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formulas. We provide an implementation of symbolic model checking for ATL and preliminary, but 
encouraging experimental results. 
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 Introduction 

Many dangerous situations caused by software bugs have happened over the past decades. 
Testing is a commonly used method of detecting errors in systems. There are various types of 
tests applied to detect and eliminate bugs in developed systems, e.g., unit and integration tests. 
Testing process greatly improves the software quality, as it helps to find bugs but it does not 
ensure that the system is error-free. However, such a guarantee can be provided by formal 
methods. 

Formal methods are based on solid mathematical and logical basis, and they provide 
techniques enabling the design of reliable and error-free systems. One of the formal methods is 
Model Checking (MC) [29, 13, 5] which can be applied to ensure that given model of hardware 
or software system behaves according to its specification. Typically, a system is modelled as a 
labelled transition system, and the specification is usually a set of temporal formulas expressing 
properties like safety (bad things never happen) or liveness (good things eventually happen). 
An example of the former could be: two processes never reach a critical section simultaneously, 
and of the latter: every process reach a critical section eventually. 

One of the well-known temporal logic is Computation Tree Logic (CTL) [12] introduced by 
Clarke and Emmerson in 1981. Here, the formulas are interpreted over a tree-like structure 
where the future is not determined, because there exist a number of possible paths that may be 
actually realized. This is a branching-time logic allowing to quantification over the computation 
paths. In CTL, every temporal operator should be preceded by A (along all paths) or E (there 
exists a path). 

However, in the case of multi-agent systems, other temporal logics are suitable to express 
properties involving cooperation and strategic abilities. One of them is Alternating-time 
Temporal Logic (ATL) [2-4, 22, 17, 18, 20]. The strategic modalities enable to formulate 
properties like there exists a strategy such that a goal will be achieved by an agent, or a group 
of agents. Thus, ATL allows for selective quantifications over paths that are outcomes of games 
between (groups of) agents. For example, the ATL formula ≪ 𝐴 ≫  𝑋𝜑means that the group 
of agents A has a strategy to enforce the property 𝜑 in the next step, regardless of the actions 
performed by the other agents. 

Model checking has been used for over four decades to verify various hardware and software 
systems [36, 35, 1, 8]. However, one of its biggest obstacles is a huge number of states in the 
verified systems, since it grows exponentially with the number of system components (e.g., 
agents). Usually, model checking can be reduced to a kind of a graph search problem, which 
could be solved using either explicit or symbolic methods. Symbolic model checking makes use 
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of logical formulas or binary decision diagrams (BDDs) [9] to represent sets of states and 
transitions, and handle a number of them at once. In many cases, this approach is much more 
efficient than the explicit one, and symbolic representations of transition systems are often quite 
successful in alleviating the state explosion problem. A lot of model-checking tools exploit 
BDDs to represent the state spaces. These are, e.g., NuSMV [10] for verifying CTL and 
MCMAS [26, 27] for verifying of properties expressed in CTL and ATL against systems 
specified in Incremental System Programming Language (ISPL) [28].  

Sometimes, however, the BDDs have a tendency to an exponential blow-up in the number 
of variables, what impedes the verification of large systems. The methods aimed at addressing 
this problem include, amongst others, model checking algorithms based on propositional 
satisfiability (SAT) checking [34]. The Unbounded Model Checking (UMC) method, 
introduced by McMillan [30], is based on modification of Davis-Logemann-Loveland (DLL) 
[14] algorithm. It eliminates universal quantifiers from Boolean expressions, enabling 
evaluation of arbitrary CTL formulas using fixed point characterizations of the CTL  operators. 
The proposed method is extremely efficient in cases, when the resulting fixed points do not 
have a concise representation as a BDD, but can be succinctly described as CNF formula. 

The authors of [21] show that UMC can be also applied to verification of ATL. The key 
issue in solving this problem consists in encoding the next time operator by a Quantified 
Boolean Formula (QBF) and translating it to a corresponding propositional formula. The other 
modal operators are computed as the greatest or least fixed points of functions defined over the 
basic next time operator.  

The main contribution of this paper is a practical realization of the UMC method for multi-
agent systems modelled in terms of Concurrent Game Structures (CGSs) [24] and the properties 
expressed as ATL formulas. We follow the theoretical results reported in [21] and provide, to 
our best knowledge, the first implementation of this method together with preliminary 
experimental results. However, we do not translate the verification problem to CNF, but we 
stop at the QBF level and use SMT-solver Z3 [15] to solve it. We compare the efficiency of our 
tool with the MCMAS model checker. 

The rest of the paper is structured as follows. In the next sections we introduce CGSs, and 
then syntax, semantics, and recall the fixed-point characterization of ATL operators and their 
translation to QBF. Then, we present the most important details of implementation of our tool 
UMC4ATL and preliminary experimental results, followed by conclusion. 
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 Concurrent Game Structures 

In our approach, we model the systems under consideration by Concurrent Game Structures. 
The transitions between (global) states are determined by actions made by the system 
components. Each global transition represents a simultaneous step made by all the system 
components. Formally, following [21], CGS is defined as follows. 

Definition 1. A Concurrent Game Structure is a tuple 𝑆 =൏ 𝑘, 𝑄, 𝜏, 𝛱, 𝜋, 𝑑, 𝛿 ൐ , where: 

- k is a natural number defining the amount of agents. 
- We identify the agents with numbers 0, . . . , 𝑘 so the set of agents is {0, . . . , 𝑘 − 1}, 
- 𝑄 is a finite set of global states, and  𝜏 ∈  𝑄 is the initial state, 
- 𝛱 is a finite set of atomic propositions (also called observables), 
- 𝜋: 𝑄 → 2௽ is a labeling (or observation) function, 
- moves (actions) available at a state 𝑞 ∈  𝑄 to an agent 𝑎 ∈ {0, . . . , 𝑘 − 1} are identified 

with numbers 0, . . . , 𝑑௔(𝑞); so given a state q, a move vector at q is a tuple  ൏ 𝑗଴, . . . , 𝑗௞ିଵ ൐ such that 𝑗௔ ≤  𝑑௔(𝑞) for every agent a; then d is the mapping that 
assigns for every state q the set {0, . . . , 𝑑଴(𝑞)} × . . .× {0, . . . , 𝑑௞ିଵ(𝑞)} of move vectors, 

- 𝛿 is a transition function which assigns to each state 𝑞 ∈ 𝑄 and each move vector  ൏ 𝑗଴, . . . , 𝑗௞ିଵ ൐∈ 𝑑(𝑞) a state 𝛿(𝑞, 𝑗଴, . . . , 𝑗௞ିଵ) ∈  𝑄 that results from state q if every 
agent 𝑎 ∈ {0, . . . , 𝑘 − 1} chooses move 𝑗௔. 

We say that a state 𝑞 is a successor of a state 𝑞′ if there is a move vector ൏ 𝑗଴, . . . , 𝑗௞ିଵ ൐∈ 𝑑(𝑞) 
such that 𝑞′ = 𝛿(𝑞, 𝑗଴, . . . , 𝑗௞ିଵ). Thus 𝑞′ is a successor of 𝑞 iff whenever the game is in state 𝑞, 
the agents can choose moves so that 𝑞′ is a next state. A computation of 𝑆 is an infinite sequence 𝜆 =  𝑞଴, 𝑞ଵ, 𝑞ଶ, . .. of states such that for all positions 𝑖 ൒  0, the state𝑞௜ାଵ. is a successor of the 
state 𝑞௜. We refer to a computation 𝜆 and a position 𝑖 ൒  0, we use 𝜆 [𝑖], 𝜆 [0, 𝑖] to denote 𝑖-th 
state of 𝜆 and the finite prefix 𝑞଴, 𝑞ଵ, . . . , 𝑞௜ of 𝜆 respectively. 

 

Figure 1. An example system: two agents (left) and the corresponding CGS (right). Source: own 
study 
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Example 1. In Fig. 1 (left) an example system consisting of two agents is depicted. Every agent 
has two (local) states 0, 1 and three transitions labeled by two actions 𝑎0, 𝑎1 for agent 0, and 𝑏0, 𝑏1 for agent 1. The CGS is shown in Fig. 1 (right). Thus, the set of global states is 𝑄 ={(0,0), (0,1), (1,0), (1,1)}. Let the initial state be 𝜏 =  (0,0), and we have two propositional 
variables 𝛱 = {𝑝, 𝑞}. Let 𝜋(𝑝) = {(0,0)}, 𝜋(𝑞) = {(0,1), (1,1)}, thus 𝑝 is true in state (0,0)and 𝑞 is true in states (0,1), and (1,1). The available moves and transitions are depicted as arrows. 
For example, 𝑑଴((0,0)) = {0,1}, 𝑑((0,1)) = {(0,1), (1,1)}, and 𝛿((0,0), 1, 1)  =  (1,1). Note 
that besides numbers we additionally label actions with letters assigned to the consecutive 
agents. 

  Alternating-time Temporal Logic 

Before we give formal definitions, we proceed with intuitions behind ATL. A strategy of 
an agent is a plan describing what agent can do in each situation (state). Every agent can base 
its decisions only on the current state. A strategy for a group of agents is a tuple of individual 
strategies. A formula  ≪  𝐴 ≫  𝑋 𝛼  means that the group 𝐴 has a strategy to make 𝛼 true in 
the next step. ≪ 𝐴 ≫  𝐺 𝛼  means that the group 𝐴 can cooperate in a way that 𝛼 is always true. ≪ 𝐴 ≫ 𝛼 𝑈 𝛽  means that the group 𝐴 can enforce 𝛽, but until that happens 𝛼 is true. 

Definition 2 (ATL syntax). The set of ATL formulas is defined as follows: 

-  𝑝 ∈ 𝛱 is a formula, 
- if 𝛼 , 𝛽 are formulas, then  ¬ 𝛼 , 𝛼 ∨  𝛽 are also formulas, 
- if 𝐴 ⊆  {1, . . . , 𝑘} is a set of agents and 𝛼 , 𝛽 are formulas, then ≪  𝐴 ≫  𝑋 𝛼 , ≪  𝐴 ≫ 𝛼 𝑈 𝛽, and ≪  𝐴 ≫  𝐺 𝛼  are also formulas.  

 

Additionally, the Boolean operators ∧ , ⇒ , ⇔  are defined by the operators ¬,∨ . The 
temporal operator eventually is defined as 𝐹 𝛼 =  𝑡𝑟𝑢𝑒 𝑈 𝛼. The ATL formulas are interpreted 
over the states of CGS. In order to define the semantics formally, we first define the notion of 
strategies. A strategy for an agent 𝑎 is a function 𝑓௔ that maps every nonempty finite state 
sequence 𝜆 ∈  𝑄ା to a natural number such that if the last state of 𝜆 is 𝑞, then 𝑓௔(𝜆)  ≤  𝑑௔(𝑞). 
Thus, the strategy 𝑓௔ determines for every finite prefix 𝜆 of a computation a move 𝑓௔𝜆 for agent 𝑎. Each strategy 𝑓௔ for agent a induces a set of computations that agent 𝑎 can enforce. Given a 
state 𝑞 ∈   𝑄, a set 𝐴 of agents, and a set 𝐹஺  =  {𝑓௔|𝑎 ∈  𝐴} of strategies, one for each agent in 𝐴, we define the outcomes of 𝐹஺ from 𝑞 to be the set 𝑜𝑢𝑡(𝑞, 𝐹஺) of 𝑞-computations that the 
agents in 𝐴 enforce when they follow the strategies in 𝐹஺; that is a computation 𝜆 = 𝑞଴, 𝑞ଵ, 𝑞ଶ, . .. is in 𝑜𝑢𝑡(𝑞, 𝐹஺) if 𝑞଴ = 𝑞 and for all positions 𝑖 ൒  0, there is a move vector 
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ℎ௝భ, . . . , 𝑗௞೔  ∈  𝑑(𝑞௜) such that  𝑗௔ = 𝑓௔(𝜆[0, 𝑖]) for all agents  𝑎 ∈ 𝐴, and 𝛿(𝑞௜, 𝑗ଵ, . . . , 𝑗௞)  = 𝑞௜ + 1. 

Definition 3 (Interpretation of ATL). Let S be a CGS, q ∈ Qa state, and α , β formulas of 
ATL. S, q ⊨  α denotes that α is true at the state q in the structure S. S is omitted, if it is implicitly 
understood. The relation ⊨ is defined inductively as follows: 

-  𝑞 ⊨ 𝑝  iff  𝑝 ∈  𝜋 (𝑞), for 𝑝 ∈  𝛱 , 
- 𝑞 ⊨  ¬ 𝛼 iff 𝑞 ¬ ⊨   𝛼, 
- 𝑞 ⊨  𝛼  ∨  𝛽  iff  𝑞 ⊨  𝛼 or 𝑞 ⊨  𝛽, 
- 𝑞 ⊨ ≪ 𝐴 ≫  𝑋 𝛼 iff there is a set  𝐹஺ of strategies for each agent in 𝐴,  such that for all 

computations 𝜆 ∈ 𝑜𝑢𝑡(𝑞, 𝐹஺), we have 𝜆[1] ⊨  𝛼, 
- 𝑞 ⊨  𝑝 ≪  𝐴 ≫  𝐺 𝛼 iff there is a set 𝐹஺  of strategies for each agent in 𝐴, such that for 

all computations 𝜆 ∈ 𝑜𝑢𝑡(𝑞, 𝐹஺),, and all positions 𝑖 ൒  0, 𝜆[𝑖] ⊨  𝛼, 
- 𝑞 ⊨≪  𝐴 ≫  𝛼 𝑈 𝛽 iff there is a set 𝐹஺  of strategies for each agent in 𝐴, such that for 

each computation  𝜆 ∈ 𝑜𝑢𝑡(𝑞, 𝐹஺),, there is a position 𝑖 ൒  0 such that 𝜆[𝑖] ⊨  𝛽 and for 
all positions 𝜆[𝑖]  ⊨  𝛽, we have 𝜆[𝑗] ⊨  𝛼. 

 

Definition 4 (Validity). An ATL formula ϕ is valid in S iff S, τ ⊨  ϕ. 

Example 2. Consider the CGS of Example 1 and the formula  𝜙 = ≪ 0,1 ≫  𝑋𝑝 , which means 
that the group of agents 𝐴 = {0,1} has a strategy that 𝑝 will be true in the next step. The initial 
state of the system is 𝜏 = (0,0) and there exists a transition changing state (0,0) to state (0,0). 
Thus, there exists a strategy for the agents to enforce p in the next step: both should perform 
action 0 in the initial state, so the given formula is valid, whereas the formula  𝜓 = ≪ 0,1 ≫  𝑋 (𝑝 ∧  𝑞) is not valid in this CGS.  

 Fixed point representation of ATL and QBF encoding 

In this section we briefly recall from [21] how the UMC can be used for ATL verification. 
The crucial point is encoding the next operator as a Quantified Boolean Formula. QBF is an 
extension of propositional logic by means of quantifiers ranging over propositions. The 
semantics is as follows: 

- ∃ 𝑝, 𝛼 𝑖𝑓𝑓 𝛼(𝑝 ←  𝑡𝑟𝑢𝑒 )  ∨  𝛼 (𝑝 ←  𝑓𝑎𝑙𝑠𝑒), 
- ∀ 𝑝, 𝛼  𝑖𝑓𝑓 𝛼(𝑝 ←  𝑡𝑟𝑢𝑒 ) ∧  𝛼 (𝑝 ←  𝑓𝑎𝑙𝑠𝑒), 

where 𝛼 is a QBF formula, 𝑝 is a propositional variable, and 𝛼( 𝑝 ←  𝛹 ) stands for a 
substitution of every occurrence of the variable 𝑝 with 𝛹 in formula 𝛼. 
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The other modal operators are computed as the greatest or least fixed points of functions 
defined over the basic next operator. In order to obtain fixed-point characterizations of 
operators, we identify each ATL formula 𝛼 with the set 〈𝛼〉ௌ of states in 𝑆 at which this 
formula is true that is {𝑞 ∈  𝑄 ∶  𝑆, 𝑞 ⊨  𝛼 }. If 𝑆 is known from the context we omit the subscript 𝑆. Furthermore, we define functions ≪ 𝐴 ≫ 𝑋 (𝑍) for every 𝐴 ⊆ {0, . . . , 𝑘 − 1} as follows: 

- ≪ 𝐴 ≫  𝑋(𝑍) = {𝑞 ∈  𝑄 ∶ for every 𝑎 ∈  𝐴 there exists a natural number $ ≤  𝑑௔(𝑞) 
such that for every state 𝑞′ ∈  𝑄, every agent 𝑏 ∈ {0, . . . , 𝑘 − 1} \ 𝐴 and every natural 
number 𝑗௕ ≤ 𝑑௕(𝑞) if 𝑞’ = 𝛿 (𝑞, 𝑗଴, . . . , 𝑗௞ିଵ)then 𝑞′ ∈ 𝑍. 

We assume a set of agents {0, ⋯ , 𝑘 − 1}, a set of global states 𝑄, sets of possible actions 𝐴𝑐𝑡௔for each agent 𝑎, and a set of protocols 𝑃௔: 𝑄 ↦  2஺௖௧ೌ that indicate which actions can be 
executed in which states. All actions are defined by means of 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 conditions, i.e., for 
action 𝑐, 𝑝𝑟𝑒(𝑐) is a set of all states from which action 𝑐 can be executed and 𝑝𝑜𝑠𝑡(𝑐) is a set 
of all states which can be reached after the execution of action 𝑐. Furthermore, we assume that 
for every state 𝑞 and 𝑐଴  ∈  𝑃଴(𝑞), ⋯ , 𝑐௞ିଵ ∈ 𝑃௞ିଵ(𝑞) there exists exactly one state 𝑞′ such that  𝑞′ ∈ 𝑝𝑜𝑠𝑡(𝑐଴) ∩ ⋯ ∩ 𝑝𝑜𝑠𝑡(𝑐௞ିଵ). Next, we define the function 𝛿 that assigns state 𝑞′ ∈𝑝𝑜𝑠𝑡(𝑐଴) ∩ ⋯ ∩ 𝑝𝑜𝑠𝑡(𝑐௞ିଵ) to every tuple (𝑞, 𝑐଴, ⋯ , 𝑐௞ିଵ) such that 𝑞 ∈ 𝑄 and 𝑐௔  ∈  𝑃௔(𝑞) 
for 𝑎 = 0, ⋯ , 𝑘 − 1. Given such a description of a system it is easy to build the corresponding 
concurrent game structure by taking |𝑃௔(𝑞)|  =  𝑑௔(𝑞)and numbering actions belonging to the 
set 𝑃௔(𝑞)for every state 𝑞 and agent 𝑎. Next, in order to symbolically represent the (sets of) 
states, we assume 𝑄 ⊆ {0, 1}௠, where 𝑚 =  ⌈𝑙𝑜𝑔ଶ(|𝑄|)⌉. Let 𝑃𝑉 be a set of fresh propositional 
variables such that 𝑃𝑉 ∩ 𝛱 = ∅  . Then, each state 𝑞 ∈ 𝑄 is represented by a global state 
variable 𝑤 = (𝑤[0], ⋯ , 𝑤[𝑚 − 1]), a vector of propositions, where 𝑤[𝑖] ∈ 𝑃𝑉 for each𝑖 = 0, ⋯ , 𝑚 − 1. Let 𝐹𝑃𝑉 be a set of propositional formulas over 𝑃𝑉, and let 𝑙𝑖𝑡 ∶  {0, 1}  ×  𝑃𝑉 ↦ 𝐹𝑃𝑉 be a function defined as follows: 𝑙𝑖𝑡(0, 𝑝) = ¬𝑝and𝑙𝑖𝑡(1, 𝑝) = 𝑝. Furthermore, let w be 
a global state variable. We define the following propositional formulas:  

-  𝐼௤(𝑤) ∶= ⋀௜ୀ଴௠ିଵ 𝑙𝑖𝑡(𝑞[𝑖], 𝑤[𝑖]); this formula encodes the state 𝑞 over the vector 𝑤. 
In fact, a state is represented as a binary number. 

- 𝑝𝑟𝑒௖(𝑤)and 𝑝𝑜𝑠𝑡௖(𝑤) for every 𝑐 ∈ 𝐴𝑐𝑡ଵ ∪ ⋯ ∪ 𝐴𝑐𝑡௞; 𝑝𝑟𝑒௖(𝑤) is a formula which is 
true for valuation 𝑞 = (𝑞[0], ⋯ , 𝑞[𝑚 − 1])of  𝑤 = (𝑤[0], ⋯ , 𝑤[𝑚 − 1]) iff and 𝑝𝑜𝑠𝑡௖(𝑤) is a formula which is true for valuation 𝑞 of 𝑤 iff 𝑞 ∈ 𝑝𝑜𝑠𝑡(𝑐). 

Next, we translate ATL formulas into QBF formulas. Specifically, for a given ATL formula 𝜙we compute a corresponding propositional formula [𝜙](𝑤)which is satisfied by a valuation 𝑞 of 𝑤 iff 𝑞 ∈ 〈𝜙 〉. In so doing we obtain a formula  [𝜙](𝑤)  such that 𝜙 is valid in the 
structure 𝑆 iff the conjunction [𝜙](𝑤)  ∧  𝐼ఛ(𝑤)is satisfiable. Operationally, we work outwards 
from the most nested subformulas, i.e., to compute [𝑂𝛼](𝑤), where 𝑂 is a modality, we work 
under the assumption of already having computed [𝛼](𝑤). The translation is  as follows: 
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- [𝑝](𝑤): = ⋁௤∈ழ௣வ𝐼௤(𝑤), for 𝑝 ∈ 𝛱, 
- [¬ 𝛼 ](𝑤): = ¬ [𝛼](𝑤), 
- [𝛼 ∨  𝛽] (𝑤): = [𝛼](𝑤) ∨ [𝛽](𝑤), 
- let 𝐴 = {𝑎ଵ, . . . , 𝑎௧}  ⊆ {1, . . . , 𝑘} and let 𝐵 = {𝑏ଵ, . . . , 𝑏௦} ⊆ {1, . . . , 𝑘}\{𝑎ଵ, . . . , 𝑎௧},  [≪ 𝐴 ≫ 𝑋𝛼](𝑤) ∶= ⋁௖ೌభ∈஺௖௧ೌభ,…,௖ೌ೟ ∈஺௖௧ೌ೟ (⋀௜ୀଵ௧ 𝑝𝑟𝑒௖௕ೕ (𝑤) ∨ 𝑓𝑜𝑟𝑎𝑙𝑙(𝑣, ⋀𝑐௕ଵ∈ 𝐴𝑐𝑡௕ଵ, . . . , 𝑐௕௦ ∈ 𝐴𝑐𝑡௕௦ ( ⋀௝ୀଵ௦ 𝑝𝑟𝑒௖௕ೕ(𝑤) ∧  ⋀௝ୀଵ௦ 𝑝𝑜𝑠𝑡௖௕ೕ(𝑣) ⋀௜ୀଵ௧ 𝑝𝑜𝑠𝑡௖௔೔(𝑣) ⇒ [𝛼](𝑣))) 

- [≪ 𝐴 ≫ 𝐺𝛼](𝑤) ∶= 𝑔𝑓𝑝஺ ([𝛼 ](𝑤)), 
- [≪ 𝐴 ≫ 𝛼 𝑈𝛽](𝑤) ∶= 𝑙𝑓𝑝஺([𝛼](𝑤), [𝛽](𝑤)). 

where 𝑔𝑓𝑝 and 𝑙𝑓𝑝 are based on the standard procedures computing fixed points. See [21], Sec. 
6 for more details. 

Example 3. Consider the CGS from Example 1 and the formula ≪ 0 ≫ 𝑋 𝑝଴. We have: 

- 𝑝𝑟𝑒(𝑎଴) = { (0,0), (0,1)}, 𝑝𝑟𝑒௔బ(𝑤) =  (¬ 𝑤[0] ∧  ¬ 𝑤[1])  ∨  (¬ 𝑤[0]  ∧  𝑤[1]), 
- 𝑝𝑟𝑒(𝑎ଵ) = { (0,0), (0,1), (1,0), (1,1)}, 𝑝𝑟𝑒௔భ(𝑤)  = (¬𝑤[0] ∧ ¬𝑤[1]) ∨ (¬𝑤[0] ∧  𝑤[1]) ∨ (𝑤[0] ∧ ¬𝑤[1]) ∨ (𝑤[0] ∧ 𝑤[1]) 

- 𝑝𝑜𝑠𝑡(𝑎ଵ) = {(1,0), (1,1)}, 𝑝𝑜𝑠𝑡௔భ(𝑤) = (𝑤[0]  ∧  ¬ 𝑤[1])  ∨  (𝑤[0]  ∧  𝑤[1]). 

 Implementation 

The model-checking method described above has been implemented in C# language as a 
tool UMC4ATL. It performs a translation of the verification problem to a QBF formula, and it 
uses Z3 [15] to check for its satisfiability. Z3 theory prover is a software that supports Boolean 
logic, arithmetic, data types, quantifiers and more. It is often applied to solve hard problems 
from various domains, like model checking and planning. 
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Figure 2. UMC4ATL architecture. Source: own study 

Fig. 2 shows the overall architecture of UMC4ATL application. The very first element 
needed for execution of our software is an input file with agent specifications and an ATL 
formula to be verified. Its structure is discussed in Example 4. The Parser module reads the 
content of the input file, checking its correctness and consistency, and then transforms it into a 
set of corresponding objects stored in system memory and the formula into a binary tree. Then, 
the Model module builds the graph product and computes the pre and post sets. Such prepared 
model objects are ready to be consumed by the Encoder module. In this step, if the appropriate 
options are set, we are translating the model into an MCMAS input file, and into DOT format 
to visualize the agents and CGS. Finally, we are translating the verification problem into a QBF 
formula to check it for satisfiability using Z3 solver. 

 Experimental Results 

In this section we report our preliminary experimental results compared with the state-of-
the-art BDD-based model checker MCMAS [26, 27]. The experiments were performed using a 
PC equipped with AMD Ryzen 5 3600X CPU and 32 GB RAM running under Windows 10 
OS. We used two scalable benchmarks known from literature: Train Gate Controller [32], and 
Castles game [31]. 
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6.1. Train Gate Controller 

The Train Gate Controller scenario [32] considers a number of trains trying to access a 
tunnel, whose entrance is managed by a controller. The controller allows only one train in the 
tunnel at any time. Fig. 3 shows the TGC system with two trains. 

 

Figure 3. Train Gate Controller system with two trains (left and right). Source: own study 

The Controller has two states, displaying a green light when the tunnel is empty, and 
the red light, when a train is in the tunnel. These states are marked with propositions 𝑝଴, and 𝑝ଵ, respectively. A train can be in one of the three states. It can be in front of the tunnel waiting 
for the green light, or it can be in the tunnel, or it could be away after traversing the tunnel. Due 
to synchronization of the appropriate actions, in Fig. 3 marked with the same labels, the 
Controller admits only one of the waiting trains at a time. 

The meaning of propositions is as follows. 𝑝଴ means that controller displays a green 
light and 𝑝ଵ means that controller displays a red light. Variables from 𝑝ଶ to 𝑝ଶା(ଷ௡ିଵ) mark 
states for each train, where 𝑛 is the number of trains. For example 𝑝ଶ - Train1 is waiting, 𝑝ଷ - 
Train1 is in tunnel, 𝑝ସ - Train1 lefts the tunnel. Thus, when we divide the consecutive numbers 
corresponding to propositions by 3, if the remainder is 2 the train is in waiting state, when the 
remainder is 0 the train is in tunnel, and if the remainder is 1 it means that the train lefts the 
tunnel.  
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Table 1. The ATL formulas checked against TGC specification. The column meaning from left to 
right: formula id, the formula, the number of nested strategic operators, the number of different coalitions 

in the formula, the number of subformulas, the total length of the formula. Source: own study 

No. Formula Depth Coals. Subf. Length 
1 ≪ 0,1,2 ≫ 𝐹𝑝଴ 1 1 1 11 
2 ≪ 0,1,2 ≫ 𝐹𝑝ଷ 1 1 1 11 

3 ≪ 0,1,2 ≫ 𝐹(𝑝଴ ∧ (𝑝ଷ ∧ 𝑝଺)) 1 1 1 19 
4 ≪ 0,1,2 ≫ 𝐹(𝑝ଷ ∧≪ 0,1,2 ≫ 𝐹𝑝଺) 2 1 2 23 
1R ≪ 0,1 ≫ 𝐹(𝑝଴ ∧ (𝑝ଵ ∧ 𝑝ଶ)) 1 1 1 17 
2R (≪ 0 ≫ 𝑋(𝑝଴ ∧ (𝑝ଵ ∧ 𝑝ଶ)) ∧≪ 1 ≫ 𝑋. .. 1 2 2 36 
3R ≪ 0,1,2 ≫ 𝑋¬𝑝଴ 1 1 1 12 
4R (((𝑝ଷ ∨≪ 1 ≫ 𝐹(𝑝ଵ  ∨ ¬≪ 2 ≫ 𝐺¬≪ 1 ≫ 𝐹. .. 5 5 10 99 
1T ≪ 0,1,2 ≫ 𝑋(𝑝଴ ∧ (𝑝ସ ∧ 𝑝ହ)) 1 1 1 19 
2T ≪ 0,1,2 ≫ 𝐹(𝑝଴ ∧ (𝑝ସ ∧ 𝑝ହ)) 1 1 1 19 
3T ≪ 0,1,2 ≫ 𝐺(𝑝଴ ∧ (𝑝ସ ∧ 𝑝ହ)) 1 1 1 19 
4T ≪ 0,1,2 ≫ 𝐹(𝑝ଵ ∧≪ 1,2 ≫ 𝐹(𝑝ଶ ∧ 𝑝଺)). .. 3 3 3 44 
5T ((𝑝ଵ  ∧ (≪ 0, 2 ≫ 𝐹¬𝑝ଷ ∧ 𝑝ହ )) ∧ . .. 2 2 3 41 

 

Table 1 presents formulas that have been checked against TGC specification. They are 
divided into three groups. The formulas 1-4 was tested in the presence of only 3 propositions. 
For example, Formula 2 expresses that all agents have a common strategy to ensure that 
eventually Train1 will be in tunnel, while Formula 4 means that for agents 0,1,2 there is a 
strategy that eventually Train1 will be in the tunnel and then a strategy that eventually Train2 
will be in the tunnel. The most interesting, however, is Formula 3, which we use to test whether 
there may be a situation that there is a green light and both trains are in the tunnel. The next 
group, the formulas 1R-4R, constitute random generated ATL formulas. Due to the lack of 
space, in the case of long formulas, we only show their beginning. The third group, the formulas 
1T-5T, have been tested in presence of all propositions shown in Fig. 3. For example, formula 
1T expresses that there is a strategy for agents 1,2,3, allowing them to achieve, in one step, the 
state in which the first train is away, while the second train is waiting in front of tunnel. Formula 
2T expresses a similar property, but does not require reaching such a state in one step, only at 
some time in the future. As will be shown next, Formula 2T is valid, while Formula 1T does 
not hold in the TGC model. 

Table 2 presents the results of Experiment 1 for TGC with 2,3,4 and 5 trains. The column 
meaning is as follows. Column "No." represents the formula id, column "Sat" informs if the 
formula is satisfiable ( Y-yes, N-no), "UMC" shows time consumed by UMC4ATL (in 
seconds), while  the column "MCMAS" shows run-time of MCMAS. The numbers in bold 
show the cases where the UMC4ATL  has an advantage over the MCMAS. In most cases, the 
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performance of both tools was similar, but as the state space increased, in many cases MCMAS 
outperformed our tool. 

Table 2. Results of Experiment 1, for TGC with 2-5 trains. Source: own study 

 TGC2 TGC3 TGC4 TGC5 
No. SAT UMC MCMAS UMC MCMAS UMC MCMAS UMC MCMAS 
1 Y 0,0174 0,013 0,0201 0,020 0,1271 0,039 0,3711 0,045
2 Y 0,0174 0,013 0,0201 0,018 0,1022 0,029 0,3704 0,045
3 N 0,0141 0,016 0,0149 0,023 0,0167 0,037 0,0223 0,035
4 Y 0,0248 0,012 0,2345 0,023 0,8891 0,030 5,154 0,043
1R N 0,0139 0,013 0,0146 0,023 0,0165 0,034 0,0224 0,150
2R N 0,0134 0,012 0,0148 0,020 1,3210 0,022 6,072 0,042
3R N 0,0122 0,017 0,0136 0,024 0,0751 0,025 0,2397 0,047
4R N 0,0130 0,013 0,0632 0,019 1,5316 0,020 5,1930 0,036
1T N 0,0130 0,013 0,0131 0,016 0,1040 0,026 0,3512 0,036
2T Y 0,0158 0,012 0,0188 0,018 0,1334 0,084 0,2830 0,047
3T N 0,0181 0,012 0,0191 0,018 0,022 0,026 0,0670 0,043
4T Y 0,0245 0,017 0,0255 0,023 1,3923 0,025 6,4358 0,04 
5T N 0,0301 0,012 0,0332 0,019 0,6061 0,0232 2,4695 0,045

6.2. Castles game 

The second benchmark for testing the performance of the UMC4ATL  application is a 
version of Castles game [31]. In this example we have two parameters: N - the number of 
castles, and HP - the number of hit points per each castle. Every castle has a knight, which can 
either defend own castle, or attack another castle. However, after every attack, the knight has 
to return to the castle for rest. While resting, the knight defends the castle as well. Every attack 
of a single knight decreases the castle's HPs by 1, unless a knight is defending the attacked 
castle, what reduces the taken damage by 1. Thus, for example, if two knights attack the same 
undefended castle, it takes 2 HPs down. If the castle is defended, the same double attack reduces 
castle's HPs by 1 point. In order to keep track of the castles' hit points, we introduced another 
agent, called Counter. Its states correspond to the possible combinations of HPs of every castle.  

Fig. 4 shows the system for 2 castles and 2 HPs per each. Both players start with 2 HPs, so 
the initial state of the system is (0, 0, 2). For better readability we show counter’s actions 
labelled by synchronized pairs of the knights’ actions. For two knights, there are only four 
possible outcomes of the first round of game: 

-  the knights defend their castles, and the state of the HPs does not change; it corresponds 
to the move (𝑑𝑒𝑓𝑒𝑛𝑑଴, 𝑑𝑒𝑓𝑒𝑛𝑑ଵ),  
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- the first knight attacks the second one which defends itself; this is the move (𝑎𝑡𝑡𝑎𝑐𝑘ଵ, 𝑑𝑒𝑓𝑒𝑛𝑑ଵ),  
- the second knight attacks the other which defends; (𝑑𝑒𝑓𝑒𝑛𝑑଴, 𝑎𝑡𝑡𝑎𝑐𝑘଴),  
- both knights attack each other simultaneously and both lose one hit point. This is the 

only case in this setup to change the game result. It corresponds to the move (𝑎𝑡𝑡𝑎𝑐𝑘଴, 𝑎𝑡𝑡𝑎𝑐𝑘ଵ). 

 

Figure 4. Castles game with two knights (left, center), and the counter (right). Each castle has 
initially 2 HPs. Source: own study 

For this example, the formula  ≪ 0 ≫ 𝐺¬ 𝑙𝑜𝑠𝑒଴ was tested, which means that the first 
knight has a strategy to never lose. Table 3 shows the results of Experiment 2. The first column 
shows the number of hit points of every castle, while the next columns present the execution 
time of UMC4ATL and MCMAS (in seconds). This benchmark shows that the UMC4ATL is 
not coping well with the increase in the number of castles and their hit points, while MCMAS 
is more efficient here. 

Table 3. Results of Experiment 2. Castles game for 2 and 3 knights with 1,2,3 HPs 

 N=2 N=3 
HP UMC MCMAS UMC MCMAS 
1 0,036 0,031 0,146 0,025
2 0,0553 0,031 1,295 0,124
3 0,063 0,048 13,951 0,254

 Comparison of local and global valuation 

In our tool we implemented two types of evaluation: global, which assigns propositions 
to global states, and local - assigning propositions to local states. The comparison of both 
versions is presented in Table 4. The column meaning of Table 4 is as follows. Column "No." 
represents the formula id that are shown in Table 1 and TGC2-TGC5 represent the number of 
trains in a TGC game. Labels glob and loc stands respectively for global and local evaluation. 
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The numbers in bold show the few cases where the local evaluation has an advantage over 
global evaluation. 

Table 4. Comparison of global and local valuation, for TGC with 2-5 trains. Source: own study 

 TCG2 TCG3 TCG4 TCG5 
No. glob loc glob loc glob loc glob loc 
1 0,017 0,061 0,020 0,081 0,127 0,213 0,371 0,548
2 0,017 0,074 0,020 0,078 0,102 0,231 0,370 0,557
3 0,014 0,075 0,015 0,083 0,017 0,161 0,022 0,444
4 0,025 0,081 0,235 0,088 0,889 0,818 3,917 3,917
1R 0,014 0,068 0,015 0,0767 0,017 0,102 0,022 0,199
2R 0,013 0,068 0,015 0,075 1,321 1,324 6,072 6,609
3R 0,012 0,073 0,014 0,791 0,075 0,162 0,239 0,414
1T 0,013 0,069 0,013 0,074 0,104 0,191 0,351 0,511
2T 0,016 0,075 0,019 0,081 0,133 0,168 0,208 0,454
3T 0,018 0,073 0,019 0,081 0,022 0,115 0,067 0,244
4T 0,025 0,082 0,026 0,090 1,392 1,479 6,436 6,335 

 Conclusion 

In this paper we presented a prototype implementation of the Unbounded Model Checking 
for ATL introduced in [21]. We have translated the verification problem into a Quantified 
Boolean Formula and used the SMT-solver Z3 [15] to check its satisfiability. We have also 
compared the efficiency of our tool with the state-of-the-art MCMAS [26, 27] model checker. 
Our preliminary experimental results show that the UMC method works in a satisfactory way. 
However, we still need to introduce several optimizations and reductions - similar to those 
implemented in MCMAS - to improve the UMC4ATL efficiency. For example, MCMAS early 
prunes the unreachable fragments of the (local) state space in order to decrease the model size. 
Another improvement could be an on-the-fly symbolic encoding of the CGS without explicitly 
computing the product space. As a future work, we plan to introduce these optimizations along 
with checking whether the CNF translation originally proposed in [21] and the use of SAT-
solvers would be more efficient than QBF solving. 
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