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Abstract: The paper presents two options of the parallel algorithm for finding the shortest covering of a 
large Boolean matrix, where  the decomposition of the initial matrix into  matrices of  smaller sizes is 
based on the partitioning of rows. The parallel algorithm COVMB contains  sequential algorithms for 
partitioning of initial m × n Boolean matrix on submatrices, building special matrices, summering of  
the  shortest coverings of special Boolean matrices with smaller sizes as well as the  sequential 
algorithm SECNOP for finding the shortest coverings of  smaller Boolean matrices.  
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1. Introduction and preliminary observations 

The NP-hard  shortest covering problem can be expressed as follows. It is required to find 
such a subset of rows of the given Boolean m × n matrix (BM), where m ≥ n, that each of the 
columns has one in some row from this subset, the number of these rows being minimal [1]. 

The algorithms and the corresponding computer programs for solving the shortest 
covering problem are widely applied in the theory of complex systems, computing systems 
and  also for planning of resources distribution in GRID [2]. That's why  various algorithms  
(Petric’s method, greedy algorithm,  minimax algorithm and other [1]) have been  proposed. 
Corresponding computer programs were developed and used in the design of discrete devices 
(ESPRESSO-II, GANP, Tie) [3]. 

As a rule, the effectiveness of the proposed algorithms and computer programs depends 
on the specific of input data. 

To particular, the so-called sparse BMs, were researched sparse BM, where  the   
probability of the occurrence of 1s among the elements of BM is less than 0,05. The 
sequential programs for  finding of the shortest coverings of sparse Boolean matrices were 
developed and published in [3]. 

Unfortunately,  most of the  BMs are not sparse. This fact implies continuing development 
of algorithms and  computer programs for  finding the shortest covers of large Boolean 
matrices with different properties. 

To solve a NP-hard  task of large dimension, approximate heuristic algorithms are used. 
They do not guarantee  an optimality but allow to get decisions sufficiently close to the 
optimal ones in a reasonable time. 
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 However, an even approximate algorithm requires too much computing for solving of the 
NP- hard large-scale problems. Therefore increasing the efficiency of solutions of the above 
mentioned tasks by using modern multiprocessor computing systems (computer clusters) 
arises as an emergent problem. 

A computer cluster consists of a set of loosely or tightly connected computing processors   
 that work together for solving    tasks of smaller dimensions. The computing processors   
send the  obtained results to the control processor in order to "summarize" them into a task 
solution of larger dimension.  Computer clusters are controlled and scheduled by special 
software. 

In order to bring solving difficult problem  of large size to solving several tasks of smaller 
sizes using a computer cluster it is necessary to  solve the problem of decomposition of input 
data and to develop a parallel algorithm for solving the problem on the  cluster. 

In this way, along with a parallel algorithm, an abstract computing system with one  
control processor p0 and several computing processors pi, are proposed. The sequential 
algorithms are  components of our  parallel algorithm. The sequential algorithms in the 
parallel algorithm interact in accordance with the timetable drawn up (computer schedule). 

To address the issue of finding the shortest covering of large Boolean matrices using 
decomposition of  initial large matrices into matrices of smaller sizes, a parallel algorithm was 
proposed by the author [4]. This  parallel algorithm is based on the partitioning of the Boolean 
matrix into  blocks of columns (column minors). A column minor of a matrix is the part of the 
matrix formed by some subset of columns. 

The corresponding parallel program POKRMB was written by Adam Adamus in C++ in 
the integrated development environment Dev-C++ version 4.9.9.2 for Windows and Linux 
systems using environment MPI  to communicate between nodes of our cluster [5]. 

After the testing of the program  (at first on a typical PC, then on the cluster of the  
Siedlce University of Natural Sciences and Humanities)  the efficiency of our parallel 
program POKRMB was researched. The results of these studies are published in [6]. 

We propose two options of a parallel algorithm for finding the shortest covering of a large 
Boolean m × n matrix M  based on other principles. The decomposition of the initial large 
matrix into matrices of smaller sizes is based on the partitioning of rows. 

 The parallel algorithm COVMB uses  the  sequential algorithm SECNOP for finding the 
shortest coverings of  smaller Boolean matrices. The algorithm SECNOP   was proposed and 
programmed by Adrian Nogal in C++ [7]. The corresponding program SECNOP   proved to 
be more effective than the program POKRMB for finding the shortest coverings of  smaller 
Boolean matrices [7]. 

 

2. Parallel algorithm COVMB 

To parallel the computations with the help of the parallel algorithm COVMB(M;P(M))  it 
is necessary to perform the following 11 steps: 
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1) Partitioning  the initial matrix M into matrices M1, M2 ,..., MT 

The control processor p0 partitions the Boolean m × n matrix M  into T blocks of rows 
(row minors) with the  help of  the algorithm A1(M; M1, M2,..., MT). A row minor of a 
matrix is the part of the matrix formed by some subset of rows.  In other words the row 
minors of the m×n Boolean matrix M  are its submatrices M1, M2,..., MT of smaller sizes q × 
n, where q=[m/T]  for the matrices    M1, M2,..., MT-1  and  q=m-[m/T]*(T-1)   for the matrix 
MT. It’s  conveniently to put T = [√m ]. 

Then  the control processor p0 sends the matrices M1, M2 ,..., MT to processing processors  
p1,…,pT  as input data. The transition to p. 2.  

2) Parallel summation rows in the matrices M1, M2 ,..., MT 

Each processing processor pi, by  using the algorithm A2(Mi; si ), executes the logical 
summation  of rows in  the matrix Mi, where i ∈ {1,2,…,T}, with the  help of  the operation 
disjunction. The result of this summation is the n-component Boolean vector  si = ri1 ∨ ri2 
∨…∨ riq , where rij  is a row of the matrix Mi . 

The processing processor pi sends si  to the control processor p0.  

The transition to p. 3.  

3) Building  the support Boolean matrix M* 
The control processor p0, using the algorithm A3(s1, s2, ..., sT; M*),  firstly analyzes the 

vectors s1, s2,…, sT   obtained from the processing processors  p1, p2 ,…, pT .   
If each component of the vector si  ( corresponding to the matrix Mi ) is equal to 1, then 

the process of finding the shortest covering of the Boolean m× n matrix M boils down to 
finding  the shortest covering of the Boolean q× n matrix Mi, where q ≤ m-[m/T]*(T-1). After 
that  p0  puts  Mq:= Mi and moves to  p. 10. 

However, this situation is a particular incident, which may happen for  “tight” Boolean 
matrices.  

In the general case, the control processor p0 builds the support T× n matrix M*, the rows 
which are vectors s1, s2, ..., sT, sends M*  to the processing processor p1   and moves to  p. 4. 

4) Finding of  the shortest covering of the support Boolean matrix M* 

The processor p1, using the sequential algorithm   SECNOP(M*; P(M*)), finds the 
shortest covering of the Boolean T× n matrix M*, where T = [√m ].  

The result of the implementation of the algorithm SECNOP(M*; P(M*)) is the subset of 
row names from M*.  The elements of P(M*) determine what q× n matrices of the much 
smaller sizes (in comparison with the size of MB M= M1 ∪  M2 ∪   ...  ∪  MT )  is necessary  
to explore to find the shortest covering of the Boolean matrix M.   The program SECNOP   
finds the shortest covering of the Boolean 16000× 16000 matrix [7]. 

Obviously, | P(M*) | = l ≤  T=[√m ].  

The transition to p. 5.  
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5) Construction of the special (q+1) × n  matrices Mi’ 

The processor p0, using the algorithm A4(P(M*), M*,M1, M2,..., MT; Mi1’, Mi2’,…, Mil’ 
), constructs the (q+1) × n matrices Mi1’, Mi2’,…, Mil’.   

To construct the matrix Mi’,  p0   first finds the corresponding Boolean vector si  in the M*  
and the corresponding Boolean q× n matrix Mi. After that  p0  inverts the vector  si  and writes 
the  ¬ si   to the matrix Mi  as the additional row (r0 = ¬ si )  to complete the construction of 
this special matrix Mi’. At last,   p0  sends  the  (q+1) × n matrices  Mij’ to processing 
processors  p1, p2 ,…, pl. The transition to p. 6.  

  6) Parallel finding of  the shortest coverings of  the matrices Mi’   

Each processing processor pi with i  ∈  { 1,2,…,l }, by    using the sequential algorithm  
SECNOP(Mi’;P(Mi’)),  finds the shortest covering  of the special (q+1) × n  matrix Mi’.  

After that pi sends  the solution ( the shortest covering P(Mi’)) to the control processor 
and moves to  p. 7. 

7) Summation of shortest coverings  of the matrices Mi’  

By using the algorithm  A5(P(M1’),…, P(Ml’); P’(M), Mr, r1,…, rt), the processor p0  
adds together the solutions obtained by the processing processors  p1, p2 ,…, pl , i.e. P’(M) =  
P(M1’) ∪ ... ∪ P(Ml’), and deletes the item r0  from it.  The covering P'(M) may contain 
redundant elements (row numbers of  the initial matrix M). To eliminate redundant elements 
from P'(M), the processor p0  constructs the  Boolean matrix Mr. The rows of the matrix Mr 
are the rows of the initial matrix M with row numbers included in the set P'(M). The 
processor p0  writes a new row r* with the number j(r*) from P’(M) into   Mr, if the condition 
r* ∧  ri ≠  r*  for each  row ri from  Mr  is satisfied.  Otherwise,    p0   removes   j(r*) from 
the set P'(M)  and does not writes  the row r*  into   Mr.  The Boolean t × n  matrix Mr  will 
be used for the reduction of the redundant elements in the covering of  M. The remaining 
elements of the set P’(M)  form the set P’(Mr). Obviously, P’(Mr) ⊆  P’(M)  and |P’(Mr)|=t. 

Then the  control processor p0 sends to the  processing processors  p1, p2 ,…, pt  the 
following   input data: 1) the set P'(Mr), 2) the t× n matrix  Mr, 3) the row name ri  for 
checking of  the redundancy of the corresponding  element of  P'(Mr). The transition to p. 8.  

8) Parallel elimination of  redundant elements from P'(Mr)  

An element of P'(Mr) is redundant for building the shortest covering of  the matrix Mr, if 
after cancellation the corresponding row from Mr  all columns of  Mr’ can be covered by the 
disjunction of  the remaining rows. 

Each processing processor pi, where i  ∈  {1,2,…,t},    using the sequential algorithm  
A6(P’(Mr), Mr, ri; Pi(Mr)),  first modernizes the  matrix Mr  by replacing each 1s by  0s in 
the row ri . Then it executes logical summation  rows in  the modernized matrix Mr’ with the  
help of  the operation disjunction. The result of this summation is the n-component Boolean 
vector  si = ri1 ∨ ri2 ∨…∨ rit .  
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After that pi  analyzes the  vector  si. If some component of  the  vector  si   is equal to 0, 
then the corresponding to  ri  element of the set P’(Mr)  is not redundant. In this case, the 
processor pi   sends the set Pi(Mr)= P’(Mr) to the  control processor p0   and moves to  p. 9. 

Otherwise, if  si =11…1, the corresponding to the ri  element of the set P’(Mr)  is 
redundant. The processor pi  removes it from the set P’(Mr)  and selects a new row r* from 
Mr’. Then pi  modernizes   Mr’  by replacing each 1 by  0 in the row r*, summarizes the rows 
of the modernized matrix Mr’’ and analyzes the  new vector  si* . 

If si* =11…1, then  the corresponding to  r*   element of the set P’(Mr)  is redundant and 
it must be removed from the set P’(Mr). After that  pi selects the new row r* from Mr’’. 

Otherwise, if   some component of  the  vector  si*   is equal to 0, then the corresponding 
to  r*  element of the set P’(Mr)  is not redundant and it must be in the set P’(Mr). In this 
case,  pi  “restores” each 1s  in  r*  and selects the new row r* from Mr’. 

This process ends when all t the rows of the  matrix Mr are investigated. Then  pi  sends 
the set Pi(Mr) ⊆  P’(Mr) to the  control processor p0   and moves to  p. 9. 

9) The finding the  shortest covering of the initial Boolean matrix M 

The control processor p0, using the algorithm A7(P1(Mr), P2(Mr),…, Pt(Mr); P(M)), 
where t= | P’(M)| < m,  selects the shortest covering  from   the obtained  sets P1(Mr), 
P2(Mr),…, Pt(Mr).  The transition to p. 11. 

10) The finding the shortest covering of the tight  initial Boolean matrix  

By using the sequential algorithm SECNOP(Mq; P(M)),  the control processor p1 finds 
the shortest covering  of the Boolean matrix Mq, i.e. the set P(Mq), and puts  P(Mq)=P(M). 
The transition to p. 11.  

11) The ending of the computing 

The  control processor p0 ends the finding the shortest covering of our initial Boolean m× 
n matrix M.   

The proposed  parallel algorithm COVMB for finding the shortest covering of a large 
Boolean matrix using rows-decomposition implements the following  computer schedule: 

H(COVMB)=((A1,p0),(A2,p1,…,pT),(A3,p0),( SECNOP,p1),(A4,p0), (SECNOP, p1,…,pl 
),  (A5,p0), (A6, p1, p2 ,…, pt), (A7, p0), (SECNOP,p1 ), (A8, p0)) , 

where a record (Aj,pi)  indicates that the processor pi   performs the algorithm Aj; A1 -  
algorithm for  partitioning  of the initial matrix M into T submatrices; A2 -  algorithm for 
logical summation of rows in the matrices; A3 -  algorithm for  building of  the support 
Boolean matrix M*;  SECNOP -  sequential algorithm for finding the optimal covering    of a 
Boolean matrix;  A4 -  algorithm for construction of the special (q+1) × n  matrices Mi’; A5 - 
algorithm for summation   shortest covers  of the special matrices (P’(M) =  P(M1

’) ∪ ... ∪ 
P(Ml’), construction of the matrix Mr and preparation of the  data for elimination of the 
redundant elements; A6 – algorithm for elimination of the redundant elements from the 
covering P'(Mr); A7 – algorithm for selecting the shortest coverings  from   P1(Mr), 
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P2(Mr),…, Pt(Mr), A8 – algorithm for ending the finding the shortest covering of our initial 
Boolean m× n matrix M.   

 

3.  Example  

Let us find the shortest covering  of  the 20×12  matrix  M   

           c1  c2  c3  c4   c5   c6  c7    c8  c9  c10 c11 c12 

             r1:     0   0   0   0   1   0   0   0   0   0   1   0      

             r2:     0   1   0   0   0   0   0   0   0   0   1   0    

             r3:     0   0   0   0   1   1   0   0   0   0   0   1   

             r4:     0   0   1   0   1   0   1   0   0   0   0   0   

             r5:     0   0   0   0   0   1   0   0   0   0   1   0   

             r6:     0   0   0   0   1   0   0   0   0   0   0   0   

             r7:     1   0   1   0   0   0   0   0   0   0   0   0   

             r8:     0   1   0   0   1   0   0   1   1   0   0   0   

             r9:     0   0   0   0   0   0   0   0   1   0   0   0  

             r10:   0   0   1   0   1   0   0   0   1   0   0   0   

             r11:   0   0   1   0   1   0   0   0   0   1   0   0   

             r12:   1   0   0   0   0   1   0   0   1   0   0   0   

             r13:   0   0   0   0   0   1   0   1   0   0   1   0   

             r14:   1   0   1   0   0   0   0   0   1   0   0   0   

             r15:   1   0   0   0   1   0   0   0   0   0   0   0   

             r16:   0   0   0   0   0   0   0   0   1   0   0   0   

             r17:   0   0   0   0   0   0   0   1   0   1   1   0   

             r18:   0   0   0   0   0   0   0   0   1   1   0   0   

             r19:   1   0   0   0   0   0   0   0   0   0   0   0   

             r20:   0   0   0   1   0   0   0   0   1   0   1   0  
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1.  The control processor performs  a partition  of M into four  blocks  and sends the 
matrices M1, M2, M3, M4   to the  processing processors  p1, p2, p3 ,p4.  

M1                                                                                M2 

r1:   0  0  0  0  1  0  0  0  0  0  1  0       r6:     0  0   0   0   1   0   0   0   0   0   0   0   

r2:   0  1  0  0  0  0  0  0  0  0  1  0       r7:     1  0   1   0   0   0   0   0   0   0   0   0   

r3:   0  0  0  0  1  1  0  0  0  0  0  1       r8:     0  1   0   0   1   0   0   1   1   0   0   0   

r4:   0  0  1  0  1  0  1  0  0  0  0  0        r9:    0  0   0   0   0   0   0   0   1   0   0   0  

r5:   0  0  0  0  0  1  0  0  0  0  1  0        r10:   0  0   1   0   1   0   0   0   1   0   0   0   

M3                                                                                              M4 

r11: 0  0  1  0  1  0  0  0  0  1  0  0          r16: 0   0  0   0   0   0   0   0   1   0   0   0   

r12: 1  0  0  0  0  1  0  0  1  0  0  0          r17: 0   0  0   0   0   0   0   1   0   1   1   0   

r13: 0  0  0  0  0  1  0  1  0  0  1  0          r18: 0   0  0   0   0   0   0   0   1   1   0   0   

r14: 1  0  1  0  0  0  0  0  1  0  0  0          r19: 1   0  0   0   0   0   0   0   0   0   0   0   

r15: 1  0  0  0  1  0  0  0  0  0  0  0          r20: 0   0  0   1   0   0   0   0   1   0   1   0  

 2. Each processing processor pi,  where  i ∈{1,2,…,4},  executes the logical summation of 
the rows  of the matrix Mi, using the operation disjunction, and  sends  the vector  si to  p0 . 

s1   = r1 ∨ r2 ∨ r3 ∨ r4 ∨ r5      =   0 1 1 0 11 1 0 0 0 1 1                    

s2  = r6 ∨ r7 ∨ r8 ∨ r9 ∨ r10       =  1 1 1 0 1 0 0 1 1 0 0 0         

s3= r11 ∨ r12 ∨ r13 ∨ r14 ∨ r15  =   1 0 1 0 1 1 0 1 1 1 1 0       

s4  = r16 ∨ r17 ∨ r18 ∨ r19 ∨ r20  =1 0 0 1 0  0 0 1 1 1 1 0     

3. The  control processor p0  constructs the 4×12 matrix M* : 

s1   0  1   1   0   1   1   1   0   0   0   1   1     

s2   1  1   1   0   1   0   0   1   1   0   0   0    

s3   1  0   1   0   1   1   0   1   1   1   1   0         

s4   1  0   0   1   0   0   0   1   1   1   1   0       

4. The processor  p1  finds the shortest covering  of the Boolean 4× 12 matrix M*. 

 As a result, we obtain    P(M*)=  {s1, s4} .      
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5. The control processor  p0  constructs  the matrices   M1’  and M4’,  using    matrices      
M1, M4  and vectors  s1 ,  s4. 

M1’                                                               M4’ 

r0:   1  0   0   1   0   0   0   1   1   1   0   0         r0:   0  1  1  0  1  1  1  0  0  0  0  1       

 r1:  0  0   0   0   1   0   0   0   0   0   1   0         r16:  0  0  0  0  0  0  0  0  1  0  0  0   

r2:   0  1   0   0   0   0   0   0   0   0   1   0         r17:  0  0  0  0  0  0  0  1  0  1  1  0   

r3:   0  0   0   0   1   1   0   0   0   0   0   1         r18:  0  0  0  0  0  0  0  0  1  1  0  0   

r4:   0  0   1   0   1   0   1   0   0   0   0   0          r19: 1  0  0  0  0  0  0  0  0  0  0  0   

r5:   0  0   0   0   0   1   0   0   0   0   1   0          r20: 0  0  0  1  0  0  0  0  1  0  1  0  

6. The processing processors  p1  and   p4     find the   shortest coverings  of     M1’ and M4’ 
and obtain  P(M1’)={ r0 , r2, r3, r4}, P(M4’)={ r0 , r17, r19, r20}. 

7. The  control processor p0   adds together P(M1’) and P(M4’) and deletes the item r0  
from it. We have P'(Mr) =  P’(M)={ r2, r3, r4, r17, r19, r20}.  

8,9. To exclude  redundant elements,  it is necessary to analyze the rows of Mr: 

r2:   0  1   0   0   0   0   0   0   0   0   1   0    

r3:   0  0   0   0   1   1   0   0   0   0   0   1   

r4:   0  0   1   0   1   0   1   0   0   0   0   0   

r17:  0  0   0   0   0   0   0   1   0   1   1   0   

r19:  1  0   0   0   0   0   0   0   0   0   0   0   

r20:  0  0   0   1   0   0   0   0   1   0   1   0  

Each row of Mr is important. Each row contains the element 1, which is the only one  in 
the corresponding column of  Mr. Deleting at least one element from P’(Mr), we’ll obtain  a 
set, which is not the   shortest covering  of the  BM    Mr. 

We conclude that our  P’(Mr) ={ r2, r3, r4, r17, r19, r20}= P(M) is the shortest covering  of 
the  initial 20×12  matrix  M. 

 

4.  An interesting option of the parallel algorithm COVMB 

We can propose also the option of the parallel algorithm COVMB(M;P(M))  for finding 
the optimal covering    of a m×n Boolean matrix. 

The algorithm COVMB’(M;P(M)) finds the solution performing the following 7 steps: 
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1) Partitioning  the initial matrix M into T matrices M1, M2 ,..., MT 

Similarly as in p.1 of the algorithm  COVMB(M;P(M)),  the control processor p0 
partitions the m × n matrix M  into blocs of rows (row minors) with the  help of  the algorithm 
A1(M; M1, M2,..., MT).  

After that p0 sends the q × n matrices M1, M2 ,..., MT  to processing processors  p1,…,pT  
as input data.   The transition to p. 2.  

2) Parallel construction of the special (q+1) × n  matrices Mi’ 

Each processing processor pi , with i  ∈  {1,2,…,T}, by   using the algorithm  A2M(Mi; 
Mi’),  first executes the  logical summation of  rows in  the matrix Mi, where i ∈ {1,2,…,T}, 
with the  help of  the operation disjunction.  Then   pi  analyzes the vector si== ri1 ∨ ri2 ∨…∨ 
riq , where rij  is a row of the matrix Mi. If si  =11…1, then the process of finding the shortest 
covering of the Boolean m×n matrix M boils down to the finding of the shortest covering of 
the Boolean q×n matrix Mi, where q ≤ m-[m/T]*(T-1).  In this case, the processing processor 
pi  sends Mi’ = Mi  to   p0  and  moves to  p. 3. Otherwise, it  constructs the (q+1) × n matrix 
Mi’. The processor pi    inverts the vector  si and writes   ¬ si   into the matrix Mi  as an 
additional row (r0 = ¬ si  )  to complete the construction of a special matrix Mi’. After that  pi 
sends  Mi’  to p0  and  moves to  p. 3. 

3) Preparation of   data for processing processors 

The control processor p0  prepares the data for processing processors, using  the algorithm  
A3(Mi, Mi’; Mr, M1’,…, MT’ ). 

If  Mi’ = Mi , the  control processor p0   puts Mr:= Mi  and moves to  p. 6.  

Otherwise, it  sends  Mi’  to pi  and  moves to  p. 4. 

 4) Parallel finding of  the shortest coverings of  the matrices Mi ’   

Each processing processor pi , with i  ∈  {1,2,…,T}, by   using the sequential algorithm  
SECNOP(Mi’;P(Mi’)), finds the shortest covering  of the special (q+1) × n  matrix Mi’.  

After that  pi sends  the solution ( the shortest covering P(Mi’)) to the control processor p0 
and moves to  p. 5. 

5) Construction of the covering P'(Mr)  

Similarly as in p.7 of the algorithm  COVMB(M;P(M)),  by using the algorithm  
A5(P(M1’),…, P(MT’); P’(Mr), Mr), the control processor p0  adds together the solutions 
obtained by the processing processors  p1, p2 ,…, pT, deletes the item r0, builds  the  Boolean 
matrix Mr  and constructs the covering P'(Mr) ⊆ P'(M)= P(M1’) ∪ ... ∪ P(MT’). 

The transition to p. 6.  

6) The finding of  the shortest coverings of  the matrix  Mr 
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The control processor p0  and processing processors p1,…, pk by using the parallel 
algorithm PSECNOP(Mr; P(Mr)), finds the shortest covering  P(Mr) of the t × n matrix Mr, 
where t= | P’(Mr)| < m, k≤ Max(t,n) , and  puts  P(Mr)=P(M). The transition to p. 7. 

 7) The ending of the computing 

The  control processor p0  ends the finding the shortest covering P(M) of our initial 
Boolean m× n matrix M.   

The parallel algorithm COVMB’ for finding the shortest covering of a Boolean matrix of 
large dimension using rows-decomposition implements the following  computer schedule: 

           H(COVMB’)=((A1,p0),(A2M,p1,…,pT), (A3,p0),  (SECNOP,p1,…,pT), (A5,p0),  
(PSECNOP, p0 ,p1,…, pk)). 

Using the parallel algorithm COVMB’ for considered above  the 20 × 12  matrix  M, we 
obtain P(M1’)={r0, r2, r3, r4}, P(M2’)={ r0, r7, r8}, P(M3’)={ r0, r11, r12, r13}, P(M4’)={ r0, 
r17, r19, r20 }  and P’(M)={r2, r3, r4, r7, r8, r11, r12, r13, r17, r19, r20 }. To eliminate the 
redundant elements from the P’(M), it is necessary to  find  the shortest covering of the 
Boolean 11 × 12  matrix Mr. As a result, we obtain  P(M)={ r3, r4, r7, r8, r11, r20}.  

 

5.  Conclusion 

The computational complexity of the NP-hard problem of finding the shortest covering  of  
a m × n Boolean matrix equals   )2( mO .  

Labour-consuption of an algorithm, or time complexity, is estimated by the number of 
conditional elementary operations to be performed to solve the problem. For our problem, by 
conditional  elementary operations one usually understands the disjunction, conjunction and 
comparison  of n-component  Boolean vectors. 

The decomposition of  an initial large  m × n Boolean matrix  on row minors  allows to 
reduce finding of the shortest covering of the large Boolean matrix to finding the shortest 
coverings of several Boolean matrices with smaller sizes. 

The proposed  parallel algorithms  COVMB  and COVMB’, which use rows-
decomposition, are particularly effective in relation to tight Boolean matrices.  

The finding of the shortest covering for some tight Boolean m × n matrix may be reduced 
to the finding the shortest covering of one corresponding Boolean [√m ]  × n matrix. 

According to the algorithm COVMB, we must build shortest coverings for l < T special  
matrices M’i1, ..., M’il only. This reduces the cost of the main task.   The advantages of the 
COVMB algorithm should also include the ability to obtain not one but several solutions of 
the main task. 

The COVMB' algorithm is simpler because it does not require to build the auxiliary 
Boolean matrix M*  and to find  the corresponding shortest covering. By using the COVMB', 
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it is required to build the shortest coverings for all (q+1)× n matrices M1’, ..., MT’. All this 
makes possible to find a more effective solution. 

Thus, we can conclude that the algorithms COVMB  and COVMB’ are competitive. 
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