
STUDIA INFORMATICA
Nr 1-2 (20) Systems and information technology 2016

Sergey NOVIKOV

Institute of Mathematics and Computer Science,
The John Paul II Catholic University of Lublin,
Konstantynów Street 1H, 20-708 Lublin, Poland

Parallel constructing of the shortest coverings of large Boolean matrices

Abstract: The paper presents two options of the parallel algorithm for finding the shortest covering of a
large Boolean matrix, where the decomposition of the initial matrix into matrices of smaller sizes is
based on the partitioning of rows. The parallel algorithm COVMB contains sequential algorithms for
partitioning of initial m × n Boolean matrix on submatrices, building special matrices, summering of
the shortest coverings of special Boolean matrices with smaller sizes as well as the sequential
algorithm SECNOP for finding the shortest coverings of smaller Boolean matrices.

Keywords: Boolean matrix, shortest covering, decomposition, sequential algorithm, parallel algorithm,
cluster.

1. Introduction and preliminary observations

The NP-hard shortest covering problem can be expressed as follows. It is required to find
such a subset of rows of the given Boolean m × n matrix (BM), where m ≥ n, that each of the
columns has one in some row from this subset, the number of these rows being minimal [1].

The algorithms and the corresponding computer programs for solving the shortest
covering problem are widely applied in the theory of complex systems, computing systems
and also for planning of resources distribution in GRID [2]. That's why various algorithms
(Petric’s method, greedy algorithm, minimax algorithm and other [1]) have been proposed.
Corresponding computer programs were developed and used in the design of discrete devices
(ESPRESSO-II, GANP, Tie) [3].

As a rule, the effectiveness of the proposed algorithms and computer programs depends
on the specific of input data.

To particular, the so-called sparse BMs, were researched sparse BM, where the
probability of the occurrence of 1s among the elements of BM is less than 0,05. The
sequential programs for finding of the shortest coverings of sparse Boolean matrices were
developed and published in [3].

Unfortunately, most of the BMs are not sparse. This fact implies continuing development
of algorithms and computer programs for finding the shortest covers of large Boolean
matrices with different properties.

To solve a NP-hard task of large dimension, approximate heuristic algorithms are used.
They do not guarantee an optimality but allow to get decisions sufficiently close to the
optimal ones in a reasonable time.

28

S. Novikov

 However, an even approximate algorithm requires too much computing for solving of the
NP- hard large-scale problems. Therefore increasing the efficiency of solutions of the above
mentioned tasks by using modern multiprocessor computing systems (computer clusters)
arises as an emergent problem.

A computer cluster consists of a set of loosely or tightly connected computing processors
 that work together for solving tasks of smaller dimensions. The computing processors
send the obtained results to the control processor in order to "summarize" them into a task
solution of larger dimension. Computer clusters are controlled and scheduled by special
software.

In order to bring solving difficult problem of large size to solving several tasks of smaller
sizes using a computer cluster it is necessary to solve the problem of decomposition of input
data and to develop a parallel algorithm for solving the problem on the cluster.

In this way, along with a parallel algorithm, an abstract computing system with one
control processor p0 and several computing processors pi, are proposed. The sequential
algorithms are components of our parallel algorithm. The sequential algorithms in the
parallel algorithm interact in accordance with the timetable drawn up (computer schedule).

To address the issue of finding the shortest covering of large Boolean matrices using
decomposition of initial large matrices into matrices of smaller sizes, a parallel algorithm was
proposed by the author [4]. This parallel algorithm is based on the partitioning of the Boolean
matrix into blocks of columns (column minors). A column minor of a matrix is the part of the
matrix formed by some subset of columns.

The corresponding parallel program POKRMB was written by Adam Adamus in C++ in
the integrated development environment Dev-C++ version 4.9.9.2 for Windows and Linux
systems using environment MPI to communicate between nodes of our cluster [5].

After the testing of the program (at first on a typical PC, then on the cluster of the
Siedlce University of Natural Sciences and Humanities) the efficiency of our parallel
program POKRMB was researched. The results of these studies are published in [6].

We propose two options of a parallel algorithm for finding the shortest covering of a large
Boolean m × n matrix M based on other principles. The decomposition of the initial large
matrix into matrices of smaller sizes is based on the partitioning of rows.

 The parallel algorithm COVMB uses the sequential algorithm SECNOP for finding the
shortest coverings of smaller Boolean matrices. The algorithm SECNOP was proposed and
programmed by Adrian Nogal in C++ [7]. The corresponding program SECNOP proved to
be more effective than the program POKRMB for finding the shortest coverings of smaller
Boolean matrices [7].

2. Parallel algorithm COVMB

To parallel the computations with the help of the parallel algorithm COVMB(M;P(M)) it
is necessary to perform the following 11 steps:

Parallel constructing of the shortest coverings of large Boolean matrices 29

1) Partitioning the initial matrix M into matrices M1, M2 ,..., MT

The control processor p0 partitions the Boolean m × n matrix M into T blocks of rows
(row minors) with the help of the algorithm A1(M; M1, M2,..., MT). A row minor of a
matrix is the part of the matrix formed by some subset of rows. In other words the row
minors of the m×n Boolean matrix M are its submatrices M1, M2,..., MT of smaller sizes q ×
n, where q=[m/T] for the matrices M1, M2,..., MT-1 and q=m-[m/T]*(T-1) for the matrix
MT. It’s conveniently to put T = [√m].

Then the control processor p0 sends the matrices M1, M2 ,..., MT to processing processors
p1,…,pT as input data. The transition to p. 2.

2) Parallel summation rows in the matrices M1, M2 ,..., MT

Each processing processor pi, by using the algorithm A2(Mi; si), executes the logical
summation of rows in the matrix Mi, where i ∈ {1,2,…,T}, with the help of the operation
disjunction. The result of this summation is the n-component Boolean vector si = ri1 ∨ ri2
∨…∨ riq , where rij is a row of the matrix Mi .

The processing processor pi sends si to the control processor p0.

The transition to p. 3.

3) Building the support Boolean matrix M*
The control processor p0, using the algorithm A3(s1, s2, ..., sT; M*), firstly analyzes the

vectors s1, s2,…, sT obtained from the processing processors p1, p2 ,…, pT .
If each component of the vector si (corresponding to the matrix Mi) is equal to 1, then

the process of finding the shortest covering of the Boolean m× n matrix M boils down to
finding the shortest covering of the Boolean q× n matrix Mi, where q ≤ m-[m/T]*(T-1). After
that p0 puts Mq:= Mi and moves to p. 10.

However, this situation is a particular incident, which may happen for “tight” Boolean
matrices.

In the general case, the control processor p0 builds the support T× n matrix M*, the rows
which are vectors s1, s2, ..., sT, sends M* to the processing processor p1 and moves to p. 4.

4) Finding of the shortest covering of the support Boolean matrix M*

The processor p1, using the sequential algorithm SECNOP(M*; P(M*)), finds the
shortest covering of the Boolean T× n matrix M*, where T = [√m].

The result of the implementation of the algorithm SECNOP(M*; P(M*)) is the subset of
row names from M*. The elements of P(M*) determine what q× n matrices of the much
smaller sizes (in comparison with the size of MB M= M1 ∪ M2 ∪ ... ∪ MT) is necessary
to explore to find the shortest covering of the Boolean matrix M. The program SECNOP
finds the shortest covering of the Boolean 16000× 16000 matrix [7].

Obviously, | P(M*) | = l ≤ T=[√m].

The transition to p. 5.

30

S. Novikov

5) Construction of the special (q+1) × n matrices Mi’

The processor p0, using the algorithm A4(P(M*), M*,M1, M2,..., MT; Mi1’, Mi2’,…, Mil’
), constructs the (q+1) × n matrices Mi1’, Mi2’,…, Mil’.

To construct the matrix Mi’, p0 first finds the corresponding Boolean vector si in the M*
and the corresponding Boolean q× n matrix Mi. After that p0 inverts the vector si and writes
the ¬ si to the matrix Mi as the additional row (r0 = ¬ si) to complete the construction of
this special matrix Mi’. At last, p0 sends the (q+1) × n matrices Mij’ to processing
processors p1, p2 ,…, pl. The transition to p. 6.

 6) Parallel finding of the shortest coverings of the matrices Mi’

Each processing processor pi with i ∈ { 1,2,…,l }, by using the sequential algorithm
SECNOP(Mi’;P(Mi’)), finds the shortest covering of the special (q+1) × n matrix Mi’.

After that pi sends the solution (the shortest covering P(Mi’)) to the control processor
and moves to p. 7.

7) Summation of shortest coverings of the matrices Mi’

By using the algorithm A5(P(M1’),…, P(Ml’); P’(M), Mr, r1,…, rt), the processor p0
adds together the solutions obtained by the processing processors p1, p2 ,…, pl , i.e. P’(M) =
P(M1’) ∪ ... ∪ P(Ml’), and deletes the item r0 from it. The covering P'(M) may contain
redundant elements (row numbers of the initial matrix M). To eliminate redundant elements
from P'(M), the processor p0 constructs the Boolean matrix Mr. The rows of the matrix Mr
are the rows of the initial matrix M with row numbers included in the set P'(M). The
processor p0 writes a new row r* with the number j(r*) from P’(M) into Mr, if the condition
r* ∧ ri ≠ r* for each row ri from Mr is satisfied. Otherwise, p0 removes j(r*) from
the set P'(M) and does not writes the row r* into Mr. The Boolean t × n matrix Mr will
be used for the reduction of the redundant elements in the covering of M. The remaining
elements of the set P’(M) form the set P’(Mr). Obviously, P’(Mr) ⊆ P’(M) and |P’(Mr)|=t.

Then the control processor p0 sends to the processing processors p1, p2 ,…, pt the
following input data: 1) the set P'(Mr), 2) the t× n matrix Mr, 3) the row name ri for
checking of the redundancy of the corresponding element of P'(Mr). The transition to p. 8.

8) Parallel elimination of redundant elements from P'(Mr)

An element of P'(Mr) is redundant for building the shortest covering of the matrix Mr, if
after cancellation the corresponding row from Mr all columns of Mr’ can be covered by the
disjunction of the remaining rows.

Each processing processor pi, where i ∈ {1,2,…,t}, using the sequential algorithm
A6(P’(Mr), Mr, ri; Pi(Mr)), first modernizes the matrix Mr by replacing each 1s by 0s in
the row ri . Then it executes logical summation rows in the modernized matrix Mr’ with the
help of the operation disjunction. The result of this summation is the n-component Boolean
vector si = ri1 ∨ ri2 ∨…∨ rit .

Parallel constructing of the shortest coverings of large Boolean matrices 31

After that pi analyzes the vector si. If some component of the vector si is equal to 0,
then the corresponding to ri element of the set P’(Mr) is not redundant. In this case, the
processor pi sends the set Pi(Mr)= P’(Mr) to the control processor p0 and moves to p. 9.

Otherwise, if si =11…1, the corresponding to the ri element of the set P’(Mr) is
redundant. The processor pi removes it from the set P’(Mr) and selects a new row r* from
Mr’. Then pi modernizes Mr’ by replacing each 1 by 0 in the row r*, summarizes the rows
of the modernized matrix Mr’’ and analyzes the new vector si* .

If si* =11…1, then the corresponding to r* element of the set P’(Mr) is redundant and
it must be removed from the set P’(Mr). After that pi selects the new row r* from Mr’’.

Otherwise, if some component of the vector si* is equal to 0, then the corresponding
to r* element of the set P’(Mr) is not redundant and it must be in the set P’(Mr). In this
case, pi “restores” each 1s in r* and selects the new row r* from Mr’.

This process ends when all t the rows of the matrix Mr are investigated. Then pi sends
the set Pi(Mr) ⊆ P’(Mr) to the control processor p0 and moves to p. 9.

9) The finding the shortest covering of the initial Boolean matrix M

The control processor p0, using the algorithm A7(P1(Mr), P2(Mr),…, Pt(Mr); P(M)),
where t= | P’(M)| < m, selects the shortest covering from the obtained sets P1(Mr),
P2(Mr),…, Pt(Mr). The transition to p. 11.

10) The finding the shortest covering of the tight initial Boolean matrix

By using the sequential algorithm SECNOP(Mq; P(M)), the control processor p1 finds
the shortest covering of the Boolean matrix Mq, i.e. the set P(Mq), and puts P(Mq)=P(M).
The transition to p. 11.

11) The ending of the computing

The control processor p0 ends the finding the shortest covering of our initial Boolean m×
n matrix M.

The proposed parallel algorithm COVMB for finding the shortest covering of a large
Boolean matrix using rows-decomposition implements the following computer schedule:

H(COVMB)=((A1,p0),(A2,p1,…,pT),(A3,p0),(SECNOP,p1),(A4,p0), (SECNOP, p1,…,pl
), (A5,p0), (A6, p1, p2 ,…, pt), (A7, p0), (SECNOP,p1), (A8, p0)) ,

where a record (Aj,pi) indicates that the processor pi performs the algorithm Aj; A1 -
algorithm for partitioning of the initial matrix M into T submatrices; A2 - algorithm for
logical summation of rows in the matrices; A3 - algorithm for building of the support
Boolean matrix M*; SECNOP - sequential algorithm for finding the optimal covering of a
Boolean matrix; A4 - algorithm for construction of the special (q+1) × n matrices Mi’; A5 -
algorithm for summation shortest covers of the special matrices (P’(M) = P(M1

’) ∪ ... ∪
P(Ml’), construction of the matrix Mr and preparation of the data for elimination of the
redundant elements; A6 – algorithm for elimination of the redundant elements from the
covering P'(Mr); A7 – algorithm for selecting the shortest coverings from P1(Mr),

32

S. Novikov

P2(Mr),…, Pt(Mr), A8 – algorithm for ending the finding the shortest covering of our initial
Boolean m× n matrix M.

3. Example

Let us find the shortest covering of the 20×12 matrix M

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

 r1: 0 0 0 0 1 0 0 0 0 0 1 0

 r2: 0 1 0 0 0 0 0 0 0 0 1 0

 r3: 0 0 0 0 1 1 0 0 0 0 0 1

 r4: 0 0 1 0 1 0 1 0 0 0 0 0

 r5: 0 0 0 0 0 1 0 0 0 0 1 0

 r6: 0 0 0 0 1 0 0 0 0 0 0 0

 r7: 1 0 1 0 0 0 0 0 0 0 0 0

 r8: 0 1 0 0 1 0 0 1 1 0 0 0

 r9: 0 0 0 0 0 0 0 0 1 0 0 0

 r10: 0 0 1 0 1 0 0 0 1 0 0 0

 r11: 0 0 1 0 1 0 0 0 0 1 0 0

 r12: 1 0 0 0 0 1 0 0 1 0 0 0

 r13: 0 0 0 0 0 1 0 1 0 0 1 0

 r14: 1 0 1 0 0 0 0 0 1 0 0 0

 r15: 1 0 0 0 1 0 0 0 0 0 0 0

 r16: 0 0 0 0 0 0 0 0 1 0 0 0

 r17: 0 0 0 0 0 0 0 1 0 1 1 0

 r18: 0 0 0 0 0 0 0 0 1 1 0 0

 r19: 1 0 0 0 0 0 0 0 0 0 0 0

 r20: 0 0 0 1 0 0 0 0 1 0 1 0

Parallel constructing of the shortest coverings of large Boolean matrices 33

1. The control processor performs a partition of M into four blocks and sends the
matrices M1, M2, M3, M4 to the processing processors p1, p2, p3 ,p4.

M1 M2

r1: 0 0 0 0 1 0 0 0 0 0 1 0 r6: 0 0 0 0 1 0 0 0 0 0 0 0

r2: 0 1 0 0 0 0 0 0 0 0 1 0 r7: 1 0 1 0 0 0 0 0 0 0 0 0

r3: 0 0 0 0 1 1 0 0 0 0 0 1 r8: 0 1 0 0 1 0 0 1 1 0 0 0

r4: 0 0 1 0 1 0 1 0 0 0 0 0 r9: 0 0 0 0 0 0 0 0 1 0 0 0

r5: 0 0 0 0 0 1 0 0 0 0 1 0 r10: 0 0 1 0 1 0 0 0 1 0 0 0

M3 M4

r11: 0 0 1 0 1 0 0 0 0 1 0 0 r16: 0 0 0 0 0 0 0 0 1 0 0 0

r12: 1 0 0 0 0 1 0 0 1 0 0 0 r17: 0 0 0 0 0 0 0 1 0 1 1 0

r13: 0 0 0 0 0 1 0 1 0 0 1 0 r18: 0 0 0 0 0 0 0 0 1 1 0 0

r14: 1 0 1 0 0 0 0 0 1 0 0 0 r19: 1 0 0 0 0 0 0 0 0 0 0 0

r15: 1 0 0 0 1 0 0 0 0 0 0 0 r20: 0 0 0 1 0 0 0 0 1 0 1 0

 2. Each processing processor pi, where i ∈{1,2,…,4}, executes the logical summation of
the rows of the matrix Mi, using the operation disjunction, and sends the vector si to p0 .

s1 = r1 ∨ r2 ∨ r3 ∨ r4 ∨ r5 = 0 1 1 0 11 1 0 0 0 1 1

s2 = r6 ∨ r7 ∨ r8 ∨ r9 ∨ r10 = 1 1 1 0 1 0 0 1 1 0 0 0

s3= r11 ∨ r12 ∨ r13 ∨ r14 ∨ r15 = 1 0 1 0 1 1 0 1 1 1 1 0

s4 = r16 ∨ r17 ∨ r18 ∨ r19 ∨ r20 =1 0 0 1 0 0 0 1 1 1 1 0

3. The control processor p0 constructs the 4×12 matrix M* :

s1 0 1 1 0 1 1 1 0 0 0 1 1

s2 1 1 1 0 1 0 0 1 1 0 0 0

s3 1 0 1 0 1 1 0 1 1 1 1 0

s4 1 0 0 1 0 0 0 1 1 1 1 0

4. The processor p1 finds the shortest covering of the Boolean 4× 12 matrix M*.

 As a result, we obtain P(M*)= {s1, s4} .

34

S. Novikov

5. The control processor p0 constructs the matrices M1’ and M4’, using matrices
M1, M4 and vectors s1 , s4.

M1’ M4’

r0: 1 0 0 1 0 0 0 1 1 1 0 0 r0: 0 1 1 0 1 1 1 0 0 0 0 1

 r1: 0 0 0 0 1 0 0 0 0 0 1 0 r16: 0 0 0 0 0 0 0 0 1 0 0 0

r2: 0 1 0 0 0 0 0 0 0 0 1 0 r17: 0 0 0 0 0 0 0 1 0 1 1 0

r3: 0 0 0 0 1 1 0 0 0 0 0 1 r18: 0 0 0 0 0 0 0 0 1 1 0 0

r4: 0 0 1 0 1 0 1 0 0 0 0 0 r19: 1 0 0 0 0 0 0 0 0 0 0 0

r5: 0 0 0 0 0 1 0 0 0 0 1 0 r20: 0 0 0 1 0 0 0 0 1 0 1 0

6. The processing processors p1 and p4 find the shortest coverings of M1’ and M4’
and obtain P(M1’)={ r0 , r2, r3, r4}, P(M4’)={ r0 , r17, r19, r20}.

7. The control processor p0 adds together P(M1’) and P(M4’) and deletes the item r0
from it. We have P'(Mr) = P’(M)={ r2, r3, r4, r17, r19, r20}.

8,9. To exclude redundant elements, it is necessary to analyze the rows of Mr:

r2: 0 1 0 0 0 0 0 0 0 0 1 0

r3: 0 0 0 0 1 1 0 0 0 0 0 1

r4: 0 0 1 0 1 0 1 0 0 0 0 0

r17: 0 0 0 0 0 0 0 1 0 1 1 0

r19: 1 0 0 0 0 0 0 0 0 0 0 0

r20: 0 0 0 1 0 0 0 0 1 0 1 0

Each row of Mr is important. Each row contains the element 1, which is the only one in
the corresponding column of Mr. Deleting at least one element from P’(Mr), we’ll obtain a
set, which is not the shortest covering of the BM Mr.

We conclude that our P’(Mr) ={ r2, r3, r4, r17, r19, r20}= P(M) is the shortest covering of
the initial 20×12 matrix M.

4. An interesting option of the parallel algorithm COVMB

We can propose also the option of the parallel algorithm COVMB(M;P(M)) for finding
the optimal covering of a m×n Boolean matrix.

The algorithm COVMB’(M;P(M)) finds the solution performing the following 7 steps:

Parallel constructing of the shortest coverings of large Boolean matrices 35

1) Partitioning the initial matrix M into T matrices M1, M2 ,..., MT

Similarly as in p.1 of the algorithm COVMB(M;P(M)), the control processor p0
partitions the m × n matrix M into blocs of rows (row minors) with the help of the algorithm
A1(M; M1, M2,..., MT).

After that p0 sends the q × n matrices M1, M2 ,..., MT to processing processors p1,…,pT
as input data. The transition to p. 2.

2) Parallel construction of the special (q+1) × n matrices Mi’

Each processing processor pi , with i ∈ {1,2,…,T}, by using the algorithm A2M(Mi;
Mi’), first executes the logical summation of rows in the matrix Mi, where i ∈ {1,2,…,T},
with the help of the operation disjunction. Then pi analyzes the vector si== ri1 ∨ ri2 ∨…∨
riq , where rij is a row of the matrix Mi. If si =11…1, then the process of finding the shortest
covering of the Boolean m×n matrix M boils down to the finding of the shortest covering of
the Boolean q×n matrix Mi, where q ≤ m-[m/T]*(T-1). In this case, the processing processor
pi sends Mi’ = Mi to p0 and moves to p. 3. Otherwise, it constructs the (q+1) × n matrix
Mi’. The processor pi inverts the vector si and writes ¬ si into the matrix Mi as an
additional row (r0 = ¬ si) to complete the construction of a special matrix Mi’. After that pi
sends Mi’ to p0 and moves to p. 3.

3) Preparation of data for processing processors

The control processor p0 prepares the data for processing processors, using the algorithm
A3(Mi, Mi’; Mr, M1’,…, MT’).

If Mi’ = Mi , the control processor p0 puts Mr:= Mi and moves to p. 6.

Otherwise, it sends Mi’ to pi and moves to p. 4.

 4) Parallel finding of the shortest coverings of the matrices Mi ’

Each processing processor pi , with i ∈ {1,2,…,T}, by using the sequential algorithm
SECNOP(Mi’;P(Mi’)), finds the shortest covering of the special (q+1) × n matrix Mi’.

After that pi sends the solution (the shortest covering P(Mi’)) to the control processor p0
and moves to p. 5.

5) Construction of the covering P'(Mr)

Similarly as in p.7 of the algorithm COVMB(M;P(M)), by using the algorithm
A5(P(M1’),…, P(MT’); P’(Mr), Mr), the control processor p0 adds together the solutions
obtained by the processing processors p1, p2 ,…, pT, deletes the item r0, builds the Boolean
matrix Mr and constructs the covering P'(Mr) ⊆ P'(M)= P(M1’) ∪ ... ∪ P(MT’).

The transition to p. 6.

6) The finding of the shortest coverings of the matrix Mr

36

S. Novikov

The control processor p0 and processing processors p1,…, pk by using the parallel
algorithm PSECNOP(Mr; P(Mr)), finds the shortest covering P(Mr) of the t × n matrix Mr,
where t= | P’(Mr)| < m, k≤ Max(t,n) , and puts P(Mr)=P(M). The transition to p. 7.

 7) The ending of the computing

The control processor p0 ends the finding the shortest covering P(M) of our initial
Boolean m× n matrix M.

The parallel algorithm COVMB’ for finding the shortest covering of a Boolean matrix of
large dimension using rows-decomposition implements the following computer schedule:

 H(COVMB’)=((A1,p0),(A2M,p1,…,pT), (A3,p0), (SECNOP,p1,…,pT), (A5,p0),
(PSECNOP, p0 ,p1,…, pk)).

Using the parallel algorithm COVMB’ for considered above the 20 × 12 matrix M, we
obtain P(M1’)={r0, r2, r3, r4}, P(M2’)={ r0, r7, r8}, P(M3’)={ r0, r11, r12, r13}, P(M4’)={ r0,
r17, r19, r20 } and P’(M)={r2, r3, r4, r7, r8, r11, r12, r13, r17, r19, r20 }. To eliminate the
redundant elements from the P’(M), it is necessary to find the shortest covering of the
Boolean 11 × 12 matrix Mr. As a result, we obtain P(M)={ r3, r4, r7, r8, r11, r20}.

5. Conclusion

The computational complexity of the NP-hard problem of finding the shortest covering of
a m × n Boolean matrix equals)2(mO .

Labour-consuption of an algorithm, or time complexity, is estimated by the number of
conditional elementary operations to be performed to solve the problem. For our problem, by
conditional elementary operations one usually understands the disjunction, conjunction and
comparison of n-component Boolean vectors.

The decomposition of an initial large m × n Boolean matrix on row minors allows to
reduce finding of the shortest covering of the large Boolean matrix to finding the shortest
coverings of several Boolean matrices with smaller sizes.

The proposed parallel algorithms COVMB and COVMB’, which use rows-
decomposition, are particularly effective in relation to tight Boolean matrices.

The finding of the shortest covering for some tight Boolean m × n matrix may be reduced
to the finding the shortest covering of one corresponding Boolean [√m] × n matrix.

According to the algorithm COVMB, we must build shortest coverings for l < T special
matrices M’i1, ..., M’il only. This reduces the cost of the main task. The advantages of the
COVMB algorithm should also include the ability to obtain not one but several solutions of
the main task.

The COVMB' algorithm is simpler because it does not require to build the auxiliary
Boolean matrix M* and to find the corresponding shortest covering. By using the COVMB',

Parallel constructing of the shortest coverings of large Boolean matrices 37

it is required to build the shortest coverings for all (q+1)× n matrices M1’, ..., MT’. All this
makes possible to find a more effective solution.

Thus, we can conclude that the algorithms COVMB and COVMB’ are competitive.

References

1. A. Zakrevskij, Yu. Pottosin, L. Cheremisinova. Combinatorial Algorithms of Discrete
Mathematics. -Ed. A. Keevalik.- Tallin: TUT Press, 2008, 193 pages.

2. V.S. Ponomarenko, S.V. Listrovoj. Metod resheniya zadachi o minimal'nom pokrytii kak
sredstvo planirovaniya v GRID. Problemy upravleniya. 2008, t. 3, pp. 78–84 (in Russian).

3. Leonchik P.V. Algoritm pokrytiya razrezhennyh bulevyh matric. Informatika, 2007, 2,
pp. 53-61 (in Russian).

4. Novikov S.V. Rasparallelivanie vychislenij pri reshenii dvuh zadach postroeniya
optimal'nyh pokrytij. Vestnik Grodnenskogo universiteta, Grodno, seriya 2, 1(92),
2010, pp. 30-36 (in Russian).

5. Adam Adamus. Równoległy program znalezienia minimalnego pokrycia macierzy
Boole’a o dużych rozmiarach. Praca magisterska. Akademia Podlaska, Siedlce, 2010, 99
pages.

6. Sergey Novikov, Adam Adamus. Investigations of the efficiency of a parallel program
for construction of the shortest covering of a Boolean matrix. Studia Informatica,
Systemy i technologie informacyjne, VOLUME 1-2(14)2010, Wyd. UPH, Siedlce,
2011, pp. 67-76.

7. Adrian Nogal. Algorytm znalezienia minimalnego pokrycia macierzy Boole’a i
implementacja równoległego programu na komputerze wysokiej wydajności. Praca
dyplomowa inżynierska. Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach,
Siedlce, 2014, 40 pages.

