS
Framework by Combining SMT with GEO and Simulated Annealing, Fundam.
Inform. 147 (2016), pp. 289–313, IOS Press, DOI 10.3233/FI-2016-1409, 2016.

15. Niewiadomski A., Skaruz J., Penczek W., Szreter M., Jarocki M. SMT Versus Genetic
and OpenOpt Algorithms: Concrete Planning in the PlanICS Framework, Fundam.
Inform. 135(4), pp. 451-466, 2014.

