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GARCH(1,1) models with stable residuals   

Abstract. The focus of this paper is the use of stable distributions for GARCH models. Such models are 

applied for the analysis of financial and economic time series, which have several special properties: 

volatility clustering, heavy tails and asymmetry of residuals distributions. Below we compare the 

properties of stable and tempered stable distributions and describe methodologies for constructing 

models and subsequent estimation of parameters using the maximum likelihood method. We also 

analyze an example of building models on real data in order to illustrate that tempered stable 

distributions could be used in financial time series models. Moreover, such distributions can show 

better results in comparison with traditionally used distributions.  

Keywords. GARCH model, stable distribution, tempered stable distribution, maximum likelihood 
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1. Introduction 

GARCH model (Generalized Autoregressive Conditionally Heteroskedastic) is one of the 

most popular tools for economic and financial time series analysis. Such time series have a 

number special features to be taken into consideration while modelling. Heavy tails of 
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residuals distribution point out at outliers with very high values. Distribution can also be non-

symmetric because various news and events influence financial assets prices in different 

ways. Volatility clustering means that small changes of financial assets prices are followed by 

small changes and bigger changes are followed by bigger ones. 

Many studies established the fact that GARCH model with normal residuals distribution 

produces unsatisfactory results. The reason for this is that normal distribution is symmetric 

and its tails are not heavy enough. Thus, there exists actual problem of analysis of GARCH 

models with different residuals distributions (different from normal). For example, in recent 

years models with α-stable distributions has been studied [2-4]. Such models produce fine 

results but still have several disadvantages. Firstly, α-stable distributions have finite moments, 

only for orders less than α. Secondly, α-stable distributions have an explicit form of the 

distribution density function only in a few particular cases (α = 0.5, α = 1, α = 2). Thirdly, the 

tails of α-stable distributions turn out to be too heavy and insufficiently effective for real data 

analysis. To avoid the difficulties described above, various generalizations of α-stable 

distributions have been developed, which form a class of distributions called tempered stable. 

In this paper we analyze GARCH(1,1) models with α-stable, classical tempered stable 

(introduced by Koponen [5]), modified tempered stable and Kim-Rachev (introduced by Kim 

et al. in [6] and [7] respectively) distributions and consider an example of constructing 

GARCH (1,1) models with different distributions using real data and the choice of the optimal 

model for forecasting based on statistical criteria. 

2. GARCH(1,1) model with stable distributions 

2.1. 𝜶-stable distribution 

Let  0,2  ,  1,1   ,  0,   , 𝜇 ∈ R. Then random variable X has α-stable 

distribution if its characteristic function has the following form 
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We denote  , ,X S   : . Parameters have the following meaning: α – stability; β – 

asymmetry; μ – shift; σ – scale. If we set μ=0, σ=1, β=0, then we have standard α-stable 

distribution and denote stdS . We note several properties of the α-stable distribution: 

, 1E X    ; , 0 1E X     ; , 0
p

E X p     ; ,
p

E X p    . 

The above properties cause certain difficulties in the use of α-stable distribution as 

GARCH model residuals. This is described in more detail in [4] and [8]. 

2.2. Classical tempered stable distribution 

Let 𝛼 ∈ 0,1 ∪ 1,2 , 𝜎, 𝜆 , 𝜆 0, 𝜇 ∈ R. Then random variable X has classical 

tempered stable distribution (CTS) if its characteristic function has the following form 
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where 𝑢 ∈ R, Г – gamma function. We denote  , , , ,X CTS      : . The cumulants for 

the distribution are calculated as follows: 

 1c X  , 

      1 , 2,3,...
nn n

nc X n n     
       . 

Parameters α, μ, σ have the same meaning as in α-stable distribution. Parameters   and 

  control the decay rate for the positive and negative tail, respectively. If           

then distribution has left (right) asymmetry, and if     then distribution is symmetric. 

Parameters  ,   and α also determine the heaviness of the distribution tails. If we set  

    1
2 22     


 

      

then random variable  , , , ,0X CTS     :  has zero mean, and variance is equal to 1. In 

these cases we say that X has standard 𝐶𝑇𝑆 distribution with parameters α,  ,   and denote 

 , ,X stdCTS    : . 

2.3. Modified tempered stable distribution 

Let 𝛼 ∈ 0,1 ∪ 1,2 , 𝜎, 𝜆 , 𝜆 0, 𝜇 ∈ R. Then random variable X  has modified 

tempered stable distribution (MTS), if its characteristic function has the following form 
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where 2 1F  – hypergeometric function. The cumulants for the distribution are calculated as 

follows: 
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We denote  , , , ,X MTS      : . Parameters has the same meaning as in CTS 

distribution. If we set 
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then random variable  , , , ,0X MTS     :  has zero mean, and variance is equal to 1. In 

these cases we say that 𝑋 has standard 𝑀𝑇𝑆 distribution with parameters α, ,  and denote 

 , ,X stdMTS    : .  

2.4. Tempered stable Kim-Rachev distribution 

Let    0,1 1, 2   ,  , , , 0k k r r     ,  ,  | 1, 0p p p p p         and R . Then random 

variable X  has Kim-Rachev tempered stable distribution (KRTS), if its characteristic function 

has the following form 
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where uR , Г – gamma function, 
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where 2 1F  – hypergeometric function. The cumulants for the distribution are calculated as 

follows:   
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We denote  ~ , , , , , , ,X KRTS k k r r p p       . If we set 
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then random variable  ~ , , , , , , ,0X KRTS k k r r p p        has zero mean, and variance is equal 

to 1. In these cases we say that X  has standard KRTS  distribution with parameters 

, , , ,r r p p      and denote  ~ , , , ,X stdKRTS r r p p     . 

2.5. GARCH(1,1) model 

Process ,  tX tZ  satisfies  1,1  GARCH model (Generalized Autoregressive Conditionally 

Heteroskedastic) if 
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where  , tZ tZ  – independent identically distributed random variables and 

0 1 20, 0, 0      – model parameters. The condition of stationarity has the following form:  

 1 2 1.    
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2.6. Parameters estimates 

We specify the parameters vectors and the range of parameters for the GARCH (1,1) 

models with different distributions of tZ . Let  ~ 0,1tZ N . Then vector of the parameters has 

the following form 

  0 1 2, , ,
T

norm     

and the range of the parameters is 

    1 2 0 1 2 0 1 2: 1;0 min , , max , , 1 .norm normK                

For the case when  ~ , ,tZ S    , we define a parameters vector and the range of 

parameters as follows: 
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To estimate the parameters of GARCH(1,1) model we use the maximum likelihood 

method. Suppose we have a sample of length n  1, , nX X , nN  behind the process , tX tZ . 

Then estimate n̂  of parameters vector   of GARCH(1,1) model on a compact set K is 

defined as follows: 

 arg max ,ˆ ˆ
n n

K
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K  , 1,t n ,  f x  – density distribution function of tZ  and  t̂h   can be considered as 

estimate of t . The choice of form of log likelihood function  ˆ
nL   described in [8]. Note that 

 0t̂ th    for all tN , а 0  – vector of true values of the parameters. For  t̂h   we use 

function    
1

2ˆ ˆt th y  , where  ˆty   has the following form: 

𝑦 𝜃
𝜀, 𝑡 0

𝑤 𝑤 𝑋 𝑤 𝑦 𝜃 , 𝑡 1, 

𝜀 ∈ 0, ∞  – random initial value. We note that for the distributions under consideration 

most often the explicit form of the distribution density function is unknown. To find the 

values of the function 𝑓 𝑥 , 𝑥 ∈ R we use the inverse Fourier transform of the characteristic 
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function  t . For practical experiments we use R language with additional packages: 

MixedTS, SymTS, fourierin, GEVStableGarch. 

3. Real data empirical for the GARCH(1,1) model 

We consider an example of constructing GARCH(1,1) using data of Intel (INTC) stock 

prices. We use daily data for the period from the 1st of November 2007 till the 1st of 

November 2017. Suppose that the dynamics of the logarithm of return rate of securities has 

the following form: 
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log , 1 .t
t t
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0tS   – security price at the time moment , t tN ; t tZ  – return volatility, defined using  

the GARCH(1,1) model. For the time series we construct GARCH(1,1) models with normal, 

 -stable, classical tempered stable, modified tempered stable, KR residuals distributions. 

Results of estimation are shown in Table 1. 

Table 1. Parameter estimates of GARCH(1,1) models with different residuals distributions for INTC data. 

 
0   1   2         

GARCH(1,1)‐

normal  6.8556E‐5  0.2133  0.8589  ‐  ‐  ‐ 

GARCH(1,1)‐

stable  5.2925E‐5  0.1371  0.9316  1.7131  ‐  ‐ 

GARCH(1,1)‐

CTS  5.3893E‐5  0.1252  0.8122  1.8268  0.0745  0.0779 

GARCH(1,1)‐

MTS  6.2704E‐5  0.1423  0.7453  1.7779  0.0775  0.0746 

 

To analyze how the model fits time series we use Kolmogorov-Smirnov test. Null 

hypotheses are defined as follows:  0H normal ,  0H stable ,  0H CTS ,  0H MTS ,  0H KRTS  – 

the residuals correspond to normal,   -stable, classical tempered stable, modified tempered 

stable, KR residuals respectively. Kolmogorov-Smirnov statistics and its p-values are shown 

in Table 2. According to the results obtained, the null hypothesis  0H normal  is rejected, 
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because The p-value is less than the significance level of 5%. The remaining null hypotheses 

are not rejected. 

Table 2. Kolmogorov-Smirnov statistics and p-values 

 

Residuals distribution  KS  p‐value 

GARCH(1,1)‐normal  0.1291  0.0000 

GARCH(1,1)‐stable  0.0308  0.0603 

GARCH(1,1)‐CTS  0.0209  0.1554 

GARCH(1,1)‐MTS  0.0226  0.1614 

GARCH(1,1)‐KRTS  0.0137  0.4926 

 

To compare models and select the best we used the following information criteria: 

Akaike information criterion – AIC 

 2 2 ,
LLF k

AIC
T T

     
 

 

Bayesian information criterion – BIC,  

 
ln

2 ,
LLF k T

BIC
T T

    

Hannan-Quinn information criterion – HQIC 

  2 ln ln
2 .

k TLLF
HQIC

T T
    

where LLF – log likelihood function value, T  – time series length, k  – number of model 

parameters. The best is the model that has the lowest value of the information criterion. 

According to the results presented in Table 3, it should be recognized the best model 

GARCH(1,1)-KRTS. 

Table 3. Information criteria results 
 

  GARCH(1,1)‐ GARCH(1,1)‐ GARCH(1,1)‐ GARCH(1,1)‐
GARCH(1,1)‐



 

56  M. Trusz, U. Tserakh

normal  stable  CTS  MTS  KRTS 

AIC  ‐3.8667  ‐4.2782  ‐4.3948  ‐4.4420  ‐4.6103 

BIC  ‐3.8594  ‐4.2691  ‐4.3820  ‐4.4618  ‐4.5819 

HQIC  ‐3.8641  ‐4.2750  ‐4.3903  ‐4.4628  ‐4.5957 

 

4. Conclusion 

In this paper we compared GARCH(1,1) models with different residuals distributions. 

GARCH(1,1)-normal model was rejected by Kolmogorov-Smirnov test, while models with 

-stable and tempered stable residuals were not rejected. We also checked relative quality of 

the models using information criteria. The reason for the good statistical results for tempered 

stable GARCH(1,1) models is that skewness and fat-tail property of their innovation are taken 

into account. 
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