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METHODOLOGY FOR ANALYSING THE RELATIONSHIPS  

BETWEEN PHYSICAL PARAMETERS AND PRICE VARIABLES  

IN REGIONAL DEMAND FOR WIND ELECTRICITY  

(AS APPLIED TO THE LATVIAN AGGREGATOR) 

 

ABSTRACT: In this article, the methodology is proposed for the complex analysis of the correlation and re-

gression dependencies of the relationship between the electricity price and the wind power generation in 

the electricity market in accordance with the National Energy and Climate Plan for 2021-2030 to increase 

the share of renewable energy sources (RES) in electricity generation. Both business models and technologies 

for regulating the supply and demand of electricity (EE) are changing significantly in the modern environ-

ment. The European Green Deal1 has the main objective of becoming the world’s first climate-neutral conti-

nent by 2050. The use of renewable energy significantly reduces the dependence on fossil fuels as a source 

of energy, helping to reduce greenhouse gas emissions. The growth of renewable energy sources can also 

help stabilize energy prices in the future, once they constitute a significant proportion of the electricity mix 

that powers businesses and households. Voluntary optimization of electricity consumption and energy-saving 

by the final consumer entails the economic impact carried out by the Demand Response (DR) mechanism. 

The adapted models help to understand this mechanism and establish the development of the Latvian regional 

aggregator, which, in turn, strengthens energy security in the European Union countries and improves energy 

sustainability and resilience.  

 

KEYWORDS: natural and price indicators, electricity sector, correlation and regression models, sinusoi-

dal dependence, Latvian regional aggregator 

   

  

METODOLOGIA ANALIZY ZALEŻNOŚCI MIĘDZY PARAMETRAMI  

FIZYCZNYMI A ZMIENNYMI CEN REGIONALNEGO 

 ZAPOTRZEBOWANIA NA ENERGIĘ WIATROWĄ (PRZYPADEK  

AGREGATORA ŁOTEWSKIEGO) 

ABSTRAKT: W artykule zaproponowano metodologię kompleksowej analizy zależności korelacyjnych 

i regresyjnych relacji między ceną energii elektrycznej a produkcją energii wiatrowej na rynku energii 

elektrycznej, zgodnie z Krajowym Planem Energetyki i Klimatu na lata 2021-2030, w celu zwiększenia 

                                                           
1 European Comisssion. European Green Deal, https://ec.europa.eu/info/strategy/priorities-2019-2024/european-

green-deal_en (03.12.2022). 
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udziału odnawialnych źródeł energii (OZE) w wytwarzaniu energii elektrycznej. Zarówno modele biz-

nesowe, jak i technologie regulacji podaży i popytu na energię elektryczną (EE) ulegają istotnym zmia-

nom. Głównym celem Europejskiego Zielonego Ładu jest przekształcenie Europy do 2050 r. w pierwszy 

na świecie kontynent neutralny dla klimatu. Wykorzystanie energii odnawialnej znacznie zmniejsza za-

leżność od paliw kopalnych jako źródła energii, pomagając ograniczyć emisje gazów cieplarnianych. 

Rozwój odnawialnych źródeł energii może również pomóc w ustabilizowaniu cen energii w przyszłości, 

gdy będzie ona stanowić znaczną część miksu energetycznego, który zasila przedsiębiorstwa i gospo-

darstwa domowe. Dobrowolna optymalizacja zużycia energii elektrycznej i oszczędność energii przez 

odbiorcę końcowego pociąga za sobą skutki gospodarcze realizowane przez mechanizm Demand Re-

sponse (DR). Przedstawione adaptowane modele pomagają zrozumieć ten mechanizm i ustalić rozwój 

łotewskiego regionalnego agregatora, który z kolei wzmacnia bezpieczeństwo energetyczne w krajach 

Unii Europejskiej oraz poprawia zrównoważenie i odporność energetyczną. 

 

SŁOWA KLUCZOWE: wskaźniki naturalne i cenowe, sektor energii elektrycznej, modele korelacji 

i regresji, zależność sinusoidalna, agregator łotewski  

 

 

INTRODUCTION 

Nowadays, in the energy industry, both business models and technologies for regulating 

the supply and demand of electricity (EE) are significantly changing, referring to the develop-

ment of Demand Management (DM) mechanisms, in which consumers are transformed into 

active consumers, including those participating in demand changes for EE. Voluntary optimi-

zation of electricity consumption and energy-saving by the final consumer with a certain eco-

nomic effect is carried out by the Demand Response (DR) mechanism. The main solution for 

the implementation of the DM and DR mechanisms is the creation of specialized organizations 

– demand management aggregators (DMA), whose commercial activity is to provide demand 

response services2,3. Voluntary optimization of electricity consumption by the end user with 

a certain economic benefit is carried out by the Demand Response (DR) mechanism. 

This article proposes a methodology for the complex analysis of correlation and regression 

dependencies of the relationship between electricity price and wind power generation on the elec-

tricity market4, as according to the “National Energy and Climate Plan for 2021-2030” Latvia plans 

to increase the share of renewable energy sources (RES) in electricity generation5. 

The developed methodology is based on the adaptation of correlation and regression clas-

sical models’ analysis in relation to the analysis of industry statistical indicators of electricity 

production and imports in the period 2014-2019, the average hourly electricity consumption 

and the price of one MWh of wind power in 2019, and similar indicators for hours of peak 

consumption from 8:00 to 12:00. Because the electricity price is determined by demand and 

                                                           
2 Latvijas Republikas Saeima, Electricity Market Law, Riga 2005, https://likumi.lv/ta/en/en/id/108834  (20.11.2022). 
3 J Stede, The role of aggregators in facilitating industrial demand response: Evidence from Germany, “Energy 

Policy” 2020, Vol. 147, 111893, https://doi.org/10.1016/j.enpol.2020.111893. 
4 S. Uğur, S. Ramazan, Routledge Handbook of Energy Economics. Energy Modelling, London 2021, pp. 230-257. 
5 Cabinet of Ministers Republic of Latvia. Rīkojums Nr. 46 “Par Latvijas Nacionālo enerģētikas un klimata plānu 

2021.–2030. gadam”. Riga 2020, https://likumi.lv/ta/id/312423 (24.11.2022). 
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supply6 and, therefore, endogenously specified within the market, hourly expected wind gener-

ation have been used as a variable to proxy electricity prices. The statistical indicators are sup-

plemented with details of electricity consumption and wind power generation unit price on av-

erage per day and at peak hours (from 8:00 to 12:00) monthly in 2019. There regression de-

pendencies of monthly wind power data were established. The calculated data on the validation 

of the obtained models were also presented. Calculations were made using the algorithmic lan-

guage MATHCAD.  

The proposed adapted models can be used to understand the peculiarities of the DR mecha-

nism and the development process of the Latvian regional aggregator. This will help boost energy 

security in the European Union’s countries and improve energy sustainability and resilience7.  

Energy regulation is complex and broad. In 2021, the European Commission proposed 

strengthening the EU Energy Efficiency Directive with the aim of meeting the 2030 climate 

target and reducing net greenhouse gas emissions by at least 55% compared to 1990. All 27 EU 

Member States vigorously supported European Green Deal initiative and transformational 

change to transform the European Union into the first climate neutral continent by 2050. 

The energy policy strategies of the European Union must advance in energy efficiency, espe-

cially renewable energy, to ensure compliance with the European Green Deal goals. Russia’s 

invasion of Ukraine exposed vulnerability in the European energy system and accelerated the 

need to increase its resilience and independence from Russian fossil fuels. 

 

THE UNDERLYING REGRESSION MODEL – CLASSICAL ANALITICAL MODEL 

In general, regression allows for approximating a mathematical relationship between two 

or more variables if their values are known in a number of points. For analysis purposes, the 

processed statistical data is usually presented in general by indicators V1 and V2 are interrelated 

indicators related to the same object of research and calculated in increasing time intervals (i). 

For the electricity sector V1 means physical indicators expressed in MWh and V2 are price 

indicators in EUR/ MWh. 

In the following formulas, the available statistical data are presented in the form of the 

corresponding matrices Tj. The average value, dispersion, and standard deviation for the data 

represented by the vector V (V takes the value V1 or V2) of matrix Tj are calculated using the 

usual equations8: 

𝐸(𝑉) =
1

𝑛
∑ 𝑉𝑖,

𝑛
𝑖=1        (1) 

                                                           
6 A. Cretì, F. Fontini, Economics of Electricity. Markets, Competition and Rules, Cambridge 2019, pp.237-244. 
7 B. Cointe, A. Nadaï, Feed-in Tariffs in the European Unions. Renewable energy policy, the internal electricity 

market and economic expertise, Cham 2018, pp. 87-110. 
8 A.A. Afifi, S.P. Azen, Statistical Analysis. A Computer Oriented Approach, New York – San Francisco – London 

2015. 
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𝐷(𝑉) =
1

𝑛−1
∑ (𝑉𝑖 − 𝐸(𝑉))

2
,𝑛

𝑖=1      (2) 

𝜎(𝑉) = √𝐷(𝑉).       (3) 

The covariance of two variables, presented in the Table 1, is calculated by the equa-

tion9:  

𝑐𝑜𝑣(𝑉1, 𝑉2) =
1

𝑛
∑ 𝑉1𝑖𝑉2𝑖 − 𝐸(𝑉1)𝐸(𝑉2).𝑛

𝑖=1    (4) 

The correlation coefficient is defined as follows:  

𝑐𝑜𝑟𝑟(𝑉1, 𝑉2) =
𝑐𝑜𝑣(𝑉1,𝑉2)

𝜎(𝑉1)𝜎(𝑉2)
.      (5) 

The general polynomial regression model10 assumes the dependence of the random vari-

able Yi from the values of the factors (related variables, regressors) xi,1, xi,2, ..., xi,k in the i-th 

observation: 

,𝑌𝑖 =  𝛽0 + 𝛽1𝑥i,1 + ⋯ + 𝛽𝑘𝑥𝑖,𝑘 +  𝑍𝑖 , 𝑖 = 1, … , 𝑛,   (6) 

where 𝛽0, 𝛽1, … , 𝛽𝑘 – regression coefficients, 𝑍𝑖 – random component with a zero average 

value and final standard deviation, n –number of observations.  

The regression task is to estimate the coefficients 𝛽0, 𝛽1, … , 𝛽𝑘 based on n observations. 

In the i-th observation, the values of the related variables xi,1 , xi,2,…,xi,k  and the value of the random 

variable 𝑌𝑖 are fixed. The estimate of the regression coefficients 𝛽0, 𝛽1, … , 𝛽𝑘 is presented in vector-

matrix form. In regard to this, the following vectors and matrices are considered:  

𝑌 = (𝑌1, … , 𝑌𝑛)𝑇 – a column vector of dependent variables (T means matrix transposition);  

𝑋 = (𝑥𝑖,𝑗) – matrix of related variables of size n×(k+1), whose lines correspond to the 

observations, but columns to the regression coefficient;  

𝛽 = (𝛽0 , … , 𝛽𝑘)Т – column vector.  

The classical estimate of the regression coefficients is calculated by the equation11:  

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌,       (7) 

where (XTX)−1 means the matrix inverse to XTX. 

In this case, the estimate of the random variable  Yi is:  

𝑌̂𝑖 =  𝛽̈0 + 𝛽1̂𝑥i,1 + ⋯ + 𝛽̂𝑘𝑥𝑖,𝑘, 𝑖 = 1, … , 𝑛.    (8)  

 

 

 

 

                                                           
9 G.A.F.Seber, A.J. Lee, Linear regression analysis, New Jersey 2003, pp.139-184. 
10 Ibidem. 
11 A.A. Afifi, S.P. Azen Stanley, op. cit.  
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ADAPTATION OF CLASSICAL MATHEMATICAL MODELS FOR THE ANALYSIS  

OF CORRELATION AND REGRESSION DEPENDENCIES OF NATURAL AND PRICE 

INDICATORS OF THE ELECTRICITY SECTOR 

To start with, mathematical models for the analysis of the electricity sector natural and 

price indicators have been developed in relation to the processing of statistical data presented 

by tables with specific natural and price indicators of: 

− electricity production and imports in the time period 2014-2019 (Table 1); 

− average hourly electricity consumption and the price of one MWh of wind power in 2019 

(Table 2);  

− similar indicators (Table 2) for hours of peak consumption from 8:00 to 12:00 

CET/GTM+2 (Table 3).  

The motivation to choose the variables for Table 2 and table 3 is as follows. Implemen-

tation of DR programs can result in shift peak demand, enhance system reliability, can reduce 

transmission bottleneck and highly priced energy bills by shifting or re-adjusting consumption 

patterns12,13. It can also reduce the effects of intermittent RE generation since the capacity of 

introduced RE sources will be optimally minimal, and the consumer can also be encouraged to 

embark on self RE generation and sell self-produced excess energy to the grid. The calculation 

of trends of indicators, approximating formulas dependencies and the coefficients of determi-

nation for the relevant diagrams and charts are based on big data collected from the Latvian 

transmission system operator, Central Statistical Bureau of Latvia14 and the Nord Pool15, power 

exchange. All the calculations in this and subsequent sections were carried out using the 

Mathcad programming language. 

Table 1. Latvian electricity sector net electricity production and import, MWh, 2014-2019 

Indicator, MWh  2014 2015 2016 2017 2018 2019 

Net electricity  production 4857 5384 6228 4401 6500 6108 

Import 5338 5247 4827 4074 5172 4612 

Source: created by the authors based on statistical data16. 

 

Table 2 contains calculations of average indicators (1-3), dispersion and standard devi-

ations, according to the data in Table 1. 

                                                           
12 J. Rawlings, S. Pantula, D. Dickey, Applied Regression Analysis, New York 2006, pp. 235-262. 
13 A. Adams, D. Bloomfield, P. Booth, P. England, Investment Mathematic and Statistics, London 1993. 
14 Central Statistical Bureau of Latvia, Electricity Production, Imports, Exports and Consumption, Riga 2021, 

https: //stat.gov.lv/en/statistics-themes/business-sectors (25.05.2022). 
15 Nord Pool. Merchant Electricity Prices. Historical market data, http://nordpoolspot.com/historical-market-data 

(20.03.2022); Nord Pool. Merchant Electricity Prices. Market Data, https://www.nordpoolgroup.com 

(20.03.2022); Nord Pool. Maximum Net Transfer Capacities (NTC), https://www.nordpoolspot.com/globalas-

sets/download-center/tso/max-ntc.pdf (20.03.2022). 
16 Central Statistical Bureau of Latvia, Electricity Production, Imports, Exports and Consumption, Riga 2021, 

https: //stat.gov.lv/en/statistics-themes/business-sectors (25.05.2022). 
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Table 2. The calculated values of the indicators (1 – 3) according to Table 2 

 Net electricity production Import 

Average, E 5413×103 4.878×103 

Dispersion, D 4.978×105 2.308×105 

Standard deviation, σ 705.541 480.41 

Source: created by the author. 

 

The covariance calculated by formulas (4) for net electricity production and import is 

5.772 × 104, and the correlation coefficient calculated by formulas (5) is 0.17. It could be easily 

seen that these indicators “Net electricity production” and “Import of electricity” are positively 

correlated, but the degree of correlation is low. 

Furthermore, the wind energy indicators in Latvia for 2019 could be considered (Table 3 and 4). 

Table 3. Average hourly calculated natural and price indicators of wind energy in Latvia, 2019 

Indicator Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Average hourly wind 

power generation (MWh) 

171 219 222 141 135 89 122 58 161 159 183 224 

Average wind power price 

(EUR/MWh)  

56 47 40 44 44 45 49 39 49 47 45 39 

Source: created by the authors based on statistical data17. 

Table 4. Average hourly calculated natural and price indicators of wind energy during  

peak hours (from 8:00 to 12:00 CET/GTM+2) in Latvia, 2019 

Indicator Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Average hourly peak wind 

power generation (MWh) 

174 211 230 118 123 76 96 47 149 153 181 213 

Average peak wind power 

price (EUR/MWh) 

64 50 43 52 57 66 61 60 67 56 48 42 

Source: created by the authors based on statistical data
18

. 

 

The calculated average per diem and peak hours indicators of wind energy are equal to 157 

and 147.6 MWh, 45.3 and 55.5 EUR/ MWh accordingly Tables 3 and 4. Indicators differ insignif-

icantly in volume (6%) and significantly, in price (18%); moreover, during peak hours, the average 

consumption of wind power is less, but the average hourly price is higher. As the next step, author 

developed a regression model that describes the dependence of the indicators in Table 3 and 4 from 

month number i. The number of observations is the number of months, i.e. n = 12.  

                                                           
17 Central Statistical Bureau of Latvia. Electricity Production, Imports, Exports and Consumption. Riga 2021. 

https: //stat.gov.lv/en/statistics-themes/business-sectors (25.05.2022). 
18 Ibidem. 
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The related variables should be chosen so that the smoothing of the presented data is 

acceptable. The smoothing criterion is the sum of the squares of the deviations: 

𝑅 = ∑ (𝑌𝑖 − 𝑌̂𝑖)
212

i=1 .       (9) 

Initially, it was supposed to use a general polynomial regression model (8): 

,𝑌𝑖 =  𝛽0 + 𝛽1𝑖2 + 𝛽1𝑖 + ⋯ + 𝛽𝑘𝑖𝑘 +  𝑍𝑖 , 𝑖 = 1, … ,12.    

However, the results were completely unsatisfactory. This is explained by various re-

searchers offering advanced mathematical and statistical application for analysis19. Based on 

the assumptions that the matrix 𝑋𝑇𝑋  is quite poorly conditioned, they mention that one of the 

ways to reduce the influence of bad conditionality of the matrix 𝑋𝑇𝑋  is to use Chebyshev 

polynomial. This possibility was tested, but the result was again unsatisfactory. The authors 

adopted for further research the sinusoidal dependence of the indicator on the month number:  

𝑌𝑖 =  𝛽0 + 𝛽1 sin (
𝑖−𝑐

6
𝜋) + 𝑍𝑖, 𝑖 = 1, … ,12,    (10) 

where с – known integer with possible values from 0 to 11.  

In this case, there is a single related variable 𝑥𝑖,1 = sin (
𝑖−𝑐

6
𝜋) .  Statistics are given by 

the vector 𝑌 = (𝑌1, 𝑌2, … , 𝑌12) and the smoothing criterion is written as: 

𝑅 = ∑ (𝑌𝑖 − 𝑌̂𝑖)
212

𝑖=1 = ∑ (𝛽̂0 + 𝛽1̂ sin (
𝑗−𝑐

6
𝜋) − 𝑌𝑖)

2
12
𝑗=1 .  (11) 

It allows you to get simple estimation equations: 

𝛽0 =
1

12
∑ 𝑌𝑗

12
𝑖=1 ,       (12) 

𝛽1 = (∑ sin (
𝑖−𝑐

6
𝜋) (𝑌𝑖 − 𝛽0)12

𝑖=1 ) ∗
1

∑ (sin(
𝑖−𝑐

6
𝜋))

2
12
𝑖=1

.     

The latter formula follows from the fact that the derivative to 𝛽1from R gives the follow-

ing relation: 

𝛽0 ∑ sin (
𝑖 − 𝑐

6
𝜋)

12

𝑖=1

+ 𝛽1 ∑ (sin (
𝑖 − 𝑐

6
𝜋))

212

𝑖=1

− ∑ 𝑌𝑖 sin (
𝑖 − 𝑐

6
𝜋) = 0.

12

𝑖=1

 

Constant с is chosen so that the criterion R is minimal. Application of the obtained estimates 

shows that individual outliers violate smoothing. The estimates can be improved by introducing an 

additional related variable of (+1) for the cases with the highest values and (-1) for the cases with 

the lowest values [11]. According to Tables 3 and 4 the highest values of average hourly wind 

power generation and average hourly peak wind power generation are in February, March and De-

cember, but the lowest values are in June and August. If using Boolean variables  

                                                           
19A. Adams, P. Booth, D. Bowie, D. Freeth, Investment Mathematics, New Jersey 2003, pp. 149-155; A. Adams, 

D. Bloomfield, P. Booth, P. England, Investment Mathematic and Statistics, London 1993; J. Rawlings, S. Pantula, 

D. Dickey, Applied Regression Analysis, New York 2006, pp. 235-262. 
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𝑥𝑖,2 = [
−1, if 𝑖 = 6 or 8,

1, if 𝑖 = 2, 3 or 12,
0, otherwise,

      (13) 

where i – number of months, then the modified regression model can be written as follows:  

𝑌𝑖 =  𝛽0 + 𝛽1 sin (
𝑖−𝑐

6
𝜋) + 𝛽2𝑥𝑖,2 + 𝑍𝑖 , 𝑖 = 1, … ,12,   (14) 

Model (14) assumes that the maximum and minimum outliers have the same average 

deviations from the total average. If this is not the case, then additional related variables should 

be introduced to identify the maximum and minimum outliers:  

𝑥𝑖,2 = [
−1, if 𝑖 = 6 or 8,

0, otherwise,
      (15) 

𝑥𝑖,3 = [
1, if 𝑖 = 2, 3 or 12,

0, otherwise.
      (16) 

The regression model will now look as follows:  

𝑌𝑖 =  𝛽0 + 𝛽1 sin (
𝑖−𝑐

6
𝜋) + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝑍𝑖, 𝑖 = 1, … ,12. (17) 

Next, a regression model that approximates Table 3 and Table 4 at once, is considered. 

To perform it, we will introduce an additional related variable identifying the table under con-

sideration, and the estimation will be carried out on all data from both Tables 3 and 4. Let us 

illustrate this using the example of the last model (17). A related variable xi,4 will be added here: 

𝑥𝑖,4 = [
1, if the observation refers to table 1,

0, otherwise.
    (18) 

As a result, we get the model:  

𝑌𝑖 =  𝛽0 + 𝛽1 sin (
𝑖−𝑐

6
𝜋) + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4𝑥𝑖,4 + 𝑍𝑖 , 𝑖 = 1, … ,12. (19) 

 

THE RESULTS OF PROCESSING MONTHLY FLUCTUATIONS  

OF THE INDICATORS IN TABLES 3 AND 4 

The calculated indicators of natural and price statistics – average hourly wind power and 

average hourly price from Tables 3, and average hourly  peak wind power and average hourly 

peak prices from Table 4 are given in Table 5. The covariance for the two presented indicators 

is 5.25 for Table 3 and -308 for Table 4. The corresponding correlation coefficients are 

0.021 and -0.626. It can be stated that the statistical characteristics of these two tables are sub-

stantially different.  
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Table 5. The calculated values of the indicators (1 –3) according to the Tables 3 and 4 

 
Average hourly wind power production (MWh) Average price (EUR) 

Table 3 Table 4 Table 3 Table 4 

Average, E 157 147.583 45.583 55.5 

Dispersion, D 2.713×103 3.302×103 23.5154 73.182 

Standard devia-

tion, σ 
52.084 57.462 4.849 8.555 

Source: created by the author. 

 

Now it is pertinent to present the results of the analysis of monthly fluctuations in the 

statistical data of Tables 3 and 4, where the regression coefficients β0 and β1 are estimated for 

different values of the constant c, and the criterion smoothing (11) is calculated to “remove 

noise” from a data set, allowing important patterns to stand out. Tables 6 and 7 show the ob-

tained results. It should be highlighted that the best results are in that case, when the value of 

the constant с is equal to 4. This value will be used in the next calculations.  

Table 6. The values of criterion (11) at different с for the indicators of Table 3 

C 0 1 2 3 4 5 6 7 8 9 10 11 

R1 155 173 157.37 118.23 90.88 115.44 155.29 172.72 157.37 118.23 90.88 115.14 

R2 16 16 15.869 15.868 15.967 16.067 16.069 15.97 15.869 15.868 15.967 16.067 

Source: created by the author. 

Table 7. The values of criterion (11) at different с for the indicators of Table 4 

c 0 1 2 3 4 5 6 7 8 9 10 11 

R1 171.67 190.58 171.13 124.11 92.48 124.85 171.64 190.58 171.13 124.11 92.48 124.85 

R2 25.57 28.08 27.89 25.14 22.31 22.55 25.57 28.08 27.89 25.14 22.31 22.55 

Source: created by the author. 

 

For the model (10) with с = 4, the coefficients calculated by formulas (11) and (.12) were 

as follows – Table 3: for the first indicator β0 = 157 and β1 = -59.974; for the second indicator 

β0 = 45.333 and β1 = -0.789. Table.4: for the first indicator β0 = 147.583 and β1 = -68.029; for 

the second indicator β0 = 55.5 and β1 =7.157. Comparison of actual and smoothed data is given 

in Tables 8 and 9. 

Table 8. Actual and smoothed monthly data for the indicators of Table 3 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Y1 171 219 222 141 135 89 122 58 161 159 183 224 

𝑌̂𝑖 216.9 208.9 187.0 157.0 127.0 105.1 97.0 105.1 127.0 177.0 187.0 209.0 

Y2 56 47 40 44 44 45 49 39 49 47 45 39 

𝑌̂2 46.12 46.02 45.73 45.33 44.94 44.65 44.55 44.65 44.94 45.33 45.73 46.02 

Source: created by the author. 
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Table 9. Actual and smoothed monthly data for the indicators of Table 4 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Y1 174 211 230 118 123 76 96 47 149 153 181 213 

𝑌̂𝑖 215.6 206.5 181.6 147.6 113.6 88.7 79.6 88.7 113.6 147.6 181.6 206.5 

Y2 64 50 43 52 57 66 61 60 67 56 48 42 

𝑌̂2 48.3 49.3 51.9 55.5 59.1 61.7 62.7 61.7 59.1 55.5 51.9 49.3 

Source: created by the author. 

 

The next step is to repeat the calculations for the case of introducing an additional related 

variable (13). (See model (14)). The data presented in Tables 10 and 11 indicate that the best 

values of the constant с are: с =2 for the first indicator in Table 3 and с = 3 in other cases.  

Table 10. Values of criterion (11) for model (14) at different с for indicators of Table 3 

c 0 1 2 3 4 5 6 7 8 9 10 11 

R1 52.65 45.75 38.30 40.58 54.88 57.29 52.65 45.75 38.30 40.58 54.88 57.29 

R2 15.92  15.72 15.47 15.39 15.81 16.01 15.92 15.72 15.47 15.39 15.81 16.01 

Source: created by the author. 

Table 11.Values of criterion (11) for model (14) at different с for indicators of Table 4 

c 0 1 2 3 4 5 6 7 8 9 10 11 

R1 74.86 65.72 54.30 54.06 74.40 79.98 74.86 65.72 54.30 54.06 74.40 79.98 

R2 19.10 19.10 19.02 18.83 18.83 19.00 19.10 19.10 19.02 18.83 18.83 19.00 

Source: created by the author. 

 

For model (14) with the chosen values с the coefficients calculated by formula (7) are as 

follows – Table 3: for the first indicator β0 = 151.2, β1 = -14.77 and β2 = 69.72, for the second 

indicator β0 = 45.49, β1 = -2.03 and β2 = -1.92. Table 4: for the first indicator β0 = 142.55, β1 = 

-28.86 and β2 = 60.37, for the second indicator β0 = 56.24, β1 = 0.92 and β2 = -8.90. Comparison 

of actual and smoothed data is given in Tables 12 and 13. 

Table 12. Actual and smoothed monthly data for model (14) and indicators of Table 3 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Y1 171 219 222 141 135 89 122 58 161 159 183 224 

𝑌̂𝑖 158.57 220.91 213.53 138.40 136.42 68.68 143.81 81.47 158.57 163.98 165.96 233.7 

Y2 56 47 40 44 44 45 49 39 49 47 45 39 

𝑌̂2 47.25 44.59 43.58 44.48 43.74 45.38 43.74 46.39 45.93 46.51 47.25 45.61 

Source: created by the author. 
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Table 13. Actual and smoothed monthly data for model (14) and indicators of Table 4 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Y1 174 211 230 118 123 76 96 47 149 153 181 213 

𝑌̂𝑖 167.55 217.36 202.93 128.22 117.56 53.32 117.56 67.75 142.55 156.98 167.55 231.79 

Y2 64 50 43 52 57 66 61 60 67 56 48 42 

𝑌̂2 55.45 46.88 47.34 56.70 57.04 66.06 57.04 65.60 56.24 55.78 55.45 46.23 

Source: created by the author. 

 

The next step is a repeat of the calculations for the case of introducing two additional 

related variables (15) and (16), identifying the maximum and minimum outliers. (See model 

(17)) As in the previous case, the data presented in Tables 14 and 15 indicate that the best values 

of the constant с are: с =2 for the first indicator of Table 3 and с = 3 – in other cases.  

Table 14. Values of criterion (11) for model (16) at different с for indicators of Table 3. 

C 0 1 2 3 4 5 6 7 8 9 10 11 

R1 52.41 45.59 38.00 39.37 53.54 56.70 52.41 45.59 38.00 39.37 53.54 56.70 

R2 12.78  12.69 12.39 11.95 12.16 12.63 12.78 12.69 12.39 11.95 12.16 12.63 

Source: created by the author. 

Table 15. Values of criterion (3.11) for model (3.17) at different с for indicators of Table 4 

C 0 1 2 3 4 5 6 7 8 9 10 11 

R1 74.84 65.62 54.25 53.88 73.76 79.93 74.84 65.62 54.25 53.88 73.76 79.93 

R2 17.96 17.90 17.78 17.68 17.81 17.95 17.96 17.90 17.78 17.68 17.81 17.95 

Source: created by the author. 

 

For model (17) with the chosen values с the coefficients calculated by formula (7) are as 

follows - Table 3: for the first indicator β0 = 152.1, β1 = -14.51, β2 = -72.32 and β3 = 67.92, for 

the second indicator β0 = 57.86, β1 = 1.26, β2 = 4.20 and β3 = -12.23. Table 4: for the first 

indicator β0 = 142.0, β1 = -28.98, β2 = -58.77 and β3 = 61.51, for the second indicator β0 = 47.71, 

β1 = -1.56, β2 = -4.55 and β3 = -6.49. Comparison of actual and smoothed data is given in Tables 

16 and 17. 

Table 16. Actual and smoothed monthly data for model (17) and indicators of Table 3 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Y1 171 219 222 141 135 89 122 58 161 159 183 224 

𝑌̂𝑖 159.36 219.90 212.64 139.54 137.60 67.22 144.85 79.78 159.36 164.67 166.62 232.46 

Y2 56 47 40 44 44 45 49 39 49 47 45 39 

𝑌̂2 49.01 42.00 41.22 46.94 46.36 41.61 46.36 42.39 47.71 48.49 49.06 42.78 

Source: created by the author. 
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Table 17. Actual and smoothed monthly data for model (17) and indicators of Table 4 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Y1 174 211 230 118 123 76 96 47 149 153 181 213 

𝑌̂𝑖 167.10 218.00 203.51 127.51 116.91 54.26 116.90 68.74 142.00 156.49 167.10 232.45 

Y2 64 50 43 52 57 66 61 60 67 56 48 42 

𝑌̂2 56.77 45.00 45.63 58.49 58.95 63.31 58.95 62.68 57.86 57.23 56.77 44.37 

Source: created by the author. 

 

As the tables show, the developed model of the regression quite precisely describes our 

data. R-square is much closer to the unit that means that the model is qualitative. In addition, 

the lack of residual autocorrelation indicates the quality of the forecast.  

Comparison of the two models (14) and (17) for the purpose of their practical use leads 

to the following recommendations. If we proceed from the formal criterion, the sum of squares 

of deviations (9), then the preference should be given to the model (17). However, expert anal-

ysis shows that the results provided by the model (14) are more logically justified. In this regard, 

model (14) is recommended for practical use.  

 

CONCLUSIONS 

In May 2022 a Special meeting of the European Council has been held where the Con-

clusions on Ukraine, food security, security and defence, and energy were adopted20. The key 

to rapidly reducing the European Union’s dependence on Russian fossil fuels is the acceleration 

of the energy transition. Improving energy efficiency, deploying renewables and enhancing the 

interconnection of European gas and electricity networks are crucial to achieve a more resilient 

energy system. The European Council called for work on the optimisation of the functioning of 

the European electricity market. Analyzing the effectiveness and efficiency of the electricity 

market and statistics authors believe there is a significant potential to increase the share of re-

newable energy sources in electricity generation.  

The authors substantiated the use of the sinusoidal dependence of wind energy indicators 

on the month of the year, as a basic model, for the correlation study. It is shown that if the 

maximum and minimum outliers of the studied data do not have the same average deviations 

from the general average level, then it is necessary to introduce additional accompanying vari-

ables that identify these outliers, which leads to the corresponding modified model. The regres-

sion dependence of monthly wind power data is established and the correctness of the obtained 

models is supported by the corresponding calculations. 

The main conclusions are as follows: 

                                                           
20 European Council. Conclusions on Ukraine, food security, security and defence and energy. Brussels 2022, 

https://www.consilium.europa.eu/en/press/press-releases/2022/05/31/european-council-conclusions-30-31-may-

2022 (24.11.2022). 
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1. The use of a sinusoidal dependence as a basic mathematical model is justified for regression 

and correlation analysis of monthly statistical data on wind power and its price. It has been 

shown that polynomial regression is an ineffective tool for the corresponding study. 

2. The model has been modified with additional accompanying variables for cases where 

the maximum and minimum outliers of the studied data do not have the same average 

deviations from the total average. 

3. The developed models are recommended to be used as analytical tools for the electricity 

aggregator development in Latvia. 

4. Such results can be a valuable input for analysis on the necessity for compensation between 

aggregators and balance responsible parties or basis for further analysis for policy makers 

when considering the necessity for state support to accelerate the introduction of the service.  

The European Green Deal21 has the main objective of becoming the world’s first climate-

neutral continent by 2050. The use of renewable energy significantly reduces the dependence 

on fossil fuel as a source of energy, helping to cut the greenhouse gas emissions. The growth 

of renewable energy sources can also help stabilize energy prices in the future once it makes up 

a significant proportion of the electricity mix that powers businesses and households.  

Implementation of the results of the study will help improve the efficiency of the func-

tionality of the regional energy regulator and, consequently, strengthen the national energy se-

curity and independence in line with the European Union resolution to strengthen security, sta-

bility and prosperity in Europe.  
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