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Abstract. The paper presents a multi-objective optimization framework to the network resource 
allocation problem, where the aim is to maximize the bitrates of data generated by all agents executed in 
a distributed system environment. In the proposed approach, the utility functions of agents may have 
different forms, which allows a more realistic modeling of phenomena occurring in computer networks. 
A scalarizing approach has been applied to solve the optimization problem. 
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1 Introduction 
One of the most important challenges of mathematics and computer science is 

mathematical modeling of data transmission processes in computer networks. The difficulties 
in this area result from the fundamental fact that no one understands phenomena occurring in 
real systems consisting of many interacting elements [6, 18]. Modeling of the data 
transmission process in computer networks, particularly in the Internet, are experiencing 
further difficulties due to the fact that this is a highly heterogeneous environment in which 
many communications protocols are used, and at the lack of centralized governance in either 
technological implementation or policies for access and usage, the emergence of bottlenecks 
is imminent [7, 25, 40]. To solve the issue of modeling data flows in computer networks many 
approaches have been proposed. Some of them use the following fields of science: theory of 
queues [1, 2, 14], Markov chains [1, 35], various analytical methods [17, 20, 30, 36], 
deterministic chaos [9, 29, 31, 37], probability calculus [3, 4, 28], Petri nets [11], time series 
[15], optimization [20], multi-objective optimization [5, 10, 13, 19], and computer simulation 
[12, 23, 30]. In recent years there has been increasing interest in the use of multi-objective 
optimization methods to solve the network resources allocation problem. In this respect both 
exact and approximation methods are used. The exact methods (also called the classical 
methods) use techniques such as: no-preference methods, a priori methods, a posteriori 
methods, and physical programming [21]. The approximation methods that use different 
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metaheuristics based on evolutionary algorithms [5, 10, 38], and non-standard algorithms 
using the following techniques: local search, simulated annealing, tabu search, path relinking, 
scatter search, ant colony optimization, and particle swarm optimization [32] have become 
very popular. The exact methods are applied when it is possible to assume that data flows in 
distributed systems are wide sense stationary processes. These methods are effective for 
small-size problems. When problems become more difficult, usually due to their NP-hard 
complexity, it is advisable to use approximation methods. These methods are usually used 
when data flow are subject to rapid and unpredictable changes. In such cases, the 
approximation methods allow to develop adequate, in the established sense, algorithms used 
in various aspects of computer networks management [27, 41]. However, they are burdened 
with a fundamental and irreducible disadvantage. Namely, they make it possible to obtain 
approximate solutions whose distances from the optimal solutions are unknown and often 
impossible to determine. This defect does not have the exact methods. However, these 
methods require making many simplifying assumptions, which may cause that the data flow 
model may prove to be inadequate.  

The subject of the paper is the issue of multi-criteria optimization of network resource 
allocation in distributed systems. "A distributed system is a software system in which 
components located on networked computers communicate and coordinate their actions by 
passing messages. The components interact with each other in order to achieve a common 
goal. Three significant characteristics of distributed systems are: concurrency of components, 
lack of a global clock, and independent failure of components" [8]. Distributed systems are 
usually small scale systems designed to perform established computational tasks. In these 
systems the same communication protocol is often applied, e.g. TCP [30]. If the data flows in 
such systems can be regarded as wide sense stationary processes, the problem of optimizing 
the network resource allocation can be solved by exact techniques.  

In the paper for modeling the message passing process the multi-agent approach has been 
used [27]. It has been assumed that the purpose of each agent is to maximize the transmission 
rates taking into account the limited bandwidths of network links. To solve the multi-
objective optimization problem a scalarizing approach has been applied [21, 22].  

The rest of this paper is organized as follows: section 2 describes a mathematical model of 
a distributed system; section 3 formulates the multi-objective optimization problem and 
provides some methods to solve it. The final section summarizes the paper conclusions and 
shows possible directions for future work. 

 

2 Model of a Distributed System 
The mathematical model of a distributed system determines the ordered pair, 
 M=(N, D), (1) 

where: N is a model of the structure, and D is a model of the message passing process. 
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2.1 Model of Distributed System Structure 
The model N, Eq. (1), determines the net, 
 ( ), ,N V E= c , (2) 

where:  

• { }1, ,
VmV H R v v= ∪ =   is a set of vertices, { }1, ,

HmH h h=   is a set of vertices 

representing computers, and { }1, ,
RmR r r=   is a set of vertices representing routers, 

V H Rm m m= + ;  

• ( ){ }, : , 1, ,l l l l l EE e v w V V v w l m= = ∈ × ≠ =   is a set of directed edges representing 
one-way network connections (or network links) among pairs of different elements of 
the distributed system structure;  

• ( ) 1
1, , E

E

T m
mc c ×

+= ∈c    is a vector of capacities of all network links. 

Let { }1, , HK m=   be a set of numbers of computers from set H. Let { }1, , EL m=   be a 

set of numbers of network links from set E. Let { }1, ,
PmP p p=   be a set of paths connecting 

all pairs of different computers from set H, where: ( )
( ) ( ) ( )( )1 2

, , , , , ,s

s s

n
s s s s s sp p r r rα ω α ω= =   is 

the path linking the pair of computers ( ),s s H Hα ω ∈ × , s sα ω≠ , ( )i
sr R∈ , for 1, , si n=  , and 

1, , Ps m=  . Let { }1, , PS m=   be a set of numbers of all paths from set P. 
Rules of the message passing between all pairs of different computers from set H 

determines the binary routing matrix, 
 ( )

E P
ls m m

r
×

=R , (3) 

where: 
 1, ,

0, ,
l s

ls
l s

if e p
r

if e p
∈

=  ∉
  

and le E∈  for l L∈ , and sp P∈  for s S∈ . Element rls of the matrix R assumes a value 
of one if the link le E∈  belongs to the path sp P∈ , and a value of zero otherwise. Let 

{ }: 1s lsL l L r= ∈ =  be a set of links belonging to the path s S∈ . Let { }: 1l lsS s S r= ∈ =  be a 
set of paths passing through the link l L∈ . 

 

2.2 Model of the Message Passing Process 
Let us assume that on every computer from set H computational processes are executed, 

called agents, which are exchanging messages. Let us also assume that every agent can pass 
messages to a single agent executed on another computer. Let { }; 1, ,

kk ki AA a i m= =   be a set 

of agents executed on the computer kh , k K∈ , where 1 1
kA Hm m≤ ≤ − . Let 

ℝ 
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{ }1, ,
Ak mk K

A A a a
∈

= =   be a set of agents performed on all computers from set H, where: 

kA Ak K
m m

∈
= ∑ , ( )1H A H Hm m m m≤ ≤ − .  

Let us assume, that the messages are passed between selected pairs of different agents 
( ),s sa b A A∈ × , s sa b≠ , along the paths sp P∈ , for s S∈ . In the pair ( ),s sa b , the agent as is 
called the sender (or the source) and the agent bs is called the receiver (or the sink) of 
messages passing through path ps. The source as generates messages with transmission rates 

0sy ≥ . After sending each packet, the source receives an ACK packet confirming receipt by 
the receiver of the previously sent packet. Let 0su >  be the length of time interval from the 
moment of generating the packet by the source as to the moment of receiving it by the ACK 
packet. Let { }ˆ ˆ ;sA a A s S= ∈ ∈  be a set of selected agents from set A, where ˆsa  is an agent 
which sends the messages along path ps. 

The model of the data transfer along path ps defines the ordered 4-tuple,  
 ( ), , , fs sD T U Y= , s S∈ , (4) 

where: U =  , Y =  , f :s U T Y× →  is a map determining the transmission rate of the 
data generated by agent as,   is a set of real numbers. 

The model D, Eq. (1), defines the ordered 4-tuple, 
 ( ), , ,D T= fU Y ,  

where: AmU=U , AmY=Y , ( )1f , , f
A

T

m=f  , fs , Eq. (4), for s S∈ . 

 

3 The Multi-Objective Optimization Problem 
The problem of network resource allocation of the distributed system M, Eq. (1), is to 

maximize the transmission rates 0sy ≥  and s S∈ , taking into account the limited capacities 

lc ∈c  and l L∈  of all links, where c, Eq. (2). 

 

3.1 Formulation of the Multi-Objective Optimization Problem 
The problem of network resource allocation can be formulated as follows, 

 ( ) ( ) ( ) ( )( ){ }
0

1 2max q ,q , ,q
P

T

m∈
=

y
q y y y y

Y
, (5) 

where: 

• 0 ⊂Y Y  is a set (or a region) of feasible solutions of the form,  

 ( ){ }0 : ,= ∈ ≤ ≥y g y 0 y 0Y Y , (6) 

ℝ ℝ 
ℝ 
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and ( )1, ,
P

T

my y=y   is a vector of the message generation bitrates by agents from set 

Â , : Em→g Y  is a vector constraint function of the form ( ) = −g y Ry c , 

( ) ( ) ( )( )1 , ,
E

T

mg g=g y y y , and ( )
l

l s l
s S

g y c
∈

= −∑y , for l L∈ ; 

• : Am→q Y  is a vector objective function (or a vector utility function) of agents from 
set Â , where q :s → Y  is an objective function of agent ˆsa , for s S∈ . 

The values of the function qs can be interpreted as the benefits of sending the data 
generated by agent ˆˆsa A∈  with bitrates sy Y∈  through path sp P∈ . It is usually assumed 
that the functions qs, s S∈ , are honest in the specified sense [30]. As can be seen, set Y0, Eq. 
(6), is nonempty, closed, convex and compact. 

A multi-dimensional set ( ){ }: ,Pm= ∈ = ∈z z q y yZ Y  is called an objective space. A 

multi-dimensional set ( ){ }0 0: ,Pm= ∈ = ∈z z q y yZ Y  is called an objective region or an 

attainable region. An element ( )=z q y  is called an objective vector, where ( )1, ,
P

T

mz z=z  , 

( )qs sz = y  is called an objective scalar, for s S∈ . A vector 0ˆ ∈y Y  is called a feasible 
solution or a feasible decision. An element ( )ˆ ˆ=z q y  is called an objective vector 

corresponding to the feasible solution ŷ , where: ( )1ˆ ˆ ˆ, ,
P

T

mz z=z  , ( )ˆˆ qs sz = y  is called an 

objective scalar corresponding to the feasible solution ŷ , for s S∈ . 

Let us assume that agent ˆsa  seeks to maximize the transmission rates sy  taking into 
account the limited capacities lc ∈c  and sl L∈  of all links lying on path sp P∈ . The problem 
of network resource allocation for agent ˆsa  consists in finding a vector 0ˆ I

s ∈y Y , such that, 

 ( ) ( )
0

ˆq max qI
s s s∈

=
y

y y
Y

, s S∈ , (7) 

where ( )ˆ ˆ0, ,0, ,0, ,0
TI I

s sy=y    is an ideal solution for agent as, ( )ˆdim I
s Pm=y , for 

s S∈ . 

A vector ( )1ˆ ˆ ˆ, ,
P

TI I I
my y=y   is called an ideal solution, where ˆ ˆI I

s sy ∈ y , for s S∈ . A vector 

( )1ˆ ˆ ˆ, ,
P

TI I I
mz z=z   is called an objective vector corresponding to the ideal solution ˆ Iy , where: 

1 ˆˆ I I
sz ∈ z , ( )ˆ ˆ0, ,0, ,0, ,0

TI I
s sz=z   , and ( )ˆ ˆqI I

s s s=z y , for s S∈ . 

 

3.2 Solution of the Multi-Objective Optimization Problem 
In multi-objective optimization, there does not typically exist a feasible solution that 

maximizes all objective functions simultaneously. Therefore, attention is paid to Pareto 
optimal solutions and weakly Pareto optimal solutions. 

ℝ 

ℝ 
ℝ 

ℝ 

ℝ 
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Definition 1. A feasible solution 0ˆ ∈y Y  of the problem (5) is Pareto optimal (or strict 
Pareto optimal) if there does not exist another vector 0∈y Y  such that ( ) ( )ˆq qs s≥y y  for all 
s S∈  and ( ) ( )ˆq qv v>y y  for at least one index v, v S∈ . On the other hand, 0ˆ ∈y Y  is weakly 
Pareto optimal if there does not exist another vector 0∈y Y  such that ( ) ( )ˆq qs s>y y  for all 
s S∈ . 

There is a whole range of approaches to solving multi-objective optimization problems  
[10, 21, 22]. The most commonly used are approaches based on scalarizing multi-objective 
optimization problems [21, 22]. These include weighted sum methods and so-called no-
preference methods. 

 

Scalarizing multi-objective optimization problems  
Scalarizing consists in the conversion of a multi-objective optimization problem into a 

single-objective optimization problem, such that optimal solutions to the single-objective 
optimization problem are weakly Pareto optimal solutions to the multi-objective optimization 
problem. A general formulation for the scalarization of multi-objective optimization is thus, 

 ( )( )
0

max f ,
∈y

q y θ
Y

, (8) 

where: Pm∈θ   is a vector of parameters, f : P Pm m× →    is an objective function. 

The following theorem define the necessary and sufficient conditions for an optimal 
solution of the problem (8) to be weakly Pareto optimal and Pareto optimal. 

Theorem 1.  

1. If a function f is strictly increasing and if 0ˆ ∈y Y  is an optimal solution of the problem 
(8), then ŷ  is weakly Pareto optimal. 

2. If a function f is strictly increasing and if the solution 0ˆ ∈y Y  of the problem (8) is 
unique, then ŷ  is Pareto optimal. 

Proof. Proof can be found in [39]. 

 

Weighted sum methods 
Weighted sum methods require additional information about the decision-maker’s 

preferences. The most popular is the so-called linear scalarization in which the problem (8) is 
converted to the following form, 

 ( )( ) ( ){ }
0

max f ,W T

∈
=

y
q y w w q y

Y
, (9) 

ℝ ℝ ℝ ℝ 
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where: ( )1, ,
P

T

mw w=w   is a vector of weights of the objective functions such that 

1ss S
w

∈
=∑ , and 0sw > , for s S∈ , f : P Pm mW × →    is an objective function which is 

called a weight function. 

Corollary 1. Any feasible solution 0ˆW ∈y Y  of the problem (9) is weakly Pareto optimal. 

Proof. The proof follows directly from Theorem 1, since the function fW, Eq. (9), is 
fulfilling an assumption determined in point 1 of this theorem. 

 

No-preference methods 
These methods do not require any additional information about the decision-maker’s 

preferences. The most popular are the distance method and so-called Chebyshev type 
methods. 

The distance method consists in converting the problem (8) to the following form, 

 ( )( ) ( ){ }
0

ˆ ˆmin f ,D I I

p∈
= −

y
q y z q y z

Y
, (10) 

where: ˆ Iz  (point 3.1), f : P Pm mD × →    is an objective function which is called a 
distance function, 

p
⋅  is any Lp norm. 

Corollary 2. Any feasible solution 0ˆ D ∈y Y  of the problem (10) is weakly Pareto optimal. 

Proof. The proof is analogous to the proof of corollary 1. 

 

Among so-called Chebyshev type methods [10, 21, 22] the most well-known is the 
method which converges the problem (8) to the following form, 

 ( )( ) ( )( ) ( )( ){ }
0

ˆ ˆmin f , max qA T I I
s s ss S

zρ λ
∈ ∈

 = − + − y
q y λ λ q y z y

Y
, (11) 

where: ρ>0 is some sufficiently small scalar [22], ( )1, ,
P

T

mλ λ=λ   is a vector of non-
negative coefficient used for scaling purposes, that is, for normalizing objective functions of 
different magnitudes, f : P Pm mA × →    is an objective function. Typically, these 
coefficients take the following values, 

 ˆ1, 0,
1 ˆ, 0,
ˆ

I
s

s I
sI

s

if z

if z
z

λ
 =
=  ≠


 s S∈ .  

ℝ ℝ ℝ 

ℝ ℝ ℝ 

ℝ ℝ ℝ 
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Corollary 3. Any feasible solution 0ˆ A ∈y Y  of the problem (11) is weakly Pareto optimal. 

Proof. The proof is analogous to the proof of corollary 1. 

Example 1. Let us consider the issue of multi-objective optimization of network resource 
allocation in a simple distributed system, whose structure represents a net ( ), ,N V E= c  (Fig. 

1), where: V H R= ∪ , { }1, ,
HmH h h=  , 3Hm = , is a set of computers, { }R r=  is a set of 

network routers, { }1, ,
EmE e e=  , 3Em = , is a set of one-way network links, ( )1, ,

E

T

mc c=c   
is a vector of capacities of all network links.  

 

Figure 1. Model of the distributed system structure 

 
The sets K, S and L take the following forms: K={1,2,3}, S={1,2}, L={1,2,3}. Set P takes 

the following form { }1, ,
PmP p p=  , 2Pm = , where: ( )1 1 3, ,p h r h= , ( )2 2 3, ,p h r h= . The sets 

kA  and k K∈ , take the following forms: { }1 11A a= , { }2 21A a= , { }3 31 32,A a a= . Set A takes 

the form { } { }11 21 31 32 1, , , , ,
Ak mk K

A A a a a a a a
∈

= = =  , 4Am = . Let us assume, that the 

messages are passed between pairs of agents: ( )1 1,a b A A∈ ×  and ( )2 2,a b A A∈ × , along the 

paths, respectively, 1p P∈  and 2p P∈ , where: 1 3b a=  and 2 4b a= . Set Â  takes the form 

{ }1 2
ˆ ,A a a= . 

The matrix R, Eq. (3), takes the form, 
1 0
0 1
1 1

 
 =  
 
 

R . 

Let us assume that vector c has the form ( )100, ,100 T=c  , which means that all the links 
have the same capacity, i.e. cl=100 [Mbps], for l L∈ .  

Let us also assume that all elements from sets H and R are passing data using the TCP 
protocol [30], for which the utility functions qs and s S∈ , assume the following forms, 

 ( ) 1qs
s su y

= −y , s S∈ ,  
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where: 0su >  is the time interval length from the moment of generating a packet by the 
source as to the moment of receiving an ACK packet by this source, 0sy >  is the 
transmission rate of the source as. Let us assume that 1 0.1u =  [s] and 2 0.2u =  [s].  

To solve the optimization problems (7) the interior point method [24] has been applied. 

Table 1 shows the results of solving the problem (7), where: ( )1 2ˆ ˆ ˆ,
TI I Iy y=y , ( )ˆ ˆI I=z q y , 

gl , Eq. (6), for l L∈ . This table shows that the constraint ( )3 ˆg 0I ≤y  is not satisfied.   

Table 1. The results of solving the problem (7) 

ˆ Iy  ˆ Iz  ( )1 ˆg Iy  ( )2 ˆg Iy  ( )3 ˆg Iy  

(100,
100)T 

(-0.1,-
0.05)T 

0 0 
10

0 

Let us assume that we are searching for single solutions to problems (9)-(11). 
Table 2 shows the results of solving the problem (9), wherein it is assumed that a vector of 

weights takes the value of ( )0.75,0.25 T=w , where: ( )1 2ˆ ˆ ˆ,
TW W Wy y=y , ( )ˆ ˆW W=z q y . This 

table shows that all the constraints are satisfied.  

Table 2. The results of solving the problem (9) 

ˆWy  ( )ˆf W Wy  ˆWz  ( )1 ˆg Wy  ( )2 ˆg Wy  ( )3 ˆg Wy  

(71.0101, 
28.9898)T 

-
0.148737 

(-0.140825, -
0.172474)T 

-
28.9899 

-
71.0102 

-
0.0000611117 

 

Table 3 shows the results of solving the problem (10), where: ( )1 2ˆ ˆ ˆ,
TD D Dy y=y , 

( )ˆ ˆD D=z q y . This table shows that all the constraints are satisfied.  

Table 3. The results of solving the problem (10) 

ˆ Dy  ( )ˆf D Dy  ˆ Dz  ( )1 ˆg Dy  ( )2 ˆg Dy  ( )3 ˆg Dy  

(58.5787, 
41.4213)T 

0.1 
(-0.170711, -

0.120711) T 
-

41.4213 
-

58.5787 
-

0.0000406612 
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Table 4 shows the results of solving the problem (11), wherein it is assumed that a 

parameter ρ  takes the value of 0.1ρ = , where: ( )1 2ˆ ˆ ˆ,
TA A Ay y=y , ( )ˆ ˆA A=z q y . This table 

shows that all the constraints are satisfied.  

Table 4. The results of solving the problem (11) 

ˆ Ay  ( )ˆf A Ay  ˆ Az  ( )1 ˆg Ay  ( )2 ˆg Ay  ( )3 ˆg Ay  

(50.0, 
50.0)T 

1.4 
(-0.2, 

-0.1)T 
-

50.0 
-

50.0 
0 

Figure 2 shows the set of feasible solutions 0Y , Eq. (6), with marked points: ˆ Iy  (table 1), 
ˆWy  (table 2), ˆ Dy  (table 3) and ˆ Ay  (table 4). 

 

Figure 2. A plot of set 0Y  with marked points: ˆ Iy  (red dot), ˆWy  (yellow dot), ˆ Dy  (black dot), ˆ Ay  (green 
dot) 

Figure 3 shows a fragment of the set 0Z  with marked points: ˆ Iz  (table 1), ˆWz  (table 2), 
ˆ Dz  (table 3), and ˆ Az  (table 4). 



 
The scalarization approach for multi-objective optimization of network …   49 

 

 

Figure 3. A plot of a fragment of the set 0Z  with marked points: ˆ Iz  (red dot), ˆWz  (yellow dot), ˆ Dz  (black 
dot), ˆ Az  (green dot) 

It is worth noting that Theorem 1 demonstrates that solutions ˆWy , ˆ Dy  and ˆ Ay  are weakly 
Pareto optimal. 

□ 

Summary 
The paper presents the use of multi-objective optimization methods to solve the problem 

of network resource allocation in distributed systems. An important feature of the proposed 
approach is that it allows to take into account various criteria for solving the considered 
problem. To solve multi-criteria optimization problem some scalarizing functions have been 
used. It is worth noting that the use of these functions guarantees obtaining weakly Pareto 
optimal solutions. 

Follow-up works should consist in applying both exact and approximation methods for 
solving the problem defined by the formula (8). Many studies [5, 10, 32, 38] indicate that 
promising approaches for solving the considered problem use evolutionary algorithms and 
tabu search. Apart from the fact that they often give close-to-optimal solutions, it is possible 
to implement them simultaneously [16, 33, 34]. Due to the fact that these methods can be 
performed in a partially asynchronous way, it is possible to try to use them for effectively 
solving many substantial problems of computer science, including the problem of 
decentralized control with communication between controllers [26]. 
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