
STUDIA INFORMATICA
Nr 1-2 (25) Systems and information technology 2021

Piotr ŚWITALSKI1,
Arkadiusz BOLESTA1

1 Siedlce University of Natural Sciences and Humanities
Faculty of Exact and Natural Sciences
Institute of Computer Science
ul. 3 Maja 54, 08-110 Siedlce, Poland

Firefly algorithm applied to the job-shop scheduling problem

DOI: 10.34739/si.2021.25.05

Abstract. The job shop scheduling problem (JSSP) is one of the most researched scheduling problems.
This problem belongs to the NP-hard class. An optimal solution for this category of problems is rarely
possible. We try to find suboptimal solutions using heuristics or metaheuristics. The firefly algorithm is
a great example of a metaheuristic. In this paper, this algorithm is used to solve JSSP. We used some
benchmarking JSSP datasets for experiments. The experimental program was implemented in the aitoa
library. We investigated the optimal parameter settings of this algorithm in terms of JSSP. Analysis of
the experimental results shows that the algorithm is useful to solve scheduling problems.

Keywords. scheduling, job shop, firefly algorithm, aitoa library

 Introduction

1.1. Scheduling problem

Scheduling in computer science is often referred to as NP-hard problems. The nature of this
problem is exponential with an increasing number of tasks and machines. In scheduling, we
decide about allocation of a set of tasks (activities) to available resources (e.g. machines or
processors). The main problem of scheduling is to find the best possible solution in an

88

P. Świtalski, A. Bolesta

acceptable time. This solution must fulfill user criteria, e.g. order of execution of tasks or
demand to execute tasks on dedicated machines.

In job shop scheduling problem (JSSP) we consider a set of independent 𝑛 ∈ ℕ jobs 𝐽 ={1, 2, … 𝑛}, and factory which has 𝑚 ∈ ℕ machines 𝑀 = {1, 2, … 𝑚}. Each job is composed of
operations 𝑂 = {1, 2, … , 𝑚}. There is a sequence of operations in job 𝑗. The single 𝑜௝௜ operation
of the job 𝑗 must be executed on the machine 𝑖. This assignment needs 𝑡௝௜ ∈ ℕ time units for
completion. We assume that operation is performed on machine without interruption during
execution. Operations can be run on 𝑚 machines in a different order. The main purpose of the
problem is to find the best solution, a schedule that consists of assigning all 𝑛 jobs to 𝑚
machines fulfilling the optimisation criterion(s). We accept only feasible solutions which must
meet the following conditions:

• operations of each job must be assigned to an appropriate machine and executed
completely,

• each operation must be executed by an uninterrupted time on a assigned machine,
• each machine must execute only one operation at a time,
• the precedence constraints must be respected [16].

The size of the search space (a number of schedules) ℤ is directly dependent on the number
of jobs 𝑛 and a number of machines 𝑚: ℤ = (𝑛!)௠ (1)

For 𝑛 = 2 jobs and 𝑚 = 4 machines we have (2!)ସ = 16 possible solutions (schedules).
The number of solutions grows drastically even as the number of machines or jobs increases
slightly. When an instance consists 𝑛 = 5 jobs and 𝑚 = 5 machines, a number of solutions
come up to 207 360 000.

89 Firefly algorithm applied to the job-shop scheduling problem

A solution can be represented as a Gantt chart. Below (see Fig. 1) an instance of JSSP with 𝑛 = 4 jobs and 𝑚 = 4 machines is presented on the Gantt chart.

Figure 1. Gantt chart for an instance of JSSP with 𝑛 = 4 jobs and 𝑚 = 4 machines. Source: [16]

Let us suppose that operations are processed in the following order:

• job 1: 𝑜ଵଵ, 𝑜ଵଶ, 𝑜ଵଷ, 𝑜ଵସ
• job 2: 𝑜ଶଵ, 𝑜ଶଶ, 𝑜ଶଷ, 𝑜ଶସ
• job 3: 𝑜ଷଵ, 𝑜ଷଶ, 𝑜ଷଷ, 𝑜ଷସ
• job 4: 𝑜ସଵ, 𝑜ସଶ, 𝑜ସଷ, 𝑜ସସ

Operations must respect precedence constraints. For example, the operation 𝑜௝ଵ must be
processed before 𝑜௝ଶ for the job 𝑗. We assume that machines have the same performance, which
means that processing time of the given operation is equal on each machine. In this example,
the operations need a given time (milliseconds) to be processed:

• 𝑡ଵଵ = 3, 𝑡ଵଶ = 2, 𝑡ଵଷ = 1, 𝑡ଵସ = 2
• 𝑡ଶଵ = 1, 𝑡ଶଶ = 3, 𝑡ଶଷ = 1, 𝑡ଶସ = 5
• 𝑡ଷଵ = 2, 𝑡ଷଶ = 4, 𝑡ଷଷ = 1, 𝑡ଷସ = 2
• 𝑡ସଵ = 2, 𝑡ସଶ = 1, 𝑡ସଷ = 3, 𝑡ସସ = 3

e.g. operation 𝑜ଵଵ needs 𝑡ଵଵ = 3 milliseconds to process by machine. As we can see (see Fig.
1), operations are assigned to machines. This assignment is feasible because we met all the
conditions defined above. The objective of the JSSP is to find the correct permutation of all
operations where time is minimized. In this case we minimize the makespan 𝐶௠௔௫.

90

P. Świtalski, A. Bolesta

Makespan is defined below:

𝐶௠௔௫ = max௜൫𝑂(𝑆𝑖)൯. (2)

Let us denote by 𝑆 as a schedule. By 𝑆௜ we denote the schedule on machine 𝑀. The
completion time of the operations on machine 𝑀௠ in schedule 𝑆௜ is denoted by 𝑂(𝑆௜). We
consider minimizing the maximum completion time on each machine 𝑀௠ across the system. In
this example, the makespan is equal to 20 (see Fig. 1), because the completion time of the last
executed operation occurred in machine 𝑀ଶ – this is the maximal time of all machines’
schedules.

1.2. Implementations of swarm algorithms in JSSP

The JSSP is extensively studied by many researchers. This problem is also considered in
the categories of swarm algorithms. Pongchairerks and Kachitvichyanukul in their work [11]
presented the particle swarm optimization (PSO) algorithm applied to JSSP. They considered
an optimization algorithm for JSSP with multipurpose machines. This is a modification of the
JSSP – operation has to be processed by exactly one machine from a set of machines. Lin and
at. [7] also proposed PSO to solve JSSP. However, they used a different way of representing a
particle. Instead of a simple conversion of values, they introduced several operators to modify
and improve the solution.

FA was also used in the optimization of JSSP. In work [5] the authors used this algorithm.
They encoded a firefly as a set of operations in the JSSP instance. Each operation was assigned
a real value. After that they sort ascendingly, thus the permutation of operations changes.
Finally, they checked the sequence of operations and repaired when the precedence constraints
were violated. Some researchers use hybrid methods. An example of this approach is presented
in [9]. The authors combined the Simulated Annealing and Firefly Algorithm for the JSSP.
Simulated annealing was used to identify optimal and near-optimal makespans for the JSSP and
FA as an optimization algorithm. The FA was used as well as for multi-objective JSSP. In [14]
the authors considered the combined makespan, mean flow time, and tardiness objective for
problems of various sizes. FA was likewise studied in different optimization problems. In the
work [15] the authors analyze different modifications made by the researchers. They were
concerned with parameter modification, modified search strategy, and change the solution
space. They also analyzed and compared the performance of the standard and modified versions
of the FA.

91 Firefly algorithm applied to the job-shop scheduling problem

 Firefly algorithm

The Firefly algorithm (FA) is a metaheuristic that is driven by the behavior of species in
nature. FA is a swarm-based algorithm introduced by Yang [17]. In this algorithm, a swarm of
fireflies communicate with each other by the light produced in a biochemical process called
bioluminescence. Communication is used to attract other fireflies. The firefly is lighter, the
attraction is higher. We must also take into account that the intensity of light decreases with
distance [15].

In terms of optimization problem we assume that each firefly codes a solution in a search
space. Fireflies are unisex, so the attractiveness of any firefly is not influenced in a different
way. Each firefly moves through the search space toward a brighter firefly in the neighborhood.
The brightness of the firefly is absorbed into the environment. The absorption is defined in Eq.
3:

𝛽 = 𝛽଴𝑒 ିఊ௥೔ೕమ , (3)

where:

• 𝛽଴ – attractiveness of the firefly at 𝑟 = 0,
• 𝛾 – light absorption coefficient,
• 𝑟௜௝ – distance between firefly 𝑖 and firefly 𝑗.

Each firefly updates its own position in space. Let us assume that firefly 𝑖 headed to firefly 𝑗.
The update of 𝑖-th firefly is defined as follow (Eq. 4): 𝑥௜௧ାଵ = 𝑥௜௧ + 𝛽଴𝑒 ିఊ௥೔ೕమ ൫𝑥௝௧ − 𝑥௜௧൯ + 𝛼௧𝜀௜௧, (4)

where:

• 𝑥௜௧ାଵ – next position of 𝑖-th firefly,
• 𝑥௜௧ , 𝑥௝௧ – actual position of 𝑖-th firefly and 𝑗-th firefly accordingly,

• 𝛼௧ – randomness strength,
• 𝜀௜௧ – a random vector.

Fireflies are updated until a termination criterion is met. Usually, this criterion is determined
by maximum number of iterations 𝐼𝑇𝐸𝑅. Below the algorithm is presented.

92

P. Świtalski, A. Bolesta

Listing 1. The pseudocode of the Firefly Algorithm. Source: [17]

Set parameters of the algorithm: 𝛼௧, 𝛽଴, 𝛾, 𝑁 – a number of fireflies, 𝐼𝑇𝐸𝑅 – maximum number of iterations
Randomly generate 𝑁 fireflies in search space
For 𝑡 = 1 to 𝐼𝑇𝐸𝑅

Compute the brightness 𝐼 of the firefly
Sort fireflies by their brightness

For 𝑖 = 1 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛
 If 𝐼௝ ൐ 𝐼௜
 Move the firefly 𝑖 in the direction of firefly 𝑗
 End if
End for

End for

End for

Calculate the best firefly and display the solution

In the first step of the algorithm (see Listing 1) initial parameters 𝛼௧, 𝛽଴, 𝛾, 𝑁,and ITER
are set. Afterwards the algorithm randomly set of 𝑁 fireflies. From this moment on, the
algorithm computes the brightness of each firefly and compares its brightness. The firefly with
less brightness is moved to the firefly with higher brightness in their neighborhood. The
algorithm is terminated when the maximum number of iterations is achieved. Then the best
solution is presented to the user.

 Proposed solution

The original form of FA uses continuous values to code the solution. In JSSP we consider
discrete values. The main issue is to find the proper method to represent the individual (particle
in PSO, firefly in FA) that can represent a JSSP schedule. In work [10] the authors compared
three methods to representation particles in PSO applied to JSSP:

• Operation and Particle Position Sequence – the particle position is joined with the
position sequence in JSSP. When the positions of the particles are being sorted, the
sequence of operations changes accordingly. In the next step, a new sequence of

93 Firefly algorithm applied to the job-shop scheduling problem

positions is assigned to the machines according to precedence constraints in JSSP
[8].

• Random Keys Representation - in this method we also sort particles’ positions
(ascending order). Then, the new order of particles is joined with a sequence of jobs.
In the next step, we bring back the original order of particles, which also the
sequence of jobs changes accordingly. At the end, a new sequence of positions is
assigned to the machines according to precedence constraints in JSSP [11].

• Multiple-type individual enhancement scheme – this scheme is composed of
swapping operation, inversion operation, and long-distance movement operation.
These operations are applied to the representation of real numbers. The authors
compare the makespan obtained before the selected scheme and that obtained after
the selected scheme. If the selected scheme is better, they update the real vector of
the individual by the selected operation scheme [7].

In our approach we used the form of random-key (RK) encoding. A vector in RK consists
of real numbers. A firefly represented by real values can act out an operation permutation
expressed by integer values. For 𝑛 jobs on 𝑚 machines, the firefly consists of a vector composed
of 𝑛 × 𝑚 dimensions, thus the firefly is represented by ൛𝑟ଵ, 𝑟ଶ, … , 𝑟௝ൟ, where 1 ≤ 𝑗 ≤ 𝑛 × 𝑚.
Single 𝑟௝ corresponds to the job operation order of the job in a schedule.

In RK each real value has assigned an integer number {𝜋ଵ, 𝜋ଶ, … , 𝜋௞}, where 1 ≤ 𝑘 ≤𝑛 × 𝑚, which 𝜋௞ represents indirectly an operation order of a job. After that, the real values are
sorted in ascending order. The assigned integer numbers change their own position in an RK
vector. We assume that each job must consist of 𝑚 operations – individual job must be
processed by every machine in a set of 𝑀. Therefore, we need a transformation that could
convert integer values {𝜋ଵ, 𝜋ଶ, … , 𝜋௞} to job indexes. To do this, we use the following formula
(Eq. 5): job index = (𝜋௞ mod 𝑛) + 1. (5)

Using this formula the integer values {𝜋ଵ, 𝜋ଶ, … , 𝜋௞} are transformed into an operation order
sequence {𝛾ଵ, 𝛾ଶ, … , 𝛾௞}, where 1 ≤ 𝑘 ≤ 𝑛 × 𝑚. Single 𝛾௞ represents a job index, 1 ≤ 𝛾௞ ≤𝑛. Next, when we search values from 𝛾ଵ to 𝛾௞ we could find 𝑖 − th occurrences of each job
index.

Let us see an example of RK encoding. To encode the JSSP solution (schedule) presented
in Fig. 1 we need 16 positions in each firefly (𝑛 = 4 jobs * 𝑚 = 4 machines). Suppose that the
firefly is represented by the following values: [8.4, 1.5, 2.8, 0.2, 2.0, 0.9, 3.5, 1.3, 4.9, 0.8, 6.0,
0.5, 2.2, 3.6, 6.3, 4.6] (see Fig. 2). Now we need to assign integer values {1,2, … , 16} to values

94

P. Świtalski, A. Bolesta

in RK vector starting from the smallest value. In our example, the smallest value 0.2 has 4th
element of the RK vector. For this position, we assign an integer value equal to 1. The next
value (bigger than 0.2) is 0.5 (at position 12). We set the next integer value equal to 2. We
continue this process until all integer values are assigned.

Figure 2. RK encoding for the schedule presented in Fig. 1. Source: own study

In the next step, we calculate job indexes. We use a formula from Eq. 5. Integers 4, 8, 12,
and 16 indicate the operations belonging to job 1, because (4 mod 4) + 1 = 1, (8 mod 4) + 1 =
1, etc. The solution will always be feasible because the operation order will never violate the
precedence constraints. These constraints are attributed after RK encoding. In this example, the
operation sequence is [𝑜ଵଵ, 𝑜ଷଵ, 𝑜ଶଵ, 𝑜ଶଶ, 𝑜ସଵ, 𝑜ଵଶ, 𝑜ଷଶ, 𝑜ଶଷ, 𝑜ଶସ, 𝑜ସଶ, 𝑜ଷଷ, 𝑜ଷସ, 𝑜ଵଷ, 𝑜ସଷ, 𝑜ସସ, 𝑜ଵସ].
From this moment on, operations can be assigned to machines according to the conditions
described in Chapter 1.

95 Firefly algorithm applied to the job-shop scheduling problem

 Experimental results

The FA algorithm was implemented in Java language with the support of the aitoa library
developed by Thomas Weise. This library is described in [16]. The experiments were carried
out on the Dell Precision 7920 Tower workstation equipped with Intel Xeon Gold 6242 CPU
2.80GHz (16 cores, 32 threads), 64 GB RAM, GeForce RTX 3090, Windows 10 Pro for
Workstations 21H1.

The code of the aitoa library was designed as a versatile and general implementation of
metaheuristics in Java and provides the JSSP. An objective function, a search, and a solution
space, as well as a mapping in between them, and search operators, can be composed and
provided to a black-box optimization algorithm. They are encapsulated in an
IBlackBoxProcess instance that can automatically remember the best solution and create
comprehensive log files during an experiment run.

 JSSP instances were written in the following scheme (see Listing 2):

Listing 2. The coding scheme of the example JSSP instance. Source: [16]

where in the second line, the number 𝑛 = 4 of jobs is specified, followed by the number of 𝑚 = 5 machines. The following lines describe jobs and operations. Each operation is specified
as a pair of two numbers: machine index and the number of time units (milliseconds) used for
the process of the operation.

The JSSPCandidateSolution class provided by the library was used as a solution. To
evaluate the solution, we implemented JSSPMakespanObjectiveFunction. In the aitoa
library, there is a set of search operators. The zero-argument operator
(FireflyNullaryOperator) is used to create a random population. The one-argument
operator (FireflyUnaryOperator) modifies the best individual based on his current

++++++++++++++++++++++++++
4 5
1 10 2 20 3 20 4 40 5 10
2 20 1 10 4 30 3 50 5 30
3 30 2 20 5 12 4 40 1 10
5 50 4 30 3 15 1 20 2 15
++++++++++++++++++++++++++

Job 0:

Job 1:

Job 2:

Job 3:

processing time
in milliseconds for
a given operation

number of machines number of jobs index of machine

96

P. Świtalski, A. Bolesta

position. The principal two-argument operator (FireflyBinaryOperator) was used to
modify fireflies based on the position of a brighter firefly and their own.

Our model was tested on selected instances from the OR-library [2] and other libraries [18,
19] as test benchmarks. The original data of these instances come from:

• abz5-abz9 [1],
• dmu01-dmu80 [3],
• ft06-ft20 [4],
• la01-la40 [6],
• swv01-swv20 [12],
• ta01-ta80 [13].

We experimentally set the FA parameters, including the number of fireflies (𝑛), the number
of iterations (ITER), the light absorption coefficient (𝛾), the randomization parameter (𝛼) and
the attractiveness parameter (𝛽଴). We tested each parameter in the range of 0.0 to 1.0 (for 𝛾, 𝛼
and 𝛽଴) and amount of fireflies in range 10 – 50. We assumed 1000 iterations of the algorithm
for all experiments.

Each instance of the experiment was repeated 50 times for the assigned value of the
parameter. After that we compared the best and averaged results and set the parameter value
for optimal results. In the Tab. 1 the optimal values of parameters are given.

Table 1. Optimal FA parameters set in the experiments. Source: own study

Instance Amount
of fireflies

Number
of

iterations
(ITER)

Light
absorption
coefficient

(𝛾)

Randomization
parameter (𝛼)

Attractiveness
parameter (𝛽଴)

abz5 40 1000 1.0 0.6 1.0

In the next part of the experiments, we used JSSP test instances. These instances contain
various number of jobs (from 6 to 100 jobs) and number of machines (from 5 to 20 machines).
The most complex cases come from [13]. In the Tab. 2 we show results for selected instances
used in the experiments.

97 Firefly algorithm applied to the job-shop scheduling problem

Table 2. Results for selected instances derived from the OR-library and other libraries used in the
experiments. Source: own study

Instance Number of
jobs (n)

Number of
machines

(m)

The best
result 𝐶௠௔௫

[ms]

Averaged
result 𝐶௠௔௫

[ms]

Lower
bound 𝐶௠௔௫

[ms]
abz5 10 10 1418 1488 1234
abz6 10 10 1079 1135 943
abz7 20 15 959 1006 656
abz8 20 15 975 1041 648

dmu01 20 15 4009 4148 2501
dmu02 20 15 4141 4297 2651
dmu06 20 20 5141 5304 3042
dmu10 20 20 4644 4923 2858
dmu16 30 20 6342 6601 3734

ft06 6 6 55 57 55
ft10 10 10 1180 1232 930
ft20 20 5 1485 1554 1165
la01 10 5 674 713 666
la02 10 5 719 755 655
la08 15 5 914 958 863
la22 15 10 1257 1305 927
la28 20 10 1665 1736 1216

swv01 20 10 2213 2284 1407
swv06 20 15 2778 2868 1630
swv11 50 10 5154 5378 2983
ta50 50 15 3219 3414 2723
ta72 100 20 7880 8164 5181

As we can see, the FA can solve both simple and most complex instances. Lower bound
column in the Tab. 2 (the last column) shows the optimal of the makespan 𝐶௠௔௫ values for each
instance. FA gives only suboptimal results for these instances. For instances with small amount
of jobs and machines (e.g. instance ft06, la01, la02) the results are close to optimal values.
When the number of jobs and the number of machines increases, the algorithm tries to find
suboptimal solutions. Even for the biggest instance (see instance ta72 in the Tab. 2) algorithm
found a relatively good schedule (7880 ms) vs. optimal (5181 ms).

As we mentioned, the obtaining optimal results is difficult for most metaheuristics due to
complex search space and the NP-hard nature of JSSP. Finding an optimal solution by
evolutionary algorithms has been the subject of many works. Our work confirmed that FA is
useful in the JSSP problem. This task was supported by the aitoa library. This library lets us
focus on the algorithm rather than on implementing the whole JSSP scheduler. In our opinion,
this library is very useful in terms of scheduling problems.

98

P. Świtalski, A. Bolesta

 Conclusions

The FA is one of the many known metaheuristics. Our task was focused on implementation of
the FA in the aitoa library and providing test results. The implementation was successful. This
library is useful for any category of metaheuristics. The structure of the library is universal. It
can represent each form of the operators used in the metaheuristic and make it simpler to
implement the JSSP.

We plan to modify the FA algorithm to improve the results. It can be done by modifying
the standard operators in the FA. We can also modify the parameters of the FA by modification
of the formulas. These parameters would be the subject of another metaheuristic. This
metaheuristic could be a change of the parameters during scheduling. This hybrid solution could
be more fitting to the JSSP problem.

References

 Adams J., Balas E., Zawack D., The Shifting Bottleneck Procedure for Job Shop
Scheduling. Management Science, 34(3), pp. 391-401, 1988. DOI:
10.1287/mnsc.34.3.391

 Beasley, J.E., OR-Library: Distributing Test Problems by Electronic Mail. Journal of the
Operations Research Society. 41, 11, pp. 1069-1072, 1990. DOI: 10.2307/2582903

 Demirkol E., Mehta S.V., Uzsoy R., Benchmarks for Shop Scheduling Problems.
European Journal of Operational Research (EJOR), 109(1), pp. 137-141, 1988. DOI:
10.1016/S0377-2217(97)00019-2

 Fisher H., Thompson G.L., Probabilistic Learning Combinations of Local Job-Shop
Scheduling Rules. In Muth JF, Thompson GL (eds.), Industrial Scheduling, pp. 225-251,
1963.

 Khadwilard A., Chansombat S., Thepphakorn T., Thapatsuwan P., Thapatsuwan W.,
Pongcharoen P., Application of Firefly Algorithm and Its Parameter Setting for Job Shop
Scheduling. The Journal of Industrial Technology, 2012.

99 Firefly algorithm applied to the job-shop scheduling problem

 Lawrence S.R., Resource Constrained Project Scheduling: An Experimental Investigation
of Heuristic Scheduling Techniques (Supplement). PhD thesis, Graduate School of
Industrial Administration (GSIA), 1984. Carnegie-Mellon University, Pittsburgh, PA,
USA.

 Lin T.L., Horng S.J., Kao T.W., Chen Y.H., Run R.S., Chen R.J., Lai J.L., Kuo I.H., An
efficient job-shop scheduling algorithm based on particle swarm optimization. Expert
Syst. Appl. 37 pp. 2629–36, 2010

 Liu Z., Investigation of Particle Swarm Optimization for Job Shop Scheduling Problem
3rd Int. Conf. Nat. Comput. (ICNC 2007) vol 3 (Haikou: IEEE) pp. 799–803, 2007

 Miller T.J., Steinhöfel K., Veenstra P., Firefly-inspired Algorithm for Job Shop
Scheduling, 2018. DOI: 10.1007/978-3-319-98355-4_24

 Nurul I.A., Adi S., Performance evaluation of different types of particle representation
procedures of Particle Swarm Optimization in Job-shop Scheduling Problems IOP Conf.
Ser.: Mater. Sci. Eng. 114, 2016

 Pongchairerks P., Kachitvichyanukul V., A Particle Swarm Optimization algorithm on
Job-Shop Scheduling Problems with multi-purpose machines Asia-Pacific J. Oper. Res.
26, pp. 161–84, 2009.

 Storer R.H., Wu S.D., Vaccari R., New Search Spaces for Sequencing Problems with
Application to Job Shop Scheduling. Management Science, 38(10), pp. 1495-1509, 1992.
DOI: 10.1287/mnsc.38.10.1495

 Taillard É.D., Benchmarks for Basic Scheduling Problems. European Journal of
Operational Research (EJOR), 64(2), pp. 278-285, 1993. DOI: 10.1016/0377-
2217(93)90182-M

 Udaiyakumar K., Chandrasekaran, M., Optimization of Multi Objective Job Shop
Scheduling Problems Using Firefly Algorithm. Applied Mechanics and Materials. 591,
pp. 157-162, 2014. DOI: 10.4028/www.scientific.net/AMM.591.157.

 Waqar A.K., Nawaf N.H., Surafel L.T., Jean M.T.N., A Review and Comparative Study
of Firefly Algorithm and its Modified Versions, Optimization Algorithms – Methods and
Applications, InTech, pp. 281-313, 2016. DOI: 10.5772/62472

100

P. Świtalski, A. Bolesta

 Weise T., An Introduction to Optimization Algorithms. Hefei, Anhui, China: Institute of
Applied Optimization (IAO), School of Artificial Intelligence and Big Data, Hefei
University, 2018-2019. Available at: http://thomasweise.github.io/aitoa/

 Yang X.S., Nature-inspired metaheuristic algorithms. Luniver Press, UK, 2010.

Internet sources:

 Oleg V. Shylo's page (http://optimizizer.com/DMU.php), accessed 13.11.2021

 Éric Taillard's page (http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html), accessed
13.11.2021

